term from the numerator yields 2

Size: px
Start display at page:

Download "term from the numerator yields 2"

Transcription

1 APPM 1350 Eam 2 Fall The following parts are not related: (a) (12 pts) Find y given: (i) y = (ii) y = sec( 2 1) tan() (iii) ( 2 + y 2 ) 2 = 2 2 2y 2 1 (b) (8 pts) Let f() be a function such that f(2 + 1) f(2) = 0 and f (1) = f (1) = 4. Find f (2). (a) (i) Using the quotient rule we have, d d [ ] 1 = 1 1 [(1/2)(1 ) 1/2 ( 1)] (1 ) 1/2 + ( = 1 ) 2 (1 ) 1/2 2 1 so factoring out the (1 ) 1/2 term from the numerator yields 2 [ ] d = (1 ) 1/2 [2(1 ) + ] d 1 2(1 ) = 2 2(1 ) 3/2 (a) (ii) Taking the derivative yields, so, simplifying yields [sec( 2 1) tan()] = sec( 2 1) tan( 2 1)(2) [1 tan() + sec 2 ()] [sec( 2 1) tan()] = 2 sec( 2 1) tan( 2 1) tan() sec 2 () (a) (iii) Using implicit differentiation, we have d [ ( 2 + y 2 ) 2 = 2 2 2y 2] = 2( 2 + y 2 )(2 + 2yy ) = 4 4yy d Now distributing the 2( 2 + y 2 ) term and collecting all the derivatives on one side yields 2( 2 + y 2 )(2yy ) + 4yy = 4 2( 2 + y 2 )(2) ( 2 + y 2 )(4yy ) + 4yy = 4 4( 2 + y 2 ) ( y 2 )4yy = 4(1 2 y 2 ) and so, y = 4(1 2 y 2 ) 4y( y 2 ) = (1 2 y 2 ) y( y 2 ) (b) First we take the derivative implicitly, [ ] d f(2 + 1) f(2) = 0 d 2f (2 + 1) f(2) 2f (2) = 0 The second derivative will be 4f (2 + 1) 4f (2) 4f (2) = 0. Now, let = 1/2, we find And thus f (2) = 6 4f (2) 4f (1) 2f (1) = 0

2 2. The following parts are not related: (a) (10 pts) When a certain polyatomic gas undergoes adiabatic epansion, its pressure, P, and volume, V, satisfy the equation P V 1.3 = k, where k is a constant. Find the relationship between the related rates / and /. (In other words find / in terms of /, P, and V.) (b) (10 pts) A particle is moving to the left along the line y = 3. When = 4, the -coordinate of the particle s position is decreasing at the rate of 0.5 cm/sec. At what rate is the distance of the particle from the origin changing at this moment? (a) Method 1: If we assume k is a nonzero constant, then V 0 and solving for P eplicitly yields P = kv 1.3, thus 2.3 = 1.3kV. Method 2: Note that differentiating P V 1.3 = k yields solving for / yields 1.3 V + 1.3V 0.3 P = 0 = V 1.3 = 1.3V 0.3 P 0.3 = 1.3V P V 1.3 = 1.3V 1 P = 1.3P V = 1.3P V Note: In the solution from Method 1, if we substitute k = P V 1.3 we get the solution from Method 2: 2.3 = 1.3kV = 1.3(P V )V = 1.3P V 1 = 1.3P V (b) Note that the distance of any point on the line y = 3 from the origin is given by D = 2 + 9, taking the derivative of both sides with respect to t yields dd = 1 2 (2 + 9) 1/2 2 d = substituting = 4 and d/ = 0.5 cm/sec yields dd = d ( 4 ( 4) ) = 4 ( ) = cm/sec that is, the distance is increasing at 0.4 cm/sec when = The following parts are not related: (a) (10 pts) One leg of a right triangle is known to have length 4 cm. The other leg is measured to be 3 cm with a maimum error of +0.1 cm. Use differentials to estimate the maimum error in the calculation of the angle θ between the measured leg and the hypotenuse. (b) (10 pts) If possible, find all numbers c in the interval [0.5, 2] that satisfy the conclusion of the Mean Value Theorem for the function f() = + 1, justify your answer. (a) We have a number of relationships between the side lengths and the angle θ, but only one that uses the lengths of the known leg and the one with measured error, namely

3 tan θ = 4 Taking derivatives we have sec 2 θ dθ = 4 2 d Solving for dθ we have dθ = cos 2 θ 4 2 d Using the fact that the triangle, as measured, is a triangle we have that cos(θ) = 3/5 which implies that cos 2 θ = 9/25. Plugging in the values for and d we have dθ = = = = (b) The function f is continuous and differentiable at every point ecept = 0, which is not in the interval, the MVT can be applied. We need to find the point c such that f (c) = f(2) f(1/2) 2 (1/2) We first write f as f() = Then f () = 1. We have 2 1 c 2 = 1 + 1/2 (1 + 2) 2 1/2 = 1 c 2 = 1 = c2 = 1 = c = ±1 Since only c = 1 is in [ 1 2, 2], it is the point guaranteed to eist by the MVT. 4. The following parts are not related: (a) (10 pts) Find all local etrema of y = 1 4 on the interval ( 1, 1), justify your answer without graphing the function. (Just give the -value of the etrema, if any.) (b) (10 pts) In your blue book clearly sketch the graph of a function f() that satisfies the following properties (label any etrema, inflection points or asymptotes): f () > 0 if < 2 f () < 0 if > 2 f ( 2) = 0 lim 2 f () = + f () > 0 if 2

4 (a) Note that f () = (1 4 ) 1/2 ( 4 3 ) = = and so f () = 0 when = ± and f () is undefined when = ±1 but these points are not in the domain. So = ± are the critical points of f(). We now need to determine if they are local etrema or just critical points. So we consider the sign chart of f () = , Sign Chart for f () / 4 3 1/ Increasing/Decreasing behavior for f() -1 1/ 4 3 1/ so = 1/ 4 3 is a local minimum and = 1/ 4 3 is a local maimum. Note: One could also use the 2nd Derivative test to determine whether or not the critical points of f() are local etrema or not. (b) Note that f () > 0 if < 2 = f is increasing on ( 2, 2) f () < 0 if > 2 = f is decreasing on (, 2) and (2, ) f ( 2) = 0 = horizontal tangent at = 2 lim 2 f () = + = there is a vertical asymptote or vertical tangent (cusp) at = 2 f () > 0 if 2 = f is concave up on (, 2) and (2, ) implies that the graph could, for eample, look like either of the following graphs below, 5. (20 pts, 4 ea.) Answer either Always True or False. Do NOT justify your answer. Do NOT abbreviate your answer. (a) Using a linearization of at a = 4, we can estimate (b) If f() is continuous on (a, b), then f() attains an absolute maimum value f(c) and an absolute minimum value f(d) at some points c and d in (a, b). (c) If m() is differentiable for all then m () is continuous.

5 sec(t) sec() (d) If k() = lim, then k(π/4) = 2 t t (e) If b() is differentiable and b( 1) = b(1), then there is a number c such that c < 1 and b (c) = 0. (a) F (b) F (c) F (d) A.T. (e) A.T. Comments: (a) Linearizing at a = 4, yields L() = ( 4), thus (b) Consider f() = on the interval (0, 1), then f() does not attain an absolute ma or min in (0, 1). { 2 sin(1/), if 0 (c) Consider m() = then m () eists for all but is not continuous at = 0. 0, if = 0 sec(t) sec() (d) Note lim = d t t t= [sec(t)] = sec() tan() = f(), so k(π/4) = sec(π/4) tan(π/4) = 2 (e) Use the Mean Value Theorem on b() over the interval [ 1, 1].

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144. AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

sin x (B) sin x 1 (C) sin x + 1

sin x (B) sin x 1 (C) sin x + 1 ANSWER KEY Packet # AP Calculus AB Eam Multiple Choice Questions Answers are on the last page. NO CALCULATOR MAY BE USED IN THIS PART OF THE EXAMINATION. On the AP Eam, you will have minutes to answer

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

AP Exam Practice Questions for Chapter 3

AP Exam Practice Questions for Chapter 3 AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f are and. So, the answer is B.. Evaluate each statement. I: Because

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis Final eam practice for Math 6 Disclaimer: The actual eam is different Find the volume of the solid generated b revolving the shaded region about the given ais. Use the disc/washer method ) About the -ais

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

APPM 1350 Exam 2 Fall 2016

APPM 1350 Exam 2 Fall 2016 APPM 1350 Exam 2 Fall 2016 1. (28 pts, 7 pts each) The following four problems are not related. Be sure to simplify your answers. (a) Let f(x) tan 2 (πx). Find f (1/) (5 pts) f (x) 2π tan(πx) sec 2 (πx)

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

MA 123 Calculus I Midterm II Practice Exam Answer Key

MA 123 Calculus I Midterm II Practice Exam Answer Key MA 1 Midterm II Practice Eam Note: Be aware that there may be more than one method to solving any one question. Keep in mind that the beauty in math is that you can often obtain the same answer from more

More information

Work the following on notebook paper. You may use your calculator to find

Work the following on notebook paper. You may use your calculator to find CALCULUS WORKSHEET ON 3.1 Work the following on notebook paper. You may use your calculator to find f values. 1. For each of the labeled points, state whether the function whose graph is shown has an absolute

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

π 2π More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u)

π 2π   More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u) 1. ( pts) The function y = is a composite function y = f( g( )). 6 + Identify the inner function u = g( ) and the outer function y = f( u). A) u = g( ) = 6+, y = f( u) = u B) u = g( ) =, y = f( u) = 6u+

More information

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer.

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer. Chapter 3 1. (AB/BC, non-calculator) Given g ( ) 2 4 3 6 : (a) Find the critical numbers of g. (b) For what values of is g increasing? Justify your answer. (c) Identify the -coordinate of the critical

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below.

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below. Math Final Eam - Practice Problem Solutions. A function f is graphed below. f() 8 7 7 8 (a) Find f(), f( ), f(), and f() f() = ;f( ).;f() is undefined; f() = (b) Find the domain and range of f Domain:

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim Amherst College, DEPARTMENT OF MATHEMATICS Math, Final Eamination, May 4, Answer Key. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value,

More information

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015 AP Calculus Review Assignment Answer Sheet 1 Name: Date: Per. Harton Spring Break Packet 015 This is an AP Calc Review packet. As we get closer to the eam, it is time to start reviewing old concepts. Use

More information

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve MAT 11 Solutions TH Eam 3 1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: Therefore, d 5 5 d d 5 5 d 1 5 1 3 51 5 5 and 5 5 5 ( ) 3 d 1 3 5 ( ) So the

More information

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

x π. Determine all open interval(s) on which f is decreasing

x π. Determine all open interval(s) on which f is decreasing Calculus Maimus Increasing, Decreasing, and st Derivative Test Show all work. No calculator unless otherwise stated. Multiple Choice = /5 + _ /5 over. Determine the increasing and decreasing open intervals

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

CURVE SKETCHING. Let's take an arbitrary function like the one whose graph is given below:

CURVE SKETCHING. Let's take an arbitrary function like the one whose graph is given below: I. THE FIRST DERIVATIVE TEST: CURVE SKETCHING Let's take an arbitrary function like the one whose graph is given below: As goes from a to p, the graph rises as moves to the right towards the interval P,

More information

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2.

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2. . Find A and B so that f Ae B has a local minimum of 6 when.. The graph below is the graph of f, the derivative of f; The domain of the derivative is 5 6. Note there is a cusp when =, a horizontal tangent

More information

The Detective s Hat Function

The Detective s Hat Function The Detective s Hat Function (,) (,) (,) (,) (, ) (4, ) The graph of the function f shown above is a piecewise continuous function defined on [, 4]. The graph of f consists of five line segments. Let g

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

Unit 3 Applications of Differentiation Lesson 4: The First Derivative Lesson 5: Concavity and The Second Derivative

Unit 3 Applications of Differentiation Lesson 4: The First Derivative Lesson 5: Concavity and The Second Derivative Warmup 1) The lengths of the sides of a square are decreasing at a constant rate of 4 ft./min. In terms of the perimeter, P, what is the rate of change of the area of the square in square feet per minute?

More information

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x) Evaluate the function: c. (g o f )(x + 2) d. ( f ( f (x)) 1. f x = 4x! 2 a. f( 2) b. f(x 1) c. f (x + h) f (x) h 4. g x = 3x! + 1 Find g!! (x) 5. p x = 4x! + 2 Find p!! (x) 2. m x = 3x! + 2x 1 m(x + h)

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

WEEK 8. CURVE SKETCHING. 1. Concavity

WEEK 8. CURVE SKETCHING. 1. Concavity WEEK 8. CURVE SKETCHING. Concavity Definition. (Concavity). The graph of a function y = f(x) is () concave up on an interval I if for any two points a, b I, the straight line connecting two points (a,

More information

NOTES 5: APPLICATIONS OF DIFFERENTIATION

NOTES 5: APPLICATIONS OF DIFFERENTIATION NOTES 5: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 EXTREMA ON AN INTERVAL Definition of Etrema Let f be defined on an interval I containing c. 1. f () c is the

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

f on the same coordinate axes.

f on the same coordinate axes. Calculus AB 0 Unit : Station Review # TARGETS T, T, T, T8, T9 T: A particle P moves along on a number line. The following graph shows the position of P as a function of t time S( cm) (0,0) (9, ) (, ) t

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Eercise 1 2 3 4 5 6 Total Points Department of Economics Mathematics I Final Eam January 22nd 2018 LAST NAME: Eam time: 2 hours. FIRST NAME: ID: DEGREE: GROUP: 1 (1) Consider

More information

Maximum and Minimum Values

Maximum and Minimum Values Maimum and Minimum Values y Maimum Minimum MATH 80 Lecture 4 of 6 Definitions: A function f has an absolute maimum at c if f ( c) f ( ) for all in D, where D is the domain of f. The number f (c) is called

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ), c /, > 0 Find the limit: lim 6+

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

+ 2 on the interval [-1,3]

+ 2 on the interval [-1,3] Section.1 Etrema on an Interval 1. Understand the definition of etrema of a function on an interval.. Understand the definition of relative etrema of a function on an open interval.. Find etrema on a closed

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4. Review Eercises for Chapter 6. r v 0 sin. Let f, 00, d 0.6. v 0 00 ftsec changes from 0 to dr 00 cos d 6 0 d 0 r dr 80 00 6 96 feet 80 cos 0 96 feet 8080 f f fd d f 99. 00 0.6 9.97 00 Using a calculator:

More information

lim 2 x lim lim sin 3 (9) l)

lim 2 x lim lim sin 3 (9) l) MAC FINAL EXAM REVIEW. Find each of the following its if it eists, a) ( 5). (7) b). c). ( 5 ) d). () (/) e) (/) f) (-) sin g) () h) 5 5 5. DNE i) (/) j) (-/) 7 8 k) m) ( ) (9) l) n) sin sin( ) 7 o) DNE

More information

Math 1500 Fall 2010 Final Exam Review Solutions

Math 1500 Fall 2010 Final Exam Review Solutions Math 500 Fall 00 Final Eam Review Solutions. Verify that the function f() = 4 + on the interval [, 5] satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

I have not checked this review sheet for errors, hence there maybe errors in this document. thank you.

I have not checked this review sheet for errors, hence there maybe errors in this document. thank you. I have not checked this review sheet for errors, hence there maybe errors in this document. thank you. Class test II Review sections 3.7(differentials)-5.5(logarithmic differentiation) ecluding section

More information

Solutions to Math 41 First Exam October 12, 2010

Solutions to Math 41 First Exam October 12, 2010 Solutions to Math 41 First Eam October 12, 2010 1. 13 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it

More information

Asymptotes are additional pieces of information essential for curve sketching.

Asymptotes are additional pieces of information essential for curve sketching. Mathematics 00a Summary Notes page 57 4. Curve Sketching Asymptotes are additional pieces of information essential for curve sketching. Vertical Asymptotes The line a is a vertical asymptote of the graph

More information

AP Calculus BC Final Exam Preparatory Materials December 2016

AP Calculus BC Final Exam Preparatory Materials December 2016 AP Calculus BC Final Eam Preparatory Materials December 06 Your first semester final eam will consist of both multiple choice and free response questions, similar to the AP Eam The following practice problems

More information

MATH140 Exam 2 - Sample Test 1 Detailed Solutions

MATH140 Exam 2 - Sample Test 1 Detailed Solutions www.liontutors.com 1. D. reate a first derivative number line MATH140 Eam - Sample Test 1 Detailed Solutions cos -1 0 cos -1 cos 1 cos 1/ p + æp ö p æp ö ç è 4 ø ç è ø.. reate a second derivative number

More information

5.6 Asymptotes; Checking Behavior at Infinity

5.6 Asymptotes; Checking Behavior at Infinity 5.6 Asymptotes; Checking Behavior at Infinity checking behavior at infinity DEFINITION asymptote In this section, the notion of checking behavior at infinity is made precise, by discussing both asymptotes

More information

Without fully opening the exam, check that you have pages 1 through 10.

Without fully opening the exam, check that you have pages 1 through 10. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the eam, check that you have pages 1 through 10. Show all your work on the standard

More information

M151B Practice Problems for Final Exam

M151B Practice Problems for Final Exam M5B Practice Problems for Final Eam Calculators will not be allowed on the eam. Unjustified answers will not receive credit. On the eam you will be given the following identities: n k = n(n + ) ; n k =

More information

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist. . The asymptotes of the graph of the parametric equations = t, y = t t + are A) =, y = B) = only C) =, y = D) = only E) =, y =. What are the coordinates of the inflection point on the graph of y = ( +

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t -

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t - Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the derivative. ) = 7 + 0 sec ) A) = - 7 + 0 tan B) = - 7-0 csc C) = 7-0 sec tan

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

Graphing Rational Functions

Graphing Rational Functions Graphing Rational Functions Let s use all of the material we have developed to graph some rational functions EXAMPLE 37 Graph y = f () = +3 3 lude both vertical and horizontal asymptotes SOLUTION First

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

UC Merced: MATH 21 Final Exam 16 May 2006

UC Merced: MATH 21 Final Exam 16 May 2006 UC Merced: MATH 2 Final Eam 6 May 2006 On the front of your bluebook print () your name, (2) your student ID number, (3) your instructor s name (Bianchi) and () a grading table. Show all work in your bluebook

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAMINATION Solutions Mathematics 1000 FALL 2010 Marks [12] 1. Evaluate the following limits, showing your work. Assign

More information

?

? NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: WARM UP: Assume that f( ) and g ( ) are differentiable functions: f( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5 9 9-3 1 3-3 6-5 3 8? 1. Let

More information

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes...

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes... Math Final Eam, Fall. ( ts.) Mark each statement as either true [T] or false [F]. f() a. If lim f() =and lim g() =, then lim does not eist......................!5!5!5 g() b. If is a olynomial, then lim!b

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 5 Review 95 (c) f( ) f ( 7) ( 7) 7 6 + ( 6 7) 7 6. 96 Chapter 5 Review Eercises (pp. 60 6). y y ( ) + ( )( ) + ( ) The first derivative has a zero at. 6 Critical point value: y 9 Endpoint values:

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points)

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points) BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: United and Continuous! ( points) For #- below, find the its, if they eist.(#- are pt each) ) 7 ) 9 9 ) 5 ) 8 For #5-7, eplain why

More information

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S) Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),.-.5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual

More information

4.3 How Derivatives Aect the Shape of a Graph

4.3 How Derivatives Aect the Shape of a Graph 11/3/2010 What does f say about f? Increasing/Decreasing Test Fact Increasing/Decreasing Test Fact If f '(x) > 0 on an interval, then f interval. is increasing on that Increasing/Decreasing Test Fact If

More information

MAC 2311 Final Exam Review Fall Private-Appointment, one-on-one tutoring at Broward Hall

MAC 2311 Final Exam Review Fall Private-Appointment, one-on-one tutoring at Broward Hall Fall 2016 This review, produced by the CLAS Teaching Center, contains a collection of questions which are representative of the type you may encounter on the eam. Other resources made available by the

More information

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.) Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,

More information

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston Review sheet Final Eam Math Calculus I Fall 5 UMass Boston The eam is closed tetbook NO CALCULATORS OR ELECTRONIC DEVICES ARE ALLOWED DURING THE EXAM The final eam will contain problems of types similar

More information

Math Midterm Solutions

Math Midterm Solutions Math 50 - Midterm Solutions November 4, 009. a) If f ) > 0 for all in a, b), then the graph of f is concave upward on a, b). If f ) < 0 for all in a, b), then the graph of f is downward on a, b). This

More information

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90 Final practice, Math 31A - Lec 1, Fall 13 Name and student ID: Question Points Score 1 1 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 Total: 9 1. a) 4 points) Find all points x at which the function fx) x 4x + 3 + x

More information

1. The cost (in dollars) of producing x units of a certain commodity is C(x) = x x 2.

1. The cost (in dollars) of producing x units of a certain commodity is C(x) = x x 2. APPM 1350 Review #2 Summer 2014 1. The cost (in dollars) of producing units of a certain commodity is C() 5000 + 10 + 0.05 2. (a) Find the average rate of change of C with respect to when the production

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above AP Physics C - Problem Drill 10: Differentiability and Rules of Differentiation Question No. 1 of 10 Question 1. A derivative does not eist Question #01 (A) when 0 (B) where the tangent line is horizontal

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

Limits. Final Exam Study Guide. Calculus I. 1. Basic Limits I: Evaluate each limit exactly. (a) lim. (c) lim. 2t 15 3 (g) lim. (e) lim. (f) lim.

Limits. Final Exam Study Guide. Calculus I. 1. Basic Limits I: Evaluate each limit exactly. (a) lim. (c) lim. 2t 15 3 (g) lim. (e) lim. (f) lim. Limits 1. Basic Limits I: Evaluate each limit eactly. 3 ( +5 8) (c) lim(sin(α) 5cos(α)) α π 6 (e) lim t t 15 3 (g) lim t 0 t (4t 3 8t +1) t 1 (tan(θ) cot(θ)+1) θ π 4 (f) lim 16 ( 5 (h) lim t 0 3 t ). Basic

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

Math 170 Calculus I Final Exam Review Solutions

Math 170 Calculus I Final Exam Review Solutions Math 70 Calculus I Final Eam Review Solutions. Find the following its: (a (b (c (d 3 = + = 6 + 5 = 3 + 0 3 4 = sin( (e 0 cos( = (f 0 ln(sin( ln(tan( = ln( (g (h 0 + cot( ln( = sin(π/ = π. Find any values

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information