M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

Size: px
Start display at page:

Download "M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm"

Transcription

1 M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet until instructed to do so. 1

2 Please leave this page blank. Question Points Score (bonus) 5 Total 80 2

3 1. [15 pts.] The following chart contains partial information about the continuous function f(x) (defined for all numbers) and its derivatives. f(x) f (x) f (x) x < 2 + x = 2 10 DNE 2 < x < x = < x < 4 + x = x > 4?? (a): Find all local maxima and local minima. Justify your answer. There are critical points at x = 2 and x = 4. x = 2: f (x) changes from to +. Hence, by the first derivative test, there is a local minimum at x = 2. x = 4: f (4) = 0 and f (4) < 0. Hence, by the second derivative test, there is a local maximum at x = 4. (b): On what intervals is the graph of f(x) concave up? concave down? Locate any inflection points. The graph of f(x) is concave up on the intervals (, 2) and ( 2, 0). The graph of f(x) is concave down on the interval (0, ). There is an inflection point at x = 0 because the concavity changes from positive (concave up) to negative (concave down). There is NOT an inflection point at x = 2. (c): Identify the intervals of increase and decrease for f(x). To figure out what is happening for x > 4, note that f (x) = d dx f (x) is negative for all x > 4. Hence f (x) is decreasing for x > 4. Since f (4) = 0, f (x) must be negative for all x > 4. Intervals of increase: ( 2, 4) Intervals of decrease: (, 2) and (4, ). 3

4 2. [10 pts.] Two cars start moving from the same point. One travels east at 15 mi/h and the other travels north at 20 mi/h. At what rate is the distance between the cars increasing two hours later? Let x(t) be the distance of the first car from the starting point at time t. Let y(t) be the distance of the second car from the starting point at time t. The paths of the two cars form a right triangle, so the distance f between the two is given by the pythagorean theorem: f = x 2 + y 2. We want to know df after two hours. By the chain rule: dx dy df 2x + 2y = 2 x 2 + y. 2 After two hours x = 30mi and y = 40mi. We are given that dx = 20mi/h. Hence after two hours, dy = 15mi/h and that df = (30mi)(15mi/h) + (40mi)(20mi/h) (30mi) 2 + (40mi) = mi/h 50 = 25 mi/h. 4

5 3. [10 pts.] The conditions y = x x 4 define a line segment in the x-y plane. Find the points on the line segment with maximum and minimum distance to the origin. The distance from the point (x, y) to the origin is given by the distance formula distance = x 2 + y 2. We want to extremize the distance, when (x, y) lies on the line y = x + 2 and 1 x 4. Hence we are trying to optimize the function f(x) = x 2 + ( x + 2) 2 on the closed interval [ 1, 4]. to do this, use the closed interval method: Critical points: f (x) = 1 ( x 2 + ( x + 2) 2) 1 2 (2x + 2( x + 2)( 1)) 2 2x 2 = x 2 + (2 x). 2 The denominator of f (x) is never zero, so f (x) is always defined. f (x) = 0 exactly when 2x 2 = 0. So the only critical point is x = 1. At this point: f(1) = = 2. Check endpoints: f( 1) = 10. f(4) = 20. Hence, the absolute minimum occurs when x = 1 (at the point (1, 1) on the line segment) and the absolute maximum occurs when x = 4 (at the point (4, 2) on the line segment). 5

6 4. [10 pts.] Find the limit. You may use any method. Please show all steps clearly. (a): lim θ π 2 1 sin θ 1 + cos 2θ Plugging in θ = π 2 gives the indeterminate form 0 0. So we use L Hospital s rule: lim θ π 2 1 sin θ 1 + cos 2θ = lim θ π 2 cos θ 2 sin 2θ This limit again has indeterminate form 0 0, so we use L Hospital s rule again. lim θ π 2 1 sin θ 1 + cos 2θ = lim θ π 2 = lim θ π 2 = sin π 2 4 cos π = 1 4 cos θ 2 sin 2θ sin θ 4 cos 2θ (b): lim x ln x x 0 + As x 0 +, ln x. Hence the limit is an indeterminate product of form 0. Rewrites as a fraction, and then use L Hospital s rule. ln x lim x ln x = lim x 0 + x 0 + 1/x = lim x 0 + 1/x 1/x 2 = lim x 0 +( x) = 0. by L Hospital s rule 6

7 5. [16 pts] Sketch the graph of y = xe x. Label all important features of the graph. You may use this page and the next one to show your work. Domain: y defined for all numbers. Intercepts: y(0) = 0. And xe x = 0 only when x = 0. (e x > 0 for all x). Symmetry: No symmetry. Asymptotes: No vertical asymptotes because the function is defined for all numbers. Horizontal asymptotes: lim x xe x = lim x x e x = lim x So horizontal asymptote at y = 0 as x. (No h.a. as x ) Intervals of I/D: lim x xe x = y = e x + xe x ( 1) 1 e x = 0. = e x xe x = (1 x)e x So y is increasing when x < 1 and y is decreasing when x > 1. Local Extrema: y switches from + to when x = 1, so y has a local max at x = 1. Intervals of Concavity: y = e x (e x xe x ) = (x 2)e x. So, the graph of y is concave up for x > 2 and concave down for x < 2. The concavity switches at x = 2, so there is an inflection point at x = 2. 7

8 Problem 5 extra page 8

9 6. [10 pts] (a): Let f(x) be continuous on [1, 5] and differentiable on (1, 5). What does the Mean Value Theorem say about f(x)? There exists an x-value c in (1, 5) so that f (c) = f(5) f(1) 5 1 (b): Suppose that f (x) > 3 for all x, and that f(1) = 1. Show that f(5) > 13. Using MVT we have that and so f (c) = f(5) 1 4 f(5) = 4f (c) + 1. Since f (x) > 3 for all x, we have f (c) > 3. Thus f(5) > = 13. 9

10 7. [9 pts.] (a): Find the linearization L(x) of f(x) = x 1/3 at x = 8. L(x) = f(a) + f (a)(x a). In this case, a = 8. f(8) = 2 and f (x) = 1 3 x 2/3, so f (8) = Hence, L(x) = (x 8). 12 (b): Use your answer form part (a) to estimate the value of f(8.2) = L(8.2) = (0.2) = (c): What is the concavity of f(x) near x = 8? Use this to explain whether your answer from part (b) is an over-estimate or an under-estimate. f (x) = 2 9 x 5/3. Hence f (x) < 0 for all positive x. In particular, near x = 8, the graph of f is concave down. Hence the tangent line at x = 8 lies above the graph. This means the linearization gives an overestimate. 10

11 8. [Bonus - 5pts] Let f(x) be de defined for all x. Suppose f(x) is continuous and differentiable whenever x 0 and satisfies f(0) = 1 lim f(x) = a x 0 lim f(x) = 1 x 0 + lim f (x) = b. x 0 + Give conditions on the constants a, b that guarantee f(0) is a local maximum. f(0) is a local maximum if for x near 0, the values of f(x) are all less than or equal to f(0). To guarantee this we need the following two conditions. a < 1: This guarantees that f(x) < f(0) = 1 for nearby x < 0. b < 0: This guarantees that f(x) < f(0) for nearby x > 0. 11

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Credit at (circle one): UNB-Fredericton UNB-Saint John UNIVERSITY OF NEW BRUNSWICK DEPARTMENT OF MATHEMATICS & STATISTICS

Credit at (circle one): UNB-Fredericton UNB-Saint John UNIVERSITY OF NEW BRUNSWICK DEPARTMENT OF MATHEMATICS & STATISTICS Last name: First name: Middle initial(s): Date of birth: High school: Teacher: Credit at (circle one): UNB-Fredericton UNB-Saint John UNIVERSITY OF NEW BRUNSWICK DEPARTMENT OF MATHEMATICS & STATISTICS

More information

MTH 132 Solutions to Exam 2 Apr. 13th 2015

MTH 132 Solutions to Exam 2 Apr. 13th 2015 MTH 13 Solutions to Exam Apr. 13th 015 Name: Section: Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

APPM 1350 Exam 2 Fall 2016

APPM 1350 Exam 2 Fall 2016 APPM 1350 Exam 2 Fall 2016 1. (28 pts, 7 pts each) The following four problems are not related. Be sure to simplify your answers. (a) Let f(x) tan 2 (πx). Find f (1/) (5 pts) f (x) 2π tan(πx) sec 2 (πx)

More information

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200.

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 20 4 30 5 20 6 20 7 20 8 20 9 25 10 25 11 20 Total: 200 Page 1 of 11 Name: Section:

More information

Written Homework 7 Solutions

Written Homework 7 Solutions Written Homework 7 Solutions Section 4.3 20. Find the local maxima and minima using the First and Second Derivative tests: Solution: First start by finding the first derivative. f (x) = x2 x 1 f (x) =

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2.

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2. Math 180 Written Homework Assignment #8 Due Tuesday, November 11th at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 180 students,

More information

MATH 019: Final Review December 3, 2017

MATH 019: Final Review December 3, 2017 Name: MATH 019: Final Review December 3, 2017 1. Given f(x) = x 5, use the first or second derivative test to complete the following (a) Calculate f (x). If using the second derivative test, calculate

More information

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th )

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th ) UNIVERSITY OF REGINA Department of Mathematics and Statistics Calculus I Mathematics 110 Final Exam, Winter 2013 (April 25 th ) Time: 3 hours Pages: 11 Full Name: Student Number: Instructor: (check one)

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

Part A: Short Answer Questions

Part A: Short Answer Questions Math 111 Practice Exam Your Grade: Fall 2015 Total Marks: 160 Instructor: Telyn Kusalik Time: 180 minutes Name: Part A: Short Answer Questions Answer each question in the blank provided. 1. If a city grows

More information

Math 1500 Fall 2010 Final Exam Review Solutions

Math 1500 Fall 2010 Final Exam Review Solutions Math 500 Fall 00 Final Eam Review Solutions. Verify that the function f() = 4 + on the interval [, 5] satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

MA 113 Calculus I Fall 2012 Exam 3 13 November Multiple Choice Answers. Question

MA 113 Calculus I Fall 2012 Exam 3 13 November Multiple Choice Answers. Question MA 113 Calculus I Fall 2012 Exam 3 13 November 2012 Name: Section: Last 4 digits of student ID #: This exam has ten multiple choice questions (five points each) and five free response questions (ten points

More information

Math Final Exam - 12/12/2015

Math Final Exam - 12/12/2015 Math 121 - Final Exam - 12/12/2015 Name: Section: Section Class Times Day Instructor Section Class Times Day Instructor 1 09:00AM -09:50AM M T W F Sarah G Rody 12 11:00 AM - 11:50 AM M T W F Marci Ann

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

Math 41 Second Exam November 4, 2010

Math 41 Second Exam November 4, 2010 Math 41 Second Exam November 4, 2010 Name: SUID#: Circle your section: Olena Bormashenko Ulrik Buchholtz John Jiang Michael Lipnowski Jonathan Lee 03 (11-11:50am) 07 (10-10:50am) 02 (1:15-2:05pm) 04 (1:15-2:05pm)

More information

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers. Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

MIDTERM 2. Section: Signature:

MIDTERM 2. Section: Signature: MIDTERM 2 Math 3A 11/17/2010 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. When you use a major theorem (like

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math 0550, Exam October, 0 The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for hour and 5 min. Be sure that your name is on every page in case

More information

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2 Answer Key Calculus I Math 141 Fall 2003 Professor Ben Richert Exam 2 November 18, 2003 Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions. A bacteria culture initially contains 00 cells and grows at a rate proportional to its size. After an hour the population has increased to 40 cells. (a) Find an expression for the

More information

MTH 132 Solutions to Exam 2 Nov. 23rd 2015

MTH 132 Solutions to Exam 2 Nov. 23rd 2015 Name: Section: Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

Math 41 Final Exam December 9, 2013

Math 41 Final Exam December 9, 2013 Math 41 Final Exam December 9, 2013 Name: SUID#: Circle your section: Valentin Buciumas Jafar Jafarov Jesse Madnick Alexandra Musat Amy Pang 02 (1:15-2:05pm) 08 (10-10:50am) 03 (11-11:50am) 06 (9-9:50am)

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes. Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the

More information

4.2: What Derivatives Tell Us

4.2: What Derivatives Tell Us 4.2: What Derivatives Tell Us Problem Fill in the following blanks with the correct choice of the words from this list: Increasing, decreasing, positive, negative, concave up, concave down (a) If you know

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

Exam 3 MATH Calculus I

Exam 3 MATH Calculus I Trinity College December 03, 2015 MATH 131-01 Calculus I By signing below, you attest that you have neither given nor received help of any kind on this exam. Signature: Printed Name: Instructions: Show

More information

Math 116 Second Midterm November 14, 2012

Math 116 Second Midterm November 14, 2012 Math 6 Second Midterm November 4, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 8 problems. Note that

More information

Math 112 (Calculus I) Final Exam

Math 112 (Calculus I) Final Exam Name: Student ID: Section: Instructor: Math 112 (Calculus I) Final Exam Dec 18, 7:00 p.m. Instructions: Work on scratch paper will not be graded. For questions 11 to 19, show all your work in the space

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

Math 1131 Final Exam Review Spring 2013

Math 1131 Final Exam Review Spring 2013 University of Connecticut Department of Mathematics Math 1131 Final Exam Review Spring 2013 Name: Instructor Name: TA Name: 4 th February 2010 Section: Discussion Section: Read This First! Please read

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions 1. If y x 3 x and dx dt 5, find dy dt when x. We have that dy dt 3 x dx dt dx dt 3 x 5 5, and this is equal to 3 5 10 70 when x.. A spherical balloon is being inflated so that its

More information

MATH 151, FALL SEMESTER 2011 COMMON EXAMINATION 3 - VERSION B - SOLUTIONS

MATH 151, FALL SEMESTER 2011 COMMON EXAMINATION 3 - VERSION B - SOLUTIONS Name (print): Signature: MATH 5, FALL SEMESTER 0 COMMON EXAMINATION - VERSION B - SOLUTIONS Instructor s name: Section No: Part Multiple Choice ( questions, points each, No Calculators) Write your name,

More information

Final exam practice 4 (solutions) UCLA: Math 3B, Winter 2019

Final exam practice 4 (solutions) UCLA: Math 3B, Winter 2019 Final exam practice 4 (solutions) Instructor: Noah White Date: UCLA: Math 3B, Winter 2019 This exam has 7 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

Mathematic 108, Fall 2015: Solutions to assignment #7

Mathematic 108, Fall 2015: Solutions to assignment #7 Mathematic 08, Fall 05: Solutions to assignment #7 Problem # Suppose f is a function with f continuous on the open interval I and so that f has a local maximum at both x = a and x = b for a, b I with a

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

MTH 132 Solutions to Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11.

MTH 132 Solutions to Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Student s Printed Name: _Key

Student s Printed Name: _Key Student s Printed Name: _Key Instructor: CUID: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or

More information

Math 112 (Calculus I) Midterm Exam 3 KEY

Math 112 (Calculus I) Midterm Exam 3 KEY Math 11 (Calculus I) Midterm Exam KEY Multiple Choice. Fill in the answer to each problem on your computer scored answer sheet. Make sure your name, section and instructor are on that sheet. 1. Which of

More information

MATH 1241 Common Final Exam Fall 2010

MATH 1241 Common Final Exam Fall 2010 MATH 1241 Common Final Exam Fall 2010 Please print the following information: Name: Instructor: Student ID: Section/Time: The MATH 1241 Final Exam consists of three parts. You have three hours for the

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

Math 131 Exam 1 October 4, :00-9:00 p.m.

Math 131 Exam 1 October 4, :00-9:00 p.m. Name (Last, First) My Solutions ID # Signature Lecturer Section (01, 02, 03, etc.) university of massachusetts amherst department of mathematics and statistics Math 131 Exam 1 October 4, 2017 7:00-9:00

More information

Mathematics Midterm Exam 2. Midterm Exam 2 Practice Duration: 1 hour This test has 7 questions on 9 pages, for a total of 50 points.

Mathematics Midterm Exam 2. Midterm Exam 2 Practice Duration: 1 hour This test has 7 questions on 9 pages, for a total of 50 points. Mathematics 04-84 Mierm Exam Mierm Exam Practice Duration: hour This test has 7 questions on 9 pages, for a total of 50 points. Q-Q5 are short-answer questions[3 pts each part]; put your answer in the

More information

MA 113 Calculus I Fall 2016 Exam 3 Tuesday, November 15, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section:

MA 113 Calculus I Fall 2016 Exam 3 Tuesday, November 15, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section: MA 113 Calculus I Fall 2016 Exam 3 Tuesday, November 15, 2016 Name: Section: Last 4 digits of student ID #: This exam has five true/false questions (two points each), ten multiple choice questions (five

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

Solutions to Math 41 Second Exam November 5, 2013

Solutions to Math 41 Second Exam November 5, 2013 Solutions to Math 4 Second Exam November 5, 03. 5 points) Differentiate, using the method of your choice. a) fx) = cos 03 x arctan x + 4π) 5 points) If u = x arctan x + 4π then fx) = fu) = cos 03 u and

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers Mon 3 Nov 2014 Tuesday 4 Nov: Quiz 8 (4.2-4.4) Friday 7 Nov: Exam 2!!! In class Covers 3.9-4.5 Today: 4.5 Wednesday: REVIEW Linear Approximation and Differentials In section 4.5, you see the pictures on

More information

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t Math 4, Autumn 006 Final Exam Solutions Page of 9. [ points total] Calculate the derivatives of the following functions. You need not simplfy your answers. (a) [4 points] y = 5x 7 sin(3x) + e + ln x. y

More information

Math 241 Final Exam, Spring 2013

Math 241 Final Exam, Spring 2013 Math 241 Final Exam, Spring 2013 Name: Section number: Instructor: Read all of the following information before starting the exam. Question Points Score 1 5 2 5 3 12 4 10 5 17 6 15 7 6 8 12 9 12 10 14

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5.

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5. Name: Instructor: Math 155, Practice Final Exam, December The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for 2 hours. Be sure that your name

More information

MA 113 Calculus I Fall 2015 Exam 3 Tuesday, 17 November Multiple Choice Answers. Question

MA 113 Calculus I Fall 2015 Exam 3 Tuesday, 17 November Multiple Choice Answers. Question MA 11 Calculus I Fall 2015 Exam Tuesday, 17 November 2015 Name: Section: Last 4 digits of student ID #: This exam has ten multiple choice questions (five points each) and five free response questions (ten

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Mathematics 131 Final Exam 02 May 2013

Mathematics 131 Final Exam 02 May 2013 Mathematics 3 Final Exam 0 May 03 Directions: This exam should consist of twelve multiple choice questions and four handgraded questions. Multiple choice questions are worth five points apiece. The first

More information

AP Calculus BC Chapter 4 AP Exam Problems. Answers

AP Calculus BC Chapter 4 AP Exam Problems. Answers AP Calculus BC Chapter 4 AP Exam Problems Answers. A 988 AB # 48%. D 998 AB #4 5%. E 998 BC # % 5. C 99 AB # % 6. B 998 AB #80 48% 7. C 99 AB #7 65% 8. C 998 AB # 69% 9. B 99 BC # 75% 0. C 998 BC # 80%.

More information

Math 115 Practice for Exam 3

Math 115 Practice for Exam 3 Math 115 Practice for Exam 3 Generated November 17, 2017 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 6 questions. Note that the problems are not of equal difficulty, so you may want to

More information

University of Georgia Department of Mathematics. Math 2250 Final Exam Fall 2016

University of Georgia Department of Mathematics. Math 2250 Final Exam Fall 2016 University of Georgia Department of Mathematics Math 2250 Final Exam Fall 2016 By providing my signature below I acknowledge that I abide by the University s academic honesty policy. This is my work, and

More information

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS CALCULUS 1

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS CALCULUS 1 McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION VERSION 1 MATHEMATICS 140 2008 09 CALCULUS 1 EXAMINER: Professor W. G. Brown DATE: Sunday, December 07th, 2008 ASSOCIATE EXAMINER: Dr. D. Serbin TIME:

More information

MTH 132 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11.

MTH 132 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent dx = (A) 3 sin(3x ) + C 1. cos ( 3x) 1 (B) sin(3x ) + C 3 1 (C) sin(3x ) + C 3 (D) sin( 3x ) + C (E) 3 sin(3x ) + C 6 3 2x + 6x 2. lim 5 3 x 0 4x + 3x (A) 0 1 (B) 2 (C) 1 (D) 2 (E) Nonexistent is 2 x 3x

More information

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS A CALCULUS I EXAMINER: Professor K. K. Tam DATE: December 11, 1998 ASSOCIATE

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS A CALCULUS I EXAMINER: Professor K. K. Tam DATE: December 11, 1998 ASSOCIATE NOTE TO PRINTER (These instructions are for the printer. They should not be duplicated.) This examination should be printed on 8 1 2 14 paper, and stapled with 3 side staples, so that it opens like a long

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

SOLUTIONS TO EXAM 2, MATH 10550

SOLUTIONS TO EXAM 2, MATH 10550 SOLUTIONS TO EXAM 2, MATH 0550. Find the critical numbers of f(x) = 6 x2 x /3. We have f (x) = 3 x 3 x 2/3 = [ x 5/3 ] 3 x 2/3. So x = 0 is a critical point. For x 0, the equation f (x) = 0 can be written

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c MATH 0100 section 4.4 Concavity and Curve Sketching Page 1 Definition: The graph of a differentiable function y = (a) concave up on an open interval I if df f( x) (b) concave down on an open interval I

More information

term from the numerator yields 2

term from the numerator yields 2 APPM 1350 Eam 2 Fall 2013 1. The following parts are not related: (a) (12 pts) Find y given: (i) y = (ii) y = sec( 2 1) tan() (iii) ( 2 + y 2 ) 2 = 2 2 2y 2 1 (b) (8 pts) Let f() be a function such that

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam This outcomes list summarizes what skills and knowledge you should have reviewed and/or acquired during this entire quarter in Math 121, and what

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Final exam practice UCLA: Math 3B, Fall 2016

Final exam practice UCLA: Math 3B, Fall 2016 Instructor: Noah White Date: Monday, November 28, 2016 Version: practice. Final exam practice UCLA: Math 3B, Fall 2016 This exam has 7 questions, for a total of 84 points. Please print your working and

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

Final Exam. V Spring: Calculus I. May 12, 2011

Final Exam. V Spring: Calculus I. May 12, 2011 Name: ID#: Final Exam V.63.0121.2011Spring: Calculus I May 12, 2011 PLEASE READ THE FOLLOWING INFORMATION. This is a 90-minute exam. Calculators, books, notes, and other aids are not allowed. You may use

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

4.3 1st and 2nd derivative tests

4.3 1st and 2nd derivative tests CHAPTER 4. APPLICATIONS OF DERIVATIVES 08 4.3 st and nd derivative tests Definition. If f 0 () > 0 we say that f() is increasing. If f 0 () < 0 we say that f() is decreasing. f 0 () > 0 f 0 () < 0 Theorem

More information

ch 3 applications of differentiation notebook.notebook January 17, 2018 Extrema on an Interval

ch 3 applications of differentiation notebook.notebook January 17, 2018 Extrema on an Interval Extrema on an Interval Extrema, or extreme values, are the minimum and maximum of a function. They are also called absolute minimum and absolute maximum (or global max and global min). Extrema that occur

More information

Math 41 First Exam October 12, 2010

Math 41 First Exam October 12, 2010 Math 41 First Exam October 12, 2010 Name: SUID#: Circle your section: Olena Bormashenko Ulrik Buchholtz John Jiang Michael Lipnowski Jonathan Lee 03 (11-11:50am) 07 (10-10:50am) 02 (1:15-2:05pm) 04 (1:15-2:05pm)

More information

Work the following on notebook paper. You may use your calculator to find

Work the following on notebook paper. You may use your calculator to find CALCULUS WORKSHEET ON 3.1 Work the following on notebook paper. You may use your calculator to find f values. 1. For each of the labeled points, state whether the function whose graph is shown has an absolute

More information

Chapter 4: More Applications of Differentiation

Chapter 4: More Applications of Differentiation Chapter 4: More Applications of Differentiation Autumn 2017 Department of Mathematics Hong Kong Baptist University 1 / 68 In the fall of 1972, President Nixon announced that, the rate of increase of inflation

More information

DO NOT WRITE ABOVE THIS LINE!! MATH 180 Final Exam. December 8, 2016

DO NOT WRITE ABOVE THIS LINE!! MATH 180 Final Exam. December 8, 2016 MATH 180 Final Exam December 8, 2016 Directions. Fill in each of the lines below. Circle your instructor s name and write your TA s name. Then read the directions that follow before beginning the exam.

More information