Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi

Size: px
Start display at page:

Download "Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi"

Transcription

1 Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Ref. Fundamentals of Gas Dynamics, 2e - R. Zucker, O. Biblarz Appendixes A. B. C. D. E. F. G. H. I. J. K. L. Summary of the English Engineering (EE) System of Units Summary of the International System (SI) of Units Friction-Factor Chart Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) Conical-Shock Charts (γ = 1.4) (Three-Dimensional) Generalized Compressibility Factor Chart Isentropic Flow Parameters (γ = 1.4) (including Prandtl Meyer Function) Normal-Shock Parameters (γ = 1.4) Fanno Flow Parameters (γ = 1.4) Rayleigh Flow Parameters (γ = 1.4) Properties of Air at Low Pressures Specific Heats of Air at Low Pressures 395

2 APPENDIX A Summary of the English Engineering (EE) System of Units 396

3 SUMMARY OF THE ENGLISH ENGINEERING (EE) SYSTEM OF UNITS Force Mass Length Time Temperature pound force pound mass foot second Rankine lbf lbm ft sec R NEVER say pound, as this is ambiguous! It is either a pound force (lbf) or a pound mass (lbm). A 1-pound force will give a 1-pound mass an acceleration of feet/second2. F = 1(lbf) = ma gc 1 (lbm) (ft/sec2 ) gc Thus gc = lbm-ft/lbf-sec2 Temperature Gas constant Pressure Heat to work Power Standard gravity * M.M., molecular mass. T ( R) R 1 atm 1 Btu 1 hp g0 = = = = = = T ( F) /M.M.* ft-lbf/1bm- R lbf/ft ft-lbf 550 ft-lbf/sec ft/sec2 397

4 398 APPENDIX A Useful Conversion Factors To convert from: To: Multiply by: meter meter newton kilogram K joule kwh joule watt m/s m/s km/h N/m2 N/m2 N/m2 kg/m3 N s/m2 m2/s J/kg K N m/kg K foot inch lbf lbm R Btu Btu ft-lbf horsepower ft/sec mph mph atmosphere lbf/in2 lbf/ft2 lbm/ft3 lbf-sec/ft2 ft2/sec Btu/lbm- R ft-lbf/lbm- R (q) (q) (w) (V ) (V ) (V ) (p) (p) (p) (ρ) (µ) (ν) (cp ) (R) Source: The International System of Units, NASA SP-7012, 1973.

5 399 a Ar CO2 CO He H2 CH4 N2 O2 H2O Argon Carbon dioxide Carbon monoxide Helium Hydrogen Methane Nitrogen Oxygen Water vapor cp γ = cv Gas Constant R ft-lbf/lbm- R Values for γ, R, cp, cv, and µ are for normal room temperature and pressure Symbol Air Gas Molecular Mass Properties of Gases English Engineering (EE) System a Specific Heats Btu/lbm- R cp cv Critical Point Tc pc R psia Viscosity µ lbf-sec/ft2

6 APPENDIX B Summary of the International System (SI) of Units 400

7 SUMMARY OF THE INTERNATIONAL SYSTEM (SI) OF UNITS Force Mass Length Time Temperature newton kilogram meter second kelvin N kg m s K A 1-Newton force will give a 1-kilogram mass an acceleration of 1 meter/second2. F = 1(N) = ma gc 1 (kg) 1 (m/s2 ) gc Thus gc = 1 kg m/n s2 Temperature Gas constant Pressure Heat to work Power Standard gravity * M.M., molecular mass. T (K) R 1 atm 1 pascal (Pa) 1 bar (bar) 1 MPa 1 joule (J) 1 watt (W) g0 = = = = = = = = = T ( C) /M.M.* N m/kg K N/m2 1 N/m N/m N/m2 1N m 1 J/s 9.81 m/s2 401

8 402 APPENDIX B Useful Conversion Factors To convert from: To: Multiply by: foot inch lbf lbm R Btu Btu ft-lbf horsepower ft/sec mph mph atmosphere lbf/in2 lbf/ft2 lbm/ft3 lbf-sec/ft2 ft2/sec Btu/lbm- R ft-lbf/lbm- R meter meter newton kilogram K joule kwh joule watt m/s m/s km/h N/m2 N/m2 N/m2 kg/m3 N s/m2 m2/s J/kg K N m/kg K (q) (q) (w) (V ) (V ) (V ) (p) (p) (p) (ρ) (µ) (ν) (cp ) (R) Source: The International System of Units, NASA SP-7012, 1973.

9 403 a Ar CO2 CO He H2 CH4 N2 O2 H2O Argon Carbon dioxide Carbon monoxide Helium Hydrogen Methane Nitrogen Oxygen Water vapor cp γ = cv ,120 2, Gas Constant R N m/kg K Values for γ, R, cp, cv, and µ are for normal room temperature and pressure Symbol Air Gas Molecular Mass Properties of Gases International System (SI) a 1, ,040 2,230 14,300 5,230 1, ,000 1, ,690 10,200 3, Specific Heats J/kg K cp cv Critical Point Tc pc K MPa Viscosity µ N s/m2

10 APPENDIX C Friction-Factor Chart 404

11 405 Figure AC.1 Moody diagram for determination of friction factor. (Adapted with permission from L. F. Moody, Friction factors for pipe flow, Transactions of ASME, Vol. 66, 1944.)

12 APPENDIX D Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) 406

13 OBLIQUE-SHOCK CHARTS (γ = 1.4) 407 Figure AD.1 Shock-wave angle θ as a function of the initial Mach number M1 for different values of the flow deflection angle δ for γ = 1.4. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

14 408 APPENDIX D Figure AD.2 Mach number downstream M2 for an oblique-shock wave as a function of the initial Mach number M1 for different values of the flow deflection angle δ for γ = 1.4. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

15 OBLIQUE-SHOCK CHARTS (γ = 1.4) 409 Figure AD.3 Static pressure ratio p2 /p1 across an oblique-shock wave as a function of the initial Mach number M1 for different values of the flow deflection angle δ for γ = (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

16 APPENDIX E Conical-Shock Charts (γ = 1.4) (Three-Dimensional) at 410

17 CONICAL-SHOCK CHARTS (γ = 1.4) 411 c c Figure AE.1 Shock wave angle θc for a conical-shock wave as a function of the initial Mach number M1 for different values of the cone angle δc for γ = (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

18 412 APPENDIX E c Figure AE.2 Surface Mach number Ms for a conical-shock wave as a function of the initial Mach number M1 for different values of the cone angle δc for γ = (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

19 CONICAL-SHOCK CHARTS (γ = 1.4) 413 c Figure AE.3 Surface static pressure ratio ps /p1 for a conical-shock wave as a function of the initial Mach number M1 for different values of the cone angle δc for γ = (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

20 APPENDIX F Generalized Compressibility Factor Chart 414

21 GENERALIZED COMPRESSIBILITY FACTOR CHART 415 Figure AF.1 Generalized compressibility factors (Zc = 0.27). (With permission from R. E. Sontag, C. Borgnakke, and C. J. Van Wylen, Fundamentals of Thermodynamics, 5th ed., copyright 1997, John Wiley & Sons, New York.)

22 APPENDIX G Isentropic Flow Parameters (γ = 1.4) (including Prandtl Meyer Function) 416

23 ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 417 µ

24 418 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

25 ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 419 µ

26 420 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

27 ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 421 µ

28 422 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

29 ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 423 µ

30 424 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

31 ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 425 µ

32 426 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

33 ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 427 µ

34 APPENDIX H Normal-Shock Parameters (γ = 1.4) 428

35 NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 429 pt2 /p1

36 430 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

37 NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 431 pt2 /p1

38 432 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

39 NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 433 pt2 /p1

40 434 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

41 NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 435 pt2 /p1

42 436 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

43 NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 437 pt2 /p1

44 APPENDIX I Fanno Flow Parameters (γ = 1.4) 438

45 FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 439 Smax /R

46 440 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

47 FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 441 Smax /R

48 442 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

49 FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 443 Smax /R

50 444 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

51 FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 445 Smax /R

52 446 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

53 FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 447 Smax /R

54 448 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

55 FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 449 Smax /R

56 APPENDIX J Rayleigh Flow Parameters (γ = 1.4) 450

57 RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 451 Smax /R

58 452 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

59 RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 453 Smax /R

60 454 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

61 RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 455 Smax /R

62 456 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

63 RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 457 Smax /R

64 458 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

65 RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 459 Smax /R

66 460 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

67 RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 461 Smax /R

Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations

Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations Introduction to Chemical Engineering Calculations Lecture 1. Mathematics and Engineering In mathematics, If x = 500 and y = 100, then (x + y) = 600 In engineering, If x = 500m and y = 100m, then (x + y)

More information

PUMP SYSTEM ANALYSIS AND SIZING. BY JACQUES CHAURETTE p. eng.

PUMP SYSTEM ANALYSIS AND SIZING. BY JACQUES CHAURETTE p. eng. PUMP SYSTEM ANALYSIS AND SIZING BY JACQUES CHAURETTE p. eng. 5 th Edition February 2003 Published by Fluide Design Inc. www.fluidedesign.com Copyright 1994 I TABLE OF CONTENTS Introduction Symbols Chapter

More information

Chapter 2 Dimensions, Units, and Unit Conversion

Chapter 2 Dimensions, Units, and Unit Conversion AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 2 Dimensions, Units, and Unit Conversion Dimensions Dimensions are concepts of measurement in engineering works. The basic

More information

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems Introduction, Page 1 Introduction to Mechanical Engineering Measurements Author: John M. Cimbala, Penn State University Latest revision, 19 August 011 Two Main Purposes of Measurements Engineering experimentation

More information

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 4 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 4 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 4 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CHAPTER 4 SUBSECTION PROB NO. Concept-Study Guide Problems 7- Simple processes 3-8

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY & SONS, INC. Contents PREFACE

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

Fundamentals of Thermodynamics

Fundamentals of Thermodynamics PDHonline Course M210 (4 PDH) Fundamentals of Thermodynamics Instructor: A. Bhatia, B.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY

More information

Chapter 2 SOLUTION 100 = km = h. = h. ft s

Chapter 2 SOLUTION 100 = km = h. = h. ft s Chapter.1. Convert the information given in the accompanying table from SI units to U.S. Customary units. Show all steps of your solutions. See Example.. km 1000 m.8 ft 1 mile 10 = 74.5 miles/h h 1 km

More information

ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

More information

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions Manjul Sharma & Aswathy Nair K. Department of Aerospace Engineering IIT Madras April 18, 016 (Note : The solutions discussed below

More information

UNIT 1 UNITS AND DIMENSIONS

UNIT 1 UNITS AND DIMENSIONS UNIT 1 UNITS AND DIMENSIONS Unit is any measure or amount used as a standard for measurement. It is a means of the measurable extent of a physical quantity. The derived unit is a combination of primary

More information

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g) 1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES UNIT CONVERSION TABLES Sl SYMBOLS AND PREFIXES BASE UNITS Quantity Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Amount of substance

More information

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec Course: TDEC202 (Energy II) Thermodynamics: An Engineering Approach Course Director/Lecturer: Dr. Michael Carchidi Course Website URL dflwww.ece.drexel.edu/tdec 1 Course Textbook Cengel, Yunus A. and Michael

More information

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 3 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 3 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 3 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CHAPTER 3 SUBSECTION PROB NO. Concept-Study Guide Problems 128-132 Phase diagrams

More information

UNIT CONVERSIONS User Guide & Disclaimer

UNIT CONVERSIONS User Guide & Disclaimer v.5.4 www.hvacnotebook.com UNIT CONVERSIONS User Guide & Disclaimer (FREE SAMPLE VERSION) Conversion Spreadsheets Distance Weight 34 Simple User Interface Click On Any Yellow Cells And Enter (Replace With)

More information

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration

More information

FDE 211 MATERIAL & ENERGY BALANCES. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 MATERIAL & ENERGY BALANCES. Instructor: Dr. Ilgin Paker Yikici Fall 2015 FDE 211 MATERIAL & ENERGY BALANCES Instructor: Dr. Ilgin Paker Yikici Fall 2015 Meet & Greet Hello! My name is I am from 2 Class Overview Units & Conversions Process & Process Variables Process Units &

More information

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft, and then compute this mass in

More information

Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards. Dr. Janel Hanrahan

Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards. Dr. Janel Hanrahan Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards Dr. Janel Hanrahan Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics

More information

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English Session-1 Thermodynamics: An Overview System, Surrounding and Boundary State, Property and Process Quasi and Actual Equilibrium SI and English Units Thermodynamic Properties 1 Thermodynamics, An Overview

More information

Chapter 1 Dimensions, Units, and Their Conversion

Chapter 1 Dimensions, Units, and Their Conversion 1.1 Units and Dimensions Chemical Engineering principles First Year/ Chapter One Chapter 1 Dimensions, Units, and Their Conversion Dimensions are our basic concepts of measurement such as length, time,

More information

Thermodynamics-1. S. M. Hosseini Sarvari Chapter 1 Introduction & Basic Concepts

Thermodynamics-1. S. M. Hosseini Sarvari Chapter 1 Introduction & Basic Concepts Mechanical Engineering Dept. Shahid Bahonar University of Kerman Thermodynamics-1 S. M. Hosseini Sarvari Chapter 1 Introduction & Basic Concepts Mechanical Engineering Dept. Shahid Bahonar University of

More information

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below)

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below) CALIFORNIA MECHANICAL CODE MATRIX ADOPTION TABLE APPENDIX D UNIT CONVERSION TABLES (Matrix Adoption Tables are non-regulatory, intended only as an aid to the user. See Chapter 1 for state agency authority

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

NEBB Fundamental Formulas

NEBB Fundamental Formulas Approved NEBB - May 1, 17 Page 1 of 8 Version 1.3 A = Area (ft²) IP, (m²) SI M = Mass (lb) IP, (kg) SI ACH = Air Changes per Hour ma = Mixed Air Ak = Effective Area m = meter (metre) AV = Average m³/s

More information

UNITS FOR THERMOMECHANICS

UNITS FOR THERMOMECHANICS UNITS FOR THERMOMECHANICS 1. Conitent Unit. Every calculation require a conitent et of unit. Hitorically, one et of unit wa ued for mechanic and an apparently unrelated et of unit wa ued for heat. For

More information

03 - measures, conversion tables

03 - measures, conversion tables - measures, conversion tables - International system of units- tables - Conversion tables - Specific weights and melting points tables - tables - Weight tables XVI INTERNATIONAL SYSTEM OF UNITS - TABLE

More information

CHAPTER 1 INTRODUCTION TO ENGINEERING CALCULATIONS

CHAPTER 1 INTRODUCTION TO ENGINEERING CALCULATIONS CHAPTER 1 INTRODUCTION TO ENGINEERING CALCULATIONS Sem 1, 2016/2017 ERT 214 Material and Energy Balance / Imbangan Bahan dan Tenaga After completing this chapter, you should be able to do the following:

More information

Unit A-1: List of Subjects

Unit A-1: List of Subjects ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-1: List of Subjects What is Thermodynamics? First and

More information

ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering Materials and Energy Balance in Metallurgical Processes Prof. S. C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 02 Measurement

More information

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER ES201 - Examination 2 Fall 2003-2004 Instructor: Class Period NAME BOX NUMBER Problem 1 ( 22 ) Problem 2 ( 26 ) Problem 3 ( 26 ) Problem 4 ( 26 ) Total (100) INSTRUCTIONS Closed book/notes exam. (Unit

More information

Summary of common Pressure Units Version 1.00, 12/15/2003

Summary of common Pressure Units Version 1.00, 12/15/2003 Summary of common Pressure Units Version.00, /5/003 Portland State Aerospace Society There are too many pressure units in common use. This is not nearly all of them. For PSAS,

More information

Index to Tables in SI Units

Index to Tables in SI Units Index to Tables in SI Units Table A-1 Atomic or Molecular Weights and Critical Properties of Selected Elements and Compounds 926 Table A-2 Properties of Saturated Water (Liquid Vapor): Temperature Table

More information

Tech Tip. Consistent Engineering Units In Finite Element Analysis

Tech Tip. Consistent Engineering Units In Finite Element Analysis Tech Tip Consistent Engineering Units In Finite Element Analysis Consistent Engineering Units In Finite Element Analysis Depending on the modelling software you use for your Finite Element Analysis (FEA),

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

PDHengineer.com Course O-5001

PDHengineer.com Course O-5001 Hengineer.com Course O-500 Gas ipeline Hydraulics To receive credit for this course This document is the course text. You may review this material at your leisure either before or after you purchase the

More information

Water and Steam Properties USER GUIDE

Water and Steam Properties USER GUIDE IAPWS-IF97 Water and Steam Properties Excel Add-In Library USER GUIDE Windows Operating System SI and I-P Units Version 2.0 Copyright 2015-2019 Fluidika Techlabs S de RL de CV. All Rights Reserved. Table

More information

Principles of Food and Bioprocess Engineering (FS 231) Example Problems on Units and Dimensions

Principles of Food and Bioprocess Engineering (FS 231) Example Problems on Units and Dimensions Principles of Food and Bioprocess Engineering (FS 231) Example Problems on Units and Dimensions 1. Determine the dimensions of the following quantities starting from their units: a. Work b. Specific heat

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for

More information

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS APPENDIX B UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS All units used are SI (Système International d Unités). The system is based on seven well-defined base units

More information

IAPWS-IF97 Water and Steam Properties DEMO VERSION USER GUIDE. Copyright Fluidika Techlabs S de RL de CV. All Rights Reserved.

IAPWS-IF97 Water and Steam Properties DEMO VERSION USER GUIDE. Copyright Fluidika Techlabs S de RL de CV. All Rights Reserved. IAPWS-IF97 Water and Steam Properties Excel Add-In Library DEMO VERSION USER GUIDE Windows Operating System SI and I-P Units Version 2.0 Copyright 2015-2019 Fluidika Techlabs S de RL de CV. All Rights

More information

Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters Orifice and Venturi Pipe Flow Meters For Liquid and Gas Flow by Harlan H. Bengtson, PhD, P.E. 1. Introduction Orifice and Venturi Pipe Flow Meters The flow rate of a fluid flowing in a pipe under pressure

More information

IAPWS-IF97 Water and Steam Properties. MATLAB Functions Library DEMO VERSION USER GUIDE

IAPWS-IF97 Water and Steam Properties. MATLAB Functions Library DEMO VERSION USER GUIDE IAPWS-IF97 Water and Steam Properties MATLAB Functions Library DEMO VERSION USER GUIDE Windows Operating System SI and I-P Units Version 2.0 Copyright 2015-2019 Fluidika Techlabs S de RL de CV. All Rights

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name: Lesson 10 1. (5 pt) If P > P sat (T), the phase is a subcooled liquid. 2. (5 pt) if P < P sat (T), the phase is superheated vapor. 3. (5 pt) if T > T sat (P), the phase is superheated vapor. 4. (5 pt)

More information

USER GUIDE. IAPWS-IF97 Water and Steam Properties. MATLAB Functions Library. Windows Operating System SI and I-P Units Version 2.0

USER GUIDE. IAPWS-IF97 Water and Steam Properties. MATLAB Functions Library. Windows Operating System SI and I-P Units Version 2.0 IAPWS-IF97 Water and Steam Properties MATLAB Functions Library USER GUIDE Windows Operating System SI and I-P Units Version 2.0 Copyright 2015-2019 Fluidika Techlabs S de RL de CV. All Rights Reserved.

More information

US Customary System (USC) Systeme Internationale (SI) Prefixes. Units & Significant Figures

US Customary System (USC) Systeme Internationale (SI) Prefixes. Units & Significant Figures Units & Significant Figures US Customary System (USC) What is the length of this line? Based on things that made sense to people Previously known as English (or British) 1 inch = 3 dry, round, barleycorns

More information

6.1 According to Handbook of Chemistry and Physics the composition of air is

6.1 According to Handbook of Chemistry and Physics the composition of air is 6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

More information

Why do we need to study thermodynamics? Examples of practical thermodynamic devices:

Why do we need to study thermodynamics? Examples of practical thermodynamic devices: Why do we need to study thermodynamics? Knowledge of thermodynamics is required to design any device involving the interchange between heat and work, or the conversion of material to produce heat (combustion).

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE =

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE = MAE101B: Advanced Fluid Mechanics Winter Quarter 2017 http://web.eng.ucsd.edu/~sgls/mae101b_2017/ Name: Final This is a three hour open-book exam. Please put your name on the top sheet of the exam. Answer

More information

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow 1. Consider subsonic Rayleigh flow of air with a Mach number of 0.92. Heat is now transferred to the fluid and the Mach number increases to 0.95.

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

Review of Fluid Mechanics

Review of Fluid Mechanics Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

More information

One-Dimensional Isentropic Flow

One-Dimensional Isentropic Flow Cairo University Second Year Faculty of Engineering Gas Dynamics AER 201B Aerospace Department Sheet (1) 2011-2012 One-Dimensional Isentropic Flow 1. Assuming the flow of a perfect gas in an adiabatic,

More information

INTERNATIONAL SYSTEM OF UNITS

INTERNATIONAL SYSTEM OF UNITS GAP.18.2 A Publication of Global Asset Protection Services LLC INTERNATIONAL SYSTEM OF UNITS INTRODUCTION The U.S. is one of the last countries still officially using the English measurement system. Most

More information

Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter

Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter Link download full: https://digitalcontentmarket.org/download/solutionmanual-for-thermodynamics-for-engineers-1st-edition-by-kroos-andpotter/

More information

Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters Orifice and Venturi Pipe Flow Meters by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications,

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06 ES 202 - Exam I Winter 2002-2003 Richards/Lui Name: Campus Mail Box Circle One: Richards 03 Richards 04 Lui 05 Lui - 06 Problem 1 Problem 2 ( 10 ) ( 45 ) Problem 3 ( 45 ) TOTAL ( 100 ) General Comments

More information

To receive full credit all work must be clearly provided. Please use units in all answers.

To receive full credit all work must be clearly provided. Please use units in all answers. Exam is Open Textbook, Open Class Notes, Computers can be used (Computer limited to class notes, lectures, homework, book material, calculator, conversion utilities, etc. No searching for similar problems

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

SIZING 2 E DEFINITIONS AND UNITS OF MEASUREMENT 2.1 CALCULATION OF THE ACCUMULATOR 2.2

SIZING 2 E DEFINITIONS AND UNITS OF MEASUREMENT 2.1 CALCULATION OF THE ACCUMULATOR 2.2 SIZING 2 E 01-12 DEFINITIONS AND UNITS OF MEASUREMENT 2.1 CALCULATION OF THE ACCUMULATOR 2.2 DEFINITIONS AND UNITS OF MEASUREMENT 2.1 E 01-12 2.1.1 DEFINITIONS Po = nitrogen pre-charge pressure (relative

More information

Thermodynamics Basics, Heat Energy and Power By

Thermodynamics Basics, Heat Energy and Power By Thermodynamics Basics, Heat Energy and Power By S. Bobby Rauf, P.E., CEM, MBA (Credit: 6 PDH) Thermodynamics Fundamentals Series 1 Preface As the adage goes, a picture is worth a thousand words; this text

More information

IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS

IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS Chapter1 Introduction and Basic Concepts INDUSTRIAL REVOLUTION A period in 18th and early 19th centuries Major changes in agriculture, mining, manufacturing,

More information

Chapter 1 - Basic Concepts. Measurement System Components. Sensor - Transducer. Signal-conditioning. Output. Feedback-control

Chapter 1 - Basic Concepts. Measurement System Components. Sensor - Transducer. Signal-conditioning. Output. Feedback-control Chapter 1 - Basic Concepts Measurement System Components Sensor - Transducer Signal-conditioning Output Feedback-control MeasurementSystemConcepts.doc 8/27/2008 12:03 PM Page 1 Example: Sensor/ Transducer

More information

US Customary System (USC)

US Customary System (USC) What is the length of this line? US Customary System (USC) Based on things that made sense to people Previously known as English (or British) inch = 3 dry, round, barleycorns end-to-end foot = length of

More information

SARDAR RAJA COLLEGES

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM. DEPARTMENT OF MECHANICAL ENGINEERING MICRO LESSON PLAN SUBJECT : ME2351 - GAS DYNAMICS AND JET ROPULSION CLASS : III Year / VI SEM STAFF:

More information

SST Tag: Message: (32 characters)

SST Tag: Message: (32 characters) 86-1-4738, Rev AA June 213 ROSEMOUNT 395FB Information Customer: Rosemount 395 MultiVariable Configuration Data Sheet Contact Name: Customer Phone: Customer Approval Sign-Off: Model No (1) Customer Fax:

More information

0. Background Knowledge

0. Background Knowledge 0-1 0. Background Knowledge ME 200 builds on courses you have already taken, including CHEM 115, MATH 165 and 166, and PHYS 172 and 241. You should have the following material at immediate recall. 0.1

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power THERMODYNAMICS INTRODUCTION The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power Together the spell heat power which fits the time when the forefathers

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Lecture 1 INTRODUCTION AND BASIC CONCEPTS

Lecture 1 INTRODUCTION AND BASIC CONCEPTS Lecture 1 INTRODUCTION AND BASIC CONCEPTS Objectives Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts to form a sound foundation for the development

More information

ANSI/AMCA Standard (R2012) Laboratory Methods of Testing Air Curtain Units for Aerodynamic Performance Rating

ANSI/AMCA Standard (R2012) Laboratory Methods of Testing Air Curtain Units for Aerodynamic Performance Rating ANSI/AMCA Standard 220-05 (R2012) Laboratory Methods of Testing Air Curtain Units for Aerodynamic Performance Rating An American National Standard Approved by ANSI on March 29, 2012 AIR MOVEMENT AND CONTROL

More information

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value APPENDIX C USEFUL INFORMATION 1247 C USEFUL INFORMATION This appendix is broken into several tables. Table C1, Important Constants Table C2, Submicroscopic Masses Table C3, Solar System Data Table C4,

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

DIMENSIONS AND UNITS

DIMENSIONS AND UNITS DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW COMRESSIBLE FLOW COMRESSIBLE FLOW Introduction he compressibility of a fluid is, basically, a measure of the change in density that will be produced in the fluid by a specific change in pressure and temperature.

More information

Technical English -I 3 rd week SYSTEMS OF UNITS

Technical English -I 3 rd week SYSTEMS OF UNITS Technical English -I 3 rd week SYSTEMS OF UNITS 2D 3D Coordinate conversion (Transformation coordinates) From Cartesian to polar, or vice versa (below) From a local system to a global system (right) Polar

More information

Chapter 2 Solutions. 2.1 (D) Pressure and temperature are dependent during phase change and independent when in a single phase.

Chapter 2 Solutions. 2.1 (D) Pressure and temperature are dependent during phase change and independent when in a single phase. Chater Solutions.1 (D) Pressure and temerature are deendent during hase change and indeendent when in a single hase.. (B) Sublimation is the direct conversion of a solid to a gas. To observe this rocess,

More information

Chapter 1 Introduction

Chapter 1 Introduction Fundamentals of Thermodynamics Chapter 1 Introduction Prof. Siyoung Jeong Thermodynamics I MEE2022-01 Thermodynamics : Science of energy and entropy - Science of heat and work and properties related to

More information

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each.

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. NE 161 Midterm Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. 1. Which would have a higher mass flow rate out of a 1 ft 2 break, a. 200 psia subcooled water

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

Instructor: Zerefşan Kaymaz TABLE: SELECTED DIMENSIONAL EQUIVALENTS

Instructor: Zerefşan Kaymaz TABLE: SELECTED DIMENSIONAL EQUIVALENTS TABLE: SELECTED DIMENSIONAL EQUIVALENTS 1 m = 3.280 ft 0 39.37 in 1cm =10-2 m = 0.394 in = 0.038 ft Length 1 mm = 10-3 m 1 micron (m) = 10-10 m 1 Angstrom ( o A) 10-6 m 1 hr = 3600 sec = 60 min Time 1

More information