Chapter 2 SOLUTION 100 = km = h. = h. ft s

Size: px
Start display at page:

Download "Chapter 2 SOLUTION 100 = km = h. = h. ft s"

Transcription

1 Chapter.1. Convert the information given in the accompanying table from SI units to U.S. Customary units. Show all steps of your solutions. See Example.. km 1000 m.8 ft 1 mile 10 = 74.5 miles/h h 1 km 1 m 580 ft km 1000 m.8 ft 1 h 10 = 10. ft/s h 1 km 1 m 600 s.8 ft ( m ) 5 ft 100 = 1 m.046 lbm 80 = 1kg 00 ( kg) lbm N - lbf ( N) = 0. lbf m.8 ft ft.81 =. s 1 m s 018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

2 .. Convert the information given in the accompanying table from U.S. Customary to SI units. Show all steps of your solutions. See Example.. miles 580 ft 1 km 1 m 65 = km/h h 1 mile 1000 m.8 ft km 1000 m 1 h = m/s h 1 km 600 s lbm 1 kg.8 ft 10 1,0 kg/m = ft.046 lbm 1 m 1 kg 00 ( lbm) = 0.7 kg.046 lbm 1 N 00 ( lbf) 80 N - = lbf Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

3 .4. A house has a given floor space of,000 ft. Convert this area to m. 1 m A = (000 ft ) = 185. m.8 ft.5. Calculate the volume of water in a large swimming pool with dimensions of 50 m 5 m m. Express your answer in liters, m, gallons, and ft. V = (50 m)(5 m)( m) =,500 m 100 cm 1 liter V = (,500 m ) =,500,000 liters 1 m 1000 cm.8 ft V = (,500 m ) = 88,1 ft 1 m 7.48 gallons 1ft V = (88,1 ft ) 660,000 gallons.6. A 500 sheet ream of copy paper has thickness of.5 in. What is the average thickness of each sheet in mm?.5 in. 5.4 mm Thickness = = mm /sheet 500 sheets 1 in Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

4 .7. A barrel can hold 4 gallons of oil. How many liters of oil are in the barrel? 4 gallons.78 liters = liters gallon.8. Express the kinetic energy [½ (mass)(speed) ] of a car with a mass of 1,00 kg moving at a speed of 100 km/h. First, you need to convert the speed from km/h to the fundamental units of m/s. Show the conversion steps. (Note: We explain the concept of kinetic energy in Chapter.) km 1 h 1000 m speed = (100) = 7.7 m/s h 600 s 1 km K.E.= kg7.7 m s = kg m s m = N m= J K.E. = ( J) 1 ft lbf J = ft lbf.. A machine shop has a rectangular floor shape with dimensions of 0 ft by 50 ft. Express the area of the floor in ft, m, in., and cm. Show the conversion steps. A = (0 ft)(50 ft) = 1500 ft Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

5 1 m A (1500 ft ) = =.8 ft 1 in A (1500 ft ) = = 1ft 1.4 m 16,000 in 1 cm 4 A = (1500 ft ) = cm 0.08 ft.10. A trunk of a car has a listed luggage capacity of 18 ft. Express the capacity in in., m, and cm. Show the conversion steps. 1 in V = (18 ft ) = 1,104 in 1 ft 1 m V = (18 ft ) = 0.51 m.8 ft 1 cm 4 V = (18 ft ) = cm 0.08 ft.11. An automobile has a.5 liter engine. Express the engine size in in.. Show the conversion steps. Note that 1 liter is equal to 1,000 cm cm 1 in V = (.5 liters) = 14 in 1 liter.54 cm Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

6 .1. The density of air that we breathe at standard room conditions is 1. kg/m. Express the density in U.S. Customary units. Show the conversion steps. Density = 1. kg 1 m m.8 ft 1 lbm lbm = kg ft.1. On a summer day in Phoenix, Arizona, the inside room temperature is maintained at 68 F while the outdoor air temperature is a sizzling 110 F. What is the outdoor indoor temperature difference in degrees (a) Fahrenheit or (b) Celsius? (a) T (b) T T T outdoor T indoor outdoor indoor ( ( C) C) outdoor T indoor = 110 F 68 F= 4 F 5 ( T = outdoor 5 ( T = indoor ( F) ) = 5 (110 ) = 4. 5 ( F) ) = (68 ) = 0 C = 4. C 0 C=. C C.14. A person who is 180 cm tall and weighs 750 newtons is driving a car at a speed of 0 kilometers per hour over a distance of 80 kilometers. The outside air temperature is 0 C and has a density of 1. kg/m. Convert all of the values given from SI to U.S. Customary units. Person's height, H Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

7 H 1ft = (180 cm)( ) = 5. ft 0.48 cm Person's weight, W 1lbf W = (750 N)( ) = lbf 4.448N Speed of the car, S = 0 km/h = 0,000 m/h m 1 ft 1 mile S = (0,000 )( )( ) = 55. (miles/h) h m 580 ft Distance traveled, D 1000 m 1 ft 1 mile D= (80 km)( )( )( ) = 4.7 miles 1 km m 580 ft Temperature of air, T T ( C) = (0) 5 + = 86 F Density of air, ρ kg 1 lbm m (1. )( ) 0.075(lbm/ft ) ρ= = m 0.45 kg 1 ft.15. Convert the given values: (a) area A = 16 in. to ft and (b) volume V = 64 in. to ft. (a) 1 ft (16 in )( ) ft 144 in = 018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

8 (b) 1 ft (64 in )( ) = 0.07 ft 1 in.16. The acceleration due to gravity g is.81 m/s. Express the value of g in U.S. Customary units. Show all conversion steps. 1 ft (.81 m/s )( ).18 ft/s m =.17. Atmospheric pressure is the weight of the column of air over an area. For example, under standard conditions, the atmospheric pressure is 14.7 lbf/in.. This value means that the column of air in the atmosphere above a surface with an area of 1 in. will exert a force of 14.7 lbf. Convert the atmospheric pressure in the given units to the requested units: (a) 14.7 lbf/in. to lbf/ft, (b) 14.7 lbf/in. to Pa, (c) 14.7 lbf/in. to kpa, and (d) 14.7 lbf/in. to bars. Show all of the conversion steps. [Note: One Pascal (1 Pa) is equal to one newton per meter squared (1 Pa = 1 N/m ) and 1 bar = 100 kpa.] lbf 144 in lbf (a) 14.7( )( ) =,117( ) in 1 ft ft (b) 14.7 lbf 6,85 Pa in 1 lbf =101,57 Pa in (c) 101,57 Pa = kpa (d) kpa = 1.01 bar Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

9 .18. The density of water is 1,000 kg/m. Express the density of water in lbm/ft and lbm/gallon. (Note: 7.48 gallons = 1 ft ) 1000 kg 1 m m.8 ft.0 lbm =6.4 lbm/ft 1 kg 6.4 lbm ft ft =8. lbm/gallon 7.48 gallons Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

10 1 018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g) 1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

More information

Summary of common Pressure Units Version 1.00, 12/15/2003

Summary of common Pressure Units Version 1.00, 12/15/2003 Summary of common Pressure Units Version.00, /5/003 Portland State Aerospace Society There are too many pressure units in common use. This is not nearly all of them. For PSAS,

More information

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec Course: TDEC202 (Energy II) Thermodynamics: An Engineering Approach Course Director/Lecturer: Dr. Michael Carchidi Course Website URL dflwww.ece.drexel.edu/tdec 1 Course Textbook Cengel, Yunus A. and Michael

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER ES201 - Examination 2 Fall 2003-2004 Instructor: Class Period NAME BOX NUMBER Problem 1 ( 22 ) Problem 2 ( 26 ) Problem 3 ( 26 ) Problem 4 ( 26 ) Total (100) INSTRUCTIONS Closed book/notes exam. (Unit

More information

Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations

Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations Introduction to Chemical Engineering Calculations Lecture 1. Mathematics and Engineering In mathematics, If x = 500 and y = 100, then (x + y) = 600 In engineering, If x = 500m and y = 100m, then (x + y)

More information

Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi

Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Ref. Fundamentals of Gas Dynamics, 2e - R. Zucker, O. Biblarz Appendixes A. B. C. D. E. F. G. H. I.

More information

Measurements in Chemistry Chapter 2

Measurements in Chemistry Chapter 2 Measurements in Chemistry Chapter 2 Problem-Set Solutions 2.1 It is easier to use because it is a decimal unit system. 2.2 Common measurements include mass, volume, length, time, temperature, pressure,

More information

Unit A-1: List of Subjects

Unit A-1: List of Subjects ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-1: List of Subjects What is Thermodynamics? First and

More information

Chapter 1 Introduction

Chapter 1 Introduction Fundamentals of Thermodynamics Chapter 1 Introduction Prof. Siyoung Jeong Thermodynamics I MEE2022-01 Thermodynamics : Science of energy and entropy - Science of heat and work and properties related to

More information

Unit 12 Practice Problems. US Customary Unit. Practical reason for wanting to know. Aspect of bottle. Metric unit. 1- dimensional.

Unit 12 Practice Problems. US Customary Unit. Practical reason for wanting to know. Aspect of bottle. Metric unit. 1- dimensional. UNIT 12 PRACTICE PROBLEMS 1. Describe one-dimensional, two-dimensional, and three-dimensional parts or aspects of a packing box. In each case, name an appropriate U.S. customary unit and an appropriate

More information

Section 3.5 Geometric and Scientific Applications

Section 3.5 Geometric and Scientific Applications Section. Geometric and Scientific Applications 6 Section. Geometric and Scientific Applications.. I Prt I I 49.9 8700.08.Note: 8 monts. years Te interest is $49.9. I Prt 4 40 4 900r 4 r 900 0.06 r r Te

More information

2-5 Solving for a Variable

2-5 Solving for a Variable Warm Up Solve each equation. 1. 5 + x = 2 2. 8m = 43 3. 4. 0.3s + 0.6 = 1.5 5. 10k 6 = 9k + 2 Learning Goals 1. Students will use formulas to solve application problems 2-3. Students will solve a formulas

More information

Would you be breaking the speed limit in a 40 mi/h zone if you were traveling at 60 km/h?

Would you be breaking the speed limit in a 40 mi/h zone if you were traveling at 60 km/h? Lesson Starter Would you be breaking the speed limit in a 40 mi/h zone if you were traveling at 60 km/h? one kilometer = 0.62 miles 60 km/h = 37.2 mi/h You would not be speeding! km/h and mi/h measure

More information

Measurements in Chemistry Chapter 2

Measurements in Chemistry Chapter 2 Measurements in Chemistry Chapter 2 Problem-Set Solutions 2.1 It is easier to use because it is a decimal unit system. 2.2 Common measurements include mass, volume, length, time, temperature, pressure,

More information

3 Tools and Measurement

3 Tools and Measurement CHAPTER 1 3 Tools and Measurement SECTION The Nature of Life Science BEFORE YOU READ After you read this section, you should be able to answer these questions: How do tools help scientists? How do scientists

More information

Problem Solving & Energy Balances 4: Those Pesky US Units ABET Course Outcomes: Important Resource: Class Plan distance Velocity time acceleration

Problem Solving & Energy Balances 4: Those Pesky US Units ABET Course Outcomes: Important Resource: Class Plan distance Velocity time acceleration Problem Solving & Energy Balances 4: Those Pesky US Units ABET Course Outcomes: 1. solve and document the solution of problems involving elements or configurations not previously encountered (e) 2. solve

More information

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English Session-1 Thermodynamics: An Overview System, Surrounding and Boundary State, Property and Process Quasi and Actual Equilibrium SI and English Units Thermodynamic Properties 1 Thermodynamics, An Overview

More information

1 1. Round off the following numbers to three significant figures: (a) m, (b) s, (c) 4555 N, and (d) 2768 kg.

1 1. Round off the following numbers to three significant figures: (a) m, (b) s, (c) 4555 N, and (d) 2768 kg. 1 1. Round off the following numbers to three significant figures: (a) 4.65735 m, (b) 55.578 s, (c) 4555 N, and (d) 2768 kg. a) 4.66 m b) 55.6 s c) 4.56 kn d) 2.77 Mg Ans 1 2. Represent each of the following

More information

Length is the distance from one point to another. Length has standard units of measurement such as inches or centimeters.

Length is the distance from one point to another. Length has standard units of measurement such as inches or centimeters. Page 1 Measurements are a standard set by different cultures to address their own needs. In the United States, we use the U. S. Customary system of units. However, the metric system is used worldwide.

More information

Why do we need to study thermodynamics? Examples of practical thermodynamic devices:

Why do we need to study thermodynamics? Examples of practical thermodynamic devices: Why do we need to study thermodynamics? Knowledge of thermodynamics is required to design any device involving the interchange between heat and work, or the conversion of material to produce heat (combustion).

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chapter / Fluid Statics CHPTER Fluid Statics FE-type Eam Review Problems: Problems - to -9. (C). (D). (C).4 ().5 () The pressure can be calculated using: p = γ h were h is the height of mercury. p= γ h=

More information

AP Physics 2 Summer Assignment (2014)

AP Physics 2 Summer Assignment (2014) Name: Date: AP Physics 2 Summer Assignment (2014) Instructions: 1. Read and study Chapter 16 Electric Charge and Electric Field. 2. Answer the questions below. Some questions may require you to use your

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

CHAPTER 1 Basic Considerations

CHAPTER 1 Basic Considerations CHAPTER Basic Considerations FE-type Exam Review Problems: Problems. to. Chapter / Basic Considerations. (C) m = F/a or kg = N/m/s = N s /m. (B) [μ] = [τ/(/dy)] = (F/L )/(L/T)/L = F. T/L. (A) 8 9.6 0 Pa

More information

8-1 Study Guide and Intervention

8-1 Study Guide and Intervention 8-1 Study Guide and Intervention Simplify Rational Epressions A ratio of two polynomial epressions is a rational epression. To simplify a rational epression, divide both the numerator and the denominator

More information

Measurement: Things To Know Vocabulary: units dimension US Customary System Metric System

Measurement: Things To Know Vocabulary: units dimension US Customary System Metric System Objectives: 1. Identify units of measurement in the US Customary and Metric systems. 2. Compare attributes of objects to units of measurement of length, area, and volume. 3. Convert units of measured quantities

More information

CHE Thermodynamics of Chemical Processes

CHE Thermodynamics of Chemical Processes CHE 3010 - Thermodynamics of Chemical Processes Venkat Padmanabhan, PhD Department of Chemical Engineering Tennessee Tech University Lecture 2 - Basic Concepts 8/29/2018 CHE 3010 - Thermodynamics Tennessee

More information

PUMP SYSTEM ANALYSIS AND SIZING. BY JACQUES CHAURETTE p. eng.

PUMP SYSTEM ANALYSIS AND SIZING. BY JACQUES CHAURETTE p. eng. PUMP SYSTEM ANALYSIS AND SIZING BY JACQUES CHAURETTE p. eng. 5 th Edition February 2003 Published by Fluide Design Inc. www.fluidedesign.com Copyright 1994 I TABLE OF CONTENTS Introduction Symbols Chapter

More information

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES UNIT CONVERSION TABLES Sl SYMBOLS AND PREFIXES BASE UNITS Quantity Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Amount of substance

More information

ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

More information

Department of Physics. ( Al Ansar International School, Sharjah) ( ) Project Work Term 1. IGCSE Physics Grade 9. Students Name: Grade / Section:

Department of Physics. ( Al Ansar International School, Sharjah) ( ) Project Work Term 1. IGCSE Physics Grade 9. Students Name: Grade / Section: Department of Physics ( Al Ansar International School, Sharjah) (2017-18) Project Work Term 1 IGCSE Physics Grade 9 Students Name: Grade / Section: Complete the answer sheet on page 2, and submit to your

More information

6.5 Metric U.S. Customary Measurement Conversions

6.5 Metric U.S. Customary Measurement Conversions 6. Metric U.S. Customary Measurement Conversions Since most of the world uses the metric system of measurement, we often need to know how to convert back and forth between U.S. Customary measurements and

More information

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Physics. Teachers Signature

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Physics. Teachers Signature SY 2018/2019 1 st Final Term Revision Student s Name: Grade: 10A/B Subject: Physics Teachers Signature Question 1 : Choose the correct answer : 1 ) What is the density of Mercury. a ) 13.6x10 3 b) 14.6x10

More information

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Matter in Motion Preview Section 1 Measuring Motion Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Section 4 Gravity: A Force of Attraction Concept Mapping Section 1 Measuring

More information

Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter

Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter Link download full: https://digitalcontentmarket.org/download/solutionmanual-for-thermodynamics-for-engineers-1st-edition-by-kroos-andpotter/

More information

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below)

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below) CALIFORNIA MECHANICAL CODE MATRIX ADOPTION TABLE APPENDIX D UNIT CONVERSION TABLES (Matrix Adoption Tables are non-regulatory, intended only as an aid to the user. See Chapter 1 for state agency authority

More information

Thermodynamics-1. S. M. Hosseini Sarvari Chapter 1 Introduction & Basic Concepts

Thermodynamics-1. S. M. Hosseini Sarvari Chapter 1 Introduction & Basic Concepts Mechanical Engineering Dept. Shahid Bahonar University of Kerman Thermodynamics-1 S. M. Hosseini Sarvari Chapter 1 Introduction & Basic Concepts Mechanical Engineering Dept. Shahid Bahonar University of

More information

Full file at

Full file at Chapter Two Multiple Choice 1. Which SI prefix means 1000? A. Milli B. Centi C. Deci D. Kilo Answer: D; Difficulty: easy; Reference: Section 2.5 2. The number, 14.74999, when rounded to three digits is

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06 ES 202 - Exam I Winter 2002-2003 Richards/Lui Name: Campus Mail Box Circle One: Richards 03 Richards 04 Lui 05 Lui - 06 Problem 1 Problem 2 ( 10 ) ( 45 ) Problem 3 ( 45 ) TOTAL ( 100 ) General Comments

More information

CHAPTER 3 Linear Equations and Problem Solving

CHAPTER 3 Linear Equations and Problem Solving CHAPTER Linear Equations and Problem Solving Section. Solving Linear Equations. x 9. x 6 5. Subtraction 7. Multiplication 9. Subtraction. Addition. 5 0 Original equation 5 5 0 5 Subtract 5 from each side.

More information

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems Introduction, Page 1 Introduction to Mechanical Engineering Measurements Author: John M. Cimbala, Penn State University Latest revision, 19 August 011 Two Main Purposes of Measurements Engineering experimentation

More information

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units ME 201 Engineering Mechanics: Statics Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units Additional Assistance Tutoring Center Mck 272 Engineering Walk-In Help Lab Aus??? Schedule to

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

Students must memorize these conversions LAST NAME (ALL IN CAPS): FIRST NAME:

Students must memorize these conversions LAST NAME (ALL IN CAPS): FIRST NAME: LAST NAME (ALL IN CAPS): FIRST NAME: 1. MEASUREMENTS & SCIENTIFIC INQUIRY Instructions: Your work will be graded on the basis of its accuracy, completion, clarity, neatness, legibility, and correctness

More information

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither

More information

Learning Plan 4 Chapter 9

Learning Plan 4 Chapter 9 Learning Plan 4 Chapter 9 Question The population of a country reached 309.5 million people. The total area is 3.25 million square miles. What is the population density for the country? Round to the nearest

More information

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V When the mass m of the control volume remains nearly constant, the first term of the Eq. 6 8 simply becomes mass times acceleration since 39 CHAPTER 6 d(mv ) CV m dv CV CV (ma ) CV Therefore, the control

More information

Syllabus Tutors Review from previous class. Resources. Lecture: MW 5:30PM-6:50PM Room 425

Syllabus Tutors Review from previous class. Resources. Lecture: MW 5:30PM-6:50PM Room 425 Chapter 2 Syllabus Tutors Review from previous class 1 Chapter 2 Resources Lecture: MW 5:30PM-6:50PM Room 425 Text book: Steven S. Zumdahl, Donald DeCosta, Introductory Chemistry: A Foundation, 8th Website:

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 8-1 Chapter 8 The Metric System 8.1 Basic Terms and Conversions within the Metric System SI System and U.S. Customary System Most countries of the world

More information

5 Distributed Forces 5.1 Introduction

5 Distributed Forces 5.1 Introduction 5 Distributed Forces 5.1 Introduction - Concentrated forces are models. These forces do not exist in the exact sense. - Every external force applied to a body is distributed over a finite contact area.

More information

IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS

IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS Chapter1 Introduction and Basic Concepts INDUSTRIAL REVOLUTION A period in 18th and early 19th centuries Major changes in agriculture, mining, manufacturing,

More information

Chemistry 104 Chapter Two PowerPoint Notes

Chemistry 104 Chapter Two PowerPoint Notes Measurements in Chemistry Chapter 2 Physical Quantities Measurable physical properties such as height, volume, and temperature are called Physical quantity. A number and a unit of defined size is required

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards. Dr. Janel Hanrahan

Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards. Dr. Janel Hanrahan Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards Dr. Janel Hanrahan Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics

More information

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power THERMODYNAMICS INTRODUCTION The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power Together the spell heat power which fits the time when the forefathers

More information

1 centimeter (cm) 5 10 millimeters (mm) 1 meter (m) centimeters. 1 kilometer (km) 5 1,000 meters. Set up equivalent ratios and cross multiply.

1 centimeter (cm) 5 10 millimeters (mm) 1 meter (m) centimeters. 1 kilometer (km) 5 1,000 meters. Set up equivalent ratios and cross multiply. Domain 2 Lesson 16 Convert Measurements Common Core State Standard: 6.RP.3.d Getting the Idea The tables below show some conversions for units of length in both the customary system and the metric system.

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

Kinetic energy. Objectives. Equations. Energy of motion 6/3/14. Kinetic energy is energy due to motion. kinetic energy kinetic en

Kinetic energy. Objectives. Equations. Energy of motion 6/3/14. Kinetic energy is energy due to motion. kinetic energy kinetic en Objectives Investigate examples of kinetic energy. Calculate the kinetic energy, mass, or velocity of an object using the kinetic energy equation. Employ proportional reasoning to predict the effect of

More information

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY 3.1 MEASUREMENTS AND THEIR UNCERTAINTY Section Review Objectives Convert measurements to scientific notation Distinguish among the accuracy, precision, and error of a measurement Identify the number of

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

SCIENCE STUDENT BOOK. 12th Grade Unit 3

SCIENCE STUDENT BOOK. 12th Grade Unit 3 SCIENCE STUDENT BOOK 12th Grade Unit 3 Unit 3 WORK AND ENERGY SCIENCE 1203 WORK AND ENERGY INTRODUCTION 3 1. TYPE AND SOURCES OF ENERGY 5 MECHANICAL ENERGY 6 FORMS OF ENERGY 9 SELF TEST 1 12 2. CONSERVATION

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY 9. Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY KINETIC ENERGY QUESTIONS 9.H Energy.doc 1. A 500 kilogram car is driving at 15 meters/second. Calculate its kinetic energy? How much does

More information

Countries that haven t adopted the Metric system yet

Countries that haven t adopted the Metric system yet Measurements Countries that haven t adopted the Metric system yet Customary Metric (Base Unit) International System (SI) Equivalents Length Mass inch, foot, yard, mile ounce, pound, ton Meter (m) Meter

More information

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer. Name: Date: Period: FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object.

More information

UNIT CONVERSIONS User Guide & Disclaimer

UNIT CONVERSIONS User Guide & Disclaimer v.5.4 www.hvacnotebook.com UNIT CONVERSIONS User Guide & Disclaimer (FREE SAMPLE VERSION) Conversion Spreadsheets Distance Weight 34 Simple User Interface Click On Any Yellow Cells And Enter (Replace With)

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

Section Volume, Mass, and Temperature

Section Volume, Mass, and Temperature Section 11.5 - Volume, Mass, and Temperature Surface Area is the number of square units covering a three dimensional figure; Volume describes how much space a three-dimensional figure contains. The unit

More information

General Physics (PHY 170) Physics and the Laws of Nature

General Physics (PHY 170) Physics and the Laws of Nature General Physics (PHY 170) Chap 1 Physics and the Laws of Nature Physics: the study of the fundamental laws of nature. These laws can be expressed as mathematical equations. (e.g. F = m a, E=m c 2 ) Most

More information

Using Units of Measure

Using Units of Measure Using Units of Measure Connections Have you ever... Calculated what time you would arrive somewhere? Converted temperatures from Fahrenheit to Celsius? Measured quantities for a recipe? Whenever you are

More information

PHYSICS 1307 FALL 2007 EXAM # 3 Thursday, November 15, 2007 SOLUTIONS. P atm = N m 2 v sound =343 m/ s

PHYSICS 1307 FALL 2007 EXAM # 3 Thursday, November 15, 2007 SOLUTIONS. P atm = N m 2 v sound =343 m/ s 1/9 Last Name: First Name: SMU ID: PHYSICS 1307 FALL 2007 EXAM # 3 Thursday, November 15, 2007 SOLUTIONS CQ: NQ: Total: Scientific data air =1.29 kg m 3 steel =12 10 6 0 C 1 P atm =1.013 10 5 N m 2 v sound

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase Heat Section 1 Preview Section 1 Temperature and Thermal Equilibrium Section 2 Defining Heat Section 3 Changes in Temperature and Phase Heat Section 1 TEKS The student is expected to: 6E describe how the

More information

Chapter 2 Dimensions, Units, and Unit Conversion

Chapter 2 Dimensions, Units, and Unit Conversion AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 2 Dimensions, Units, and Unit Conversion Dimensions Dimensions are concepts of measurement in engineering works. The basic

More information

INTERNATIONAL SYSTEM OF UNITS

INTERNATIONAL SYSTEM OF UNITS GAP.18.2 A Publication of Global Asset Protection Services LLC INTERNATIONAL SYSTEM OF UNITS INTRODUCTION The U.S. is one of the last countries still officially using the English measurement system. Most

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

Energy and Work. What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1

Energy and Work. What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1 Energy and Work What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1 Energy and Work Energy The ability to do work Work How we chance energy from one form to another

More information

Graphical Solution Y 3. and y 2 = 3 intersect at (0.8, 3), so the solution is (3-2x) - (1 - x) = 4(x - 3) (5 - x) - (x - 2) = 7x - 2

Graphical Solution Y 3. and y 2 = 3 intersect at (0.8, 3), so the solution is (3-2x) - (1 - x) = 4(x - 3) (5 - x) - (x - 2) = 7x - 2 660_ch0pp076-68.qd 0/6/08 : PM Page 6 6 CHAPTER Linear Functions and Equations continued from previous page The following eample illustrates how to solve graphically, and numerically. 5 - = symbolically,

More information

Student Academic Learning Services Page 1 of 6 Laws about gases

Student Academic Learning Services Page 1 of 6 Laws about gases Student Academic Learning Services Page 1 of 6 Laws about gases Charles law Volume is directly proportional to temperature. V = ct, where c > 0 is constant. French balloonist Jacque Charles noticed that

More information

Forces and Motion Chapter Problems

Forces and Motion Chapter Problems Forces and Motion Chapter Problems Motion & Speed 1. Define motion. 2. When you look at the ground you seem to be at rest. Using the term relative motion explain why someone in space would see you moving

More information

Cite power of ten and abbreviation associated with metric prefixes: nano-, micro-, milli-, centi-, kilo-, mega-, and giga-.

Cite power of ten and abbreviation associated with metric prefixes: nano-, micro-, milli-, centi-, kilo-, mega-, and giga-. Reading: Chapter 1 Objectives/HW: The student will be able to: HW: 1 Define and identify significant digits. 1, 2 2 Use the rules of significant digits to determine the correct number of 3 6 significant

More information

CHAPTER 12 Turbomachinery

CHAPTER 12 Turbomachinery CAER urbomachinery Chapter / urbomachinery 800 / 0 8 8 rad /s, u r 8 8 0 0 m /s, u r 8 8 0 0 8 m /s, rbv, but V u since, n n 0 0 0 0 0 0 m / s V V 0 0 m /s, rb 0 0 0 Vn u 0 8 6 77 m /s, tan tan 0 n t V

More information

MOTOR WIRING DATA From National Electrical Code 3 PHASE SQUIRREL CAGE INDUCTION MOTORS 230 Volt 460 Volt Min. # Max. Rating

MOTOR WIRING DATA From National Electrical Code 3 PHASE SQUIRREL CAGE INDUCTION MOTORS 230 Volt 460 Volt Min. # Max. Rating MOTOR WIRING DATA From National Electrical Code PHASE SQUIRREL CAGE INDUCTION MOTORS 20 Volt 0 Volt Min. # Max. Rating Min. Size Size of Full Size Wire Conduit Branch Circuit Load Wire AWG (inches) Fuses

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

The Metric System & Conversions

The Metric System & Conversions Purpose of this lab: The purpose of this lab exercise is for you to become familiar with basic measurements in metric units (SI), English units, and conversions between the two systems. Assignment Objectives:

More information

Physics P201 D. Baxter/R. Heinz. EXAM #3 November 21, :00 9:00 PM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. EXAM #3 November 21, :00 9:00 PM INSTRUCTIONS Seat # Your exam is form 1. Physics P201 D. Baxter/R. Heinz EXAM #3 November 21, 2002 7:00 9:00 PM INSTRUTIONS 1. Please indicate which form (1, 2, 3, or 4) exam you have by marking the appropriate bubble

More information

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Energy -- The money of physics Demo: Elastic Collisions Objects of equal mass exchange momentum in elastic collisions. 1 Demo: Blaster Balls

More information

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft, and then compute this mass in

More information

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet Q1. The diagram shows a climber part way up a cliff. (a) Complete the sentence. When the climber moves up the cliff, the climber gains gravitational... energy. (b) The climber weighs 660 N. (i) Calculate

More information

The Metric System, Measurements, and Scientific Inquiry (Chapter 23)

The Metric System, Measurements, and Scientific Inquiry (Chapter 23) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: The Metric System, Measurements, and Scientific Inquiry (Chapter 23) For this assignment, you will require: a calculator & a metric ruler. Objectives:

More information

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 19, 2017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

Ch. 3 Notes---Scientific Measurement

Ch. 3 Notes---Scientific Measurement Ch. 3 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of a measurement is an describing the object.) *Examples:,,

More information

13.1 The Nature of Gases (refer to pg )

13.1 The Nature of Gases (refer to pg ) 13.1 The Nature of Gases (refer to pg. 420-424) Essential Understanding any other state of matter. Temperature and pressure affect gases much more than they affect Lesson Summary Kinetic Theory and a Model

More information

Chapter 1 Chemistry and Measurement

Chapter 1 Chemistry and Measurement Chapter 1 Chemistry and Measurement Contents and Concepts An Introduction to Chemistry We start by defining the science called chemistry and introducing some fundamental concepts. 1. Modern Chemistry:

More information

(Refer Slide Time: 0:28)

(Refer Slide Time: 0:28) Engineering Thermodynamics Professor Jayant K Singh Department of Chemical Engineering Indian Institute of Technology Kanpur Lecture 08 Examples on basic concept & energy balance Welcome back! Myself Parul

More information

*************************************************************************

************************************************************************* Your Name: TEST #2 Print clearly. On the Scantron, fill out your student ID, leaving the first column empty and starting in the second column. Also write your name, class time (11:30 or 12:30), and Test

More information