Physical Fluctuomatics Applied Stochastic Process 9th Belief propagation

Size: px
Start display at page:

Download "Physical Fluctuomatics Applied Stochastic Process 9th Belief propagation"

Transcription

1 Physcal luctuomatcs ppled Stochastc Process 9th elef propagaton Kazuyuk Tanaka Graduate School of Informaton Scences Tohoku Unversty Stochastc Process (Tohoku Unversty)

2 Tetbooks Kazuyuk Tanaka: Introducton of Image Processng by Probablstc Models Morkta Publshng o. Ltd. 006 (n Japanese) hapter 8. Kazuyuk Tanaka: Mathematcs of Statstcal Inference by ayesan Network orona Publshng o. Ltd. October 009 (n Japanese) hapters 6-9. Physcal uctuomatcs (Tohoku Unversty)

3 What s an mportant pont n computatonal complety? How should we treat the calculaton of the summaton over N confguraton? T T T N f If t takes second n the case of N=0 t takes 7 mnutes n N=0 days n N=30 and 34 years n N=40. Markov han Monte arlo Method elef Propagaton Method N a 0; for( for( } for( } } a T or ){ T or ){ T or ){ Physcal uctuomatcs (Tohoku Unversty) 3 N a f N fold loops Prevous Talk L Ths Talk ;

4 Probablstc Model and elef Propagaton Probablstc Informaton Processng ayes ormulas ayesan Networks Probablstc Models elef Propagaton J. Pearl: Probablstc Reasonng n Intellgent Systems: Networks of Plausble Inference (Morgan Kaufmann 988).. errou and. Glaveu: Near optmum error correctng codng and decodng: Turbo-codes I Trans. omm. 44 (996). Stochastc Process (Tohoku Unversty) 4

5 Mathematcal ormulaton of elef Propagaton Smlarty of Mathematcal Structures between Mean eld Theory and epef Propagaton Y. Kabashma and. Saad elef propagaton vs. TP for decodng corrupted messages urophys. Lett. 44 (998). M. Opper and. Saad (eds) dvanced Mean eld Methods ---Theory and Practce (MIT Press 00). Generalzaton of elef Propagaton S. Yedda W. T. reeman and Y. Wess: onstructng free-energy appromatons and generalzed belef propagaton algorthms I Transactons on Informaton Theory 5 (005). Interpretatons of elef Propagaton based on Informaton Geometry S. Ikeda T. Tanaka and S. mar: Stochastc reasonng free energy and nformaton geometry Neural omputaton 6 (004). Stochastc Process (Tohoku Unversty) 5

6 Generalzed tensons of elef Propagaton based on luster Varaton Method Generalzed elef Propagaton J. S. Yedda W. T. reeman and Y. Wess: onstructng freeenergy appromatons and generalzed belef propagaton algorthms I Transactons on Informaton Theory 5 (005). Key Technology s the cluster varaton method n Statstcal Physcs R. Kkuch: theory of cooperatve phenomena Phys. Rev. 8 (95). T. Morta: luster varaton method of cooperatve phenomena and ts generalzaton I J. Phys. Soc. Jpn (957). Stochastc Process (Tohoku Unversty) 6

7 elef Propagaton n Statstcal Physcs In graphcal models wth tree graphcal structures ethe appromaton s equvalent to Transfer Matr Method n Statstcal Physcs and gve us eact results for computatons of statstcal quanttes. In Graphcal Models wth ycles elef Propagaton s equvalent to ethe appromaton or luster Varaton Method. Trandfer Matr Method (Tree Structures) elef Propagaton ethe ppromaton luster Varaton Method (Kkuch ppromaton) Generalzed elef Propagaton Stochastc Process (Tohoku Unversty) 7

8 pplcatons of elef Propagatons Image Processng K. Tanaka: Statstcal-mechancal approach to mage processng (Topcal Revew) J. Phys. 35 (00).. S. Wllsky: Multresoluton Markov Models for Sgnal and Image Processng Proceedngs of I 90 (00). Low ensty Party heck odes Y. Kabashma and. Saad: Statstcal mechancs of low-densty party-check codes (Topcal Revew) J. Phys. 37 (004). S. Ikeda T. Tanaka and S. mar: Informaton geometry of turbo and low-densty party-check codes I Transactons on Informaton Theory 50 (004). M Multuser etecton lgorthm Y. Kabashma: M multuser detecton algorthm on the bass of belef propagaton J. Phys. 36 (003). T. Tanaka and M. Okada: ppromate elef propagaton densty evoluton and statstcal neurodynamcs for M multuser detecton I Transactons on Informaton Theory 5 (005). Satsfablty Problem O.. Martn R. Monasson R. Zecchna: Statstcal mechancs methods and phase transtons n optmzaton problems Theoretcal omputer Scence 65 (00). M. Mezard G. Pars R. Zecchna: nalytc and algorthmc soluton of random satsfablty problems Scence 97 (00). Stochastc Process (Tohoku Unversty) 8

9 Strategy of ppromate lgorthm n Probablstc Informaton Processng P P It s very hard to compute margnal probabltes eactly ecept some tractable cases. T T T 3 What s the tractable cases n whch margnal probabltes can be computed eactly? Is t possble to use such algorthms for tractable cases to compute margnal probabltes n ntractable cases? L L Stochastc Process (Tohoku Unversty) 9

10 Graphcal Representatons of Tractable Probablstc Models W ( ) W ( ) W ( ) W ( ) = X X X W ( ) W ( ) W ( ) ( ) W = W ( ) W ( ) W ( ) ( ) W Stochastc Process (Tohoku Unversty) 0

11 Graphcal Representatons of Tractable Probablstc Models X Stochastc Process (Tohoku Unversty)

12 Graphcal Representatons of Tractable Probablstc Models X Stochastc Process (Tohoku Unversty)

13 Graphcal Representatons of Tractable Probablstc Models X Stochastc Process (Tohoku Unversty) 3

14 Graphcal Representatons of Tractable Probablstc Models X Stochastc Process (Tohoku Unversty) 4

15 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 5

16 Graphcal Representatons of Tractable Probablstc Models X Stochastc Process (Tohoku Unversty) 6

17 Graphcal Representatons of Tractable Probablstc Models X X Stochastc Process (Tohoku Unversty) 7

18 Graphcal Representatons of Tractable Probablstc Models X X Stochastc Process (Tohoku Unversty) 8

19 Graphcal Representatons of Tractable Probablstc Models X X Stochastc Process (Tohoku Unversty) 9

20 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 0

21 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty)

22 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty)

23 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 3

24 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 4

25 Graphcal Representatons of Tractable Probablstc Models W ( ) W ( ) W ( ) W ( ) W ( ) = X X X X W ( ) W ( ) W ( ) ( ) W W ( ) = Stochastc Process (Tohoku Unversty) 5

26 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 6

27 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 7

28 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 8

29 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 9

30 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 30

31 Graphcal Representatons of Tractable Probablstc Models Stochastc Process (Tohoku Unversty) 3

32 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages Pr{} Stochastc Process (Tohoku Unversty) 3

33 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages Pr{} = Stochastc Process (Tohoku Unversty) 33

34 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages Pr{} = = Stochastc Process (Tohoku Unversty) 34

35 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages Pr{} = = = Stochastc Process (Tohoku Unversty) 35

36 Stochastc Process (Tohoku Unversty) 36 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages } Pr{ = = =

37 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages Pr{} = Pr{ } = Pr{ } Pr{ } Stochastc Process (Tohoku Unversty) 37 Recurson ormulas for Messages

38 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages Step Step Step 3 Stochastc Process (Tohoku Unversty) 38

39 Graphcal Representatons of Tractable Probablstc Models Graphcal Representaton of Margnal Probablty n terms of Messages Step Step Step 3 Pr{} Pr{} Pr{ } Pr{ } = = = = Stochastc Process (Tohoku Unversty) 39

40 elef Propagaton Probablstc Models wth no ycles P W a b c d a W b W W c W d {} 6 d a c b 3 5 a c 4 6 b d Stochastc Process (Tohoku Unversty) 40

41 Stochastc Process (Tohoku Unversty) 4 elef Propagaton } { W 4 b W b a 3 W a d 6 W c c 5 W d {} W W W W W P d c b a d c b a a b c d Probablstc Model on Tree Graph

42 Probablstc Model on Tree Graph P {} M 6 Pa b c d 3 d M W M M a abcd c 4 b {} 6 5 M 3 Wa M W a 4 b b M 5 W c W d c M 6 d Stochastc Process (Tohoku Unversty) 4

43 elef Propagaton Probablstc Model on Tree Graph M 6 d a W W a W b c b a b W {} M M {} 3 4 Stochastc Process (Tohoku Unversty) 43 W M 3 a a W M 4 b b

44 elef Propagaton for Probablstc Model on Tree Graph Pr Z X W { j} j { j} X X X 3 X k 3 X k No ycles!! X k X k X k Stochastc Process (Tohoku Unversty) 44

45 elef Propagaton for Probablstc Model on Square Grd Graph P P L { j} j { j} : Set of all the lnks Stochastc Process (Tohoku Unversty) 45

46 elef Propagaton for Probablstc Model on Square Grd Graph Stochastc Process (Tohoku Unversty) 46

47 elef Propagaton for Probablstc Model on Square Grd Graph Stochastc Process (Tohoku Unversty) 47

48 P Margnal Probablty P 3 4 N 3 4 N Stochastc Process (Tohoku Unversty) 48

49 P Margnal Probablty P 3 4 N 3 4 N 3 4 N Stochastc Process (Tohoku Unversty) 49

50 P Margnal Probablty P 3 4 N 3 4 N 3 4 N Stochastc Process (Tohoku Unversty) 50

51 P {} Margnal Probablty P N N Stochastc Process (Tohoku Unversty) 5

52 P {} Margnal Probablty P N N 3 4 N Stochastc Process (Tohoku Unversty) 5

53 P {} Margnal Probablty P N N 3 4 N Stochastc Process (Tohoku Unversty) 53

54 elef Propagaton for Probablstc Model on Square Grd Graph P P {} Stochastc Process (Tohoku Unversty) 54

55 elef Propagaton for Probablstc Model on Square Grd Graph P P {} Stochastc Process (Tohoku Unversty) 55

56 elef Propagaton for Probablstc Model on Square Grd Graph P P {} Stochastc Process (Tohoku Unversty) 56

57 elef Propagaton for Probablstc Model on Square Grd Graph 3 P P {} 8 3 Message Update Rule Stochastc Process (Tohoku Unversty) 57

58 elef Propagaton for Probablstc Model on Square Grd Graph M M M 3 3 z z z W W 5 M 4 M 5 4 z M z M z M z 3 z z M z M z M z M M ed Pont quatons for Messages Stochastc Process (Tohoku Unversty) 58

59 ed Pont quaton and Iteratve Method ed Pont quaton * * M M Stochastc Process (Tohoku Unversty) 59

60 ed Pont quaton and Iteratve Method ed Pont quaton * * M M Iteratve Method y y 0 M * y () Stochastc Process (Tohoku Unversty) 60

61 ed Pont quaton and Iteratve Method ed Pont quaton * * M M Iteratve Method y y y () 0 M * M 0 Stochastc Process (Tohoku Unversty) 6

62 ed Pont quaton and Iteratve Method ed Pont quaton * * M M Iteratve Method M M 0 y y M y () 0 M * M 0 Stochastc Process (Tohoku Unversty) 6

63 ed Pont quaton and Iteratve Method ed Pont quaton * * M M Iteratve Method M M M M 0 y M y y () 0 M * M M 0 Stochastc Process (Tohoku Unversty) 63

64 ed Pont quaton and Iteratve Method ed Pont quaton * * M M Iteratve Method M M M M 0 y M M 0 M * M y M 0 y () Stochastc Process (Tohoku Unversty) 64

65 ed Pont quaton and Iteratve Method ed Pont quaton M * M * Iteratve Method M M M 3 M M M 0 y M M 0 M * M y M 0 y () Stochastc Process (Tohoku Unversty) 65

66 elef Propagaton for Probablstc Model on Square Grd Graph our Knds of Update Rule wth Three Inputs and One Output Stochastc Process (Tohoku Unversty) 66

67 Stochastc Process (Tohoku Unversty) 67 Interpretaton of elef Propagaton based on Informaton Theory 0 )ln ( P P ) ( 0 Z Z W P j j j ln ] [ ln )ln ( ln ) ( ] [ ] [ } { 0 P P Z P ln ] [ ] [ mn j j j W Z } { j j j V W Z P } { ree nergy Kullback-Lebler vergence

68 Stochastc Process (Tohoku Unversty) 68 Interpretaton of elef Propagaton based on Informaton Theory Z P ln W W W )ln ( ln )ln ( ln ) ( )ln ( ln ) ( \ 0 )ln ( P P ree nergy KL vergence W Z P \ ) ( ) (

69 Interpretaton of elef Propagaton based on Informaton Theory KL vergence ree nergy P lnz P Z W lnw { j} { j} V { j} ( )ln j j lnw ln j j j ln ln ln j ( Stochastc Process (Tohoku Unversty) 69 ( ) ( ) ) () \ \ j ethe ree nergy j

70 ethe Interpretaton of elef Propagaton based on Informaton Theory { j} P ln Z ethe j j j lnwj ln { j} j arg mn P arg mn ln ln ln j V j j arg mn P arg mn j ethe j j j Stochastc Process (Tohoku Unversty) 70

71 Stochastc Process (Tohoku Unversty) 7 Interpretaton of elef Propagaton based on Informaton Theory j j j V V j j j j j L } { ethe ethe mn arg ethe j j j j Lagrange Multplers to ensure the constrants

72 Stochastc Process (Tohoku Unversty) 7 Interpretaton of elef Propagaton based on Informaton Theory j j j V V j j j j j j j j V j j j j j j V V j j j j j W L ln ln ln ln ln } { } { } { ethe ethe 0 ethe j L tremum ondton 0 ethe j j j L

73 Interpretaton of elef Propagaton based on Informaton Theory L ethe j 0 j j L ethe 0 j tremum ondton M 3 3 M M 8 M 4 4 M 5 5 M 4 M 4 M 5 5 W M 6 Stochastc Process (Tohoku Unversty) 73 6 M 7 M M M M M Z M 4 M 5 3 Z W M M M

74 Interpretaton of elef Propagaton based on Informaton Theory M 3 M 4 4 M M 4 M 3 M 4 M W M 6 Stochastc Process (Tohoku Unversty) M 8 M 7 M M M M M Z M 4 M 5 3 Z W M M M 3 6 M 4 W M M 4 7 M Message Update Rule 8

75 Interpretaton of elef Propagaton based on Informaton Theory M W W M M M Message Passng Rule of elef Propagaton M 3 M M 5 5 M 3 M M M = a 7 Stochastc Process (Tohoku Unversty) 75 5

76 Summary elef Propagaton Transfer Matr Method ethe ppromaton and luster Varaton Method Iteratve lgorthm uture Talks 0th Probablstc mage processng by means of physcal models th ayesan network and belef propagaton n statstcal nference Stochastc Process (Tohoku Unversty) 76

77 Practce 9- We consder a probablty dstrbuton P(abcdy) defned by P abcd yw a W b W yw c yw d y Show that margnal Probablty XY s epressed by P y Pabcd y P a b c d M W a M W b X a X M Y y W c y M y W d y c XY y M M W ym ym y XY X X XY Y Stochastc Process (Tohoku Unversty) 77 b d

78 Stochastc Process (Tohoku Unversty) 78 Practce M M M M Z M M M W M M M Z M M M W Z Z M y substtutng to derve the followng equaton.

79 Practce 9-3 Make a program to solve the nonlnear equaton =tanh() for varous values of. Obtan the solutons for = numercally. scuss how the teratve procedures converge to the fed ponts of the equatons n the cases of = by drawng the graphs of y=tanh() and y=. 3 tanh tanh tanh 0 Stochastc Process (Tohoku Unversty) 79

Probabilistic image processing and Bayesian network

Probabilistic image processing and Bayesian network Computatonal Intellgence Semnar (8 November, 2005, Waseda Unversty, Tokyo, Japan) Probablstc mage processng and Bayesan network Kazuyuk Tanaka 1 Graduate School of Informaton Scences, Tohoku Unversty,

More information

Why BP Works STAT 232B

Why BP Works STAT 232B Why BP Works STAT 232B Free Energes Helmholz & Gbbs Free Energes 1 Dstance between Probablstc Models - K-L dvergence b{ KL b{ p{ = b{ ln { } p{ Here, p{ s the eact ont prob. b{ s the appromaton, called

More information

Probabilistic image processing and Bayesian network

Probabilistic image processing and Bayesian network Randomness and Computaton Jont Workshop New Horzons n Computng and Statstcal echancal Approach to Probablstc Informaton Processng (18-21 July, 2005, Senda, Japan) Lecture Note n Tutoral Sessons Probablstc

More information

A quantum-statistical-mechanical extension of Gaussian mixture model

A quantum-statistical-mechanical extension of Gaussian mixture model A quantum-statstcal-mechancal extenson of Gaussan mxture model Kazuyuk Tanaka, and Koj Tsuda 2 Graduate School of Informaton Scences, Tohoku Unversty, 6-3-09 Aramak-aza-aoba, Aoba-ku, Senda 980-8579, Japan

More information

A quantum-statistical-mechanical extension of Gaussian mixture model

A quantum-statistical-mechanical extension of Gaussian mixture model Journal of Physcs: Conference Seres A quantum-statstcal-mechancal extenson of Gaussan mxture model To cte ths artcle: K Tanaka and K Tsuda 2008 J Phys: Conf Ser 95 012023 Vew the artcle onlne for updates

More information

Speech and Language Processing

Speech and Language Processing Speech and Language rocessng Lecture 3 ayesan network and ayesan nference Informaton and ommuncatons Engneerng ourse Takahro Shnozak 08//5 Lecture lan (Shnozak s part) I gves the frst 6 lectures about

More information

Statistical performance analysis by loopy belief propagation in probabilistic image processing

Statistical performance analysis by loopy belief propagation in probabilistic image processing Statstcal perormance analyss by loopy bele propaaton n probablstc mae processn Kazuyuk Tanaka raduate School o Inormaton Scences Tohoku Unversty Japan http://www.smapp.s.tohoku.ac.p/~kazu/ Collaborators

More information

Probability-Theoretic Junction Trees

Probability-Theoretic Junction Trees Probablty-Theoretc Juncton Trees Payam Pakzad, (wth Venkat Anantharam, EECS Dept, U.C. Berkeley EPFL, ALGO/LMA Semnar 2/2/2004 Margnalzaton Problem Gven an arbtrary functon of many varables, fnd (some

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

Density Propagation and Improved Bounds on the Partition Function

Density Propagation and Improved Bounds on the Partition Function Densty Propagaton and Improved Bounds on the Partton Functon Stefano Ermon, Carla P. Gomes Dept. of Computer Scence Cornell Unversty Ithaca NY 14853, U.S.A. Ashsh Sabharwal IBM Watson esearch Ctr. Yorktown

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probablstc & Unsupervsed Learnng Convex Algorthms n Approxmate Inference Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computatonal Neuroscence Unt Unversty College London Term 1, Autumn 2008 Convexty A convex

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry) Introducton to Densty Functonal Theory Jereme Zaffran nd year-msc. (anochemstry) A- Hartree appromatons Born- Oppenhemer appromaton H H H e The goal of computatonal chemstry H e??? Let s remnd H e T e

More information

Variational Free Energies for Compressed Sensing

Variational Free Energies for Compressed Sensing Varatonal Free Energes for Compressed Sensng Florent Krzakala, Andre Manoel and Erc W. Tramel Laboratore de Physque Statstque, École Normale Supéreure and Unversté Perre et Mare Cure, Rue Lhomond Pars

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

A Note on Bound for Jensen-Shannon Divergence by Jeffreys

A Note on Bound for Jensen-Shannon Divergence by Jeffreys OPEN ACCESS Conference Proceedngs Paper Entropy www.scforum.net/conference/ecea- A Note on Bound for Jensen-Shannon Dvergence by Jeffreys Takuya Yamano, * Department of Mathematcs and Physcs, Faculty of

More information

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline Outlne Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Huzhen Yu janey.yu@cs.helsnk.f Dept. Computer Scence, Unv. of Helsnk Probablstc Models, Sprng, 200 Notces: I corrected a number

More information

Density Propagation and Improved Bounds on the Partition Function

Density Propagation and Improved Bounds on the Partition Function Densty Propagaton and Improved Bounds on the Partton Functon Stefano Ermon, Carla P. Gomes Dept. of Computer Scence Cornell Unversty Ithaca NY 1853, U.S.A. Ashsh Sabharwal IBM Watson esearch Ctr. Yorktown

More information

A New Scrambling Evaluation Scheme based on Spatial Distribution Entropy and Centroid Difference of Bit-plane

A New Scrambling Evaluation Scheme based on Spatial Distribution Entropy and Centroid Difference of Bit-plane A New Scramblng Evaluaton Scheme based on Spatal Dstrbuton Entropy and Centrod Dfference of Bt-plane Lang Zhao *, Avshek Adhkar Kouch Sakura * * Graduate School of Informaton Scence and Electrcal Engneerng,

More information

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ISSN 1549-644 1 Scence Publcatons do:1.844/jmssp.1.4.8 Publshed Onlne 9 (1) 1 (http://www.thescpub.com/jmss.toc) A MODIFIED METHOD FOR SOLVING SYSTEM OF

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Introduction to Hidden Markov Models

Introduction to Hidden Markov Models Introducton to Hdden Markov Models Alperen Degrmenc Ths document contans dervatons and algorthms for mplementng Hdden Markov Models. The content presented here s a collecton of my notes and personal nsghts

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Mean Field / Variational Approximations

Mean Field / Variational Approximations Mean Feld / Varatonal Appromatons resented by Jose Nuñez 0/24/05 Outlne Introducton Mean Feld Appromaton Structured Mean Feld Weghted Mean Feld Varatonal Methods Introducton roblem: We have dstrbuton but

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Thermodynamics and statistical mechanics in materials modelling II

Thermodynamics and statistical mechanics in materials modelling II Course MP3 Lecture 8/11/006 (JAE) Course MP3 Lecture 8/11/006 Thermodynamcs and statstcal mechancs n materals modellng II A bref résumé of the physcal concepts used n materals modellng Dr James Ellott.1

More information

Physical Fluctuomatics 4th Maximum likelihood estimation and EM algorithm

Physical Fluctuomatics 4th Maximum likelihood estimation and EM algorithm hyscal Fluctuomatcs 4th Maxmum lkelhood estmaton and EM alorthm Kazuyuk Tanaka Graduate School o Inormaton Scences Tohoku Unversty kazu@smapp.s.tohoku.ac.jp http://www.smapp.s.tohoku.ac.jp/~kazu/ hscal

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Information Geometry of Gibbs Sampler

Information Geometry of Gibbs Sampler Informaton Geometry of Gbbs Sampler Kazuya Takabatake Neuroscence Research Insttute AIST Central 2, Umezono 1-1-1, Tsukuba JAPAN 305-8568 k.takabatake@ast.go.jp Abstract: - Ths paper shows some nformaton

More information

Fuzzy Boundaries of Sample Selection Model

Fuzzy Boundaries of Sample Selection Model Proceedngs of the 9th WSES Internatonal Conference on ppled Mathematcs, Istanbul, Turkey, May 7-9, 006 (pp309-34) Fuzzy Boundares of Sample Selecton Model L. MUHMD SFIIH, NTON BDULBSH KMIL, M. T. BU OSMN

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Communcaton Theory. Informaton Sources Z. Alyazcoglu Electrcal and Computer Engneerng Department Cal Poly Pomona Introducton Informaton Source x n Informaton sources Analog sources Dscrete sources

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Marginal Models for categorical data.

Marginal Models for categorical data. Margnal Models for categorcal data Applcaton to condtonal ndependence and graphcal models Wcher Bergsma 1 Marcel Croon 2 Jacques Hagenaars 2 Tamas Rudas 3 1 London School of Economcs and Poltcal Scence

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artfcal Intellgence Bayesan Networks Adapted from sldes by Tm Fnn and Mare desjardns. Some materal borrowed from Lse Getoor. 1 Outlne Bayesan networks Network structure Condtonal probablty tables Condtonal

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant Summary wth Eamples or Root ndng Methods -Bsecton -Newton Raphson -Secant Nonlnear Equaton Solvers Bracketng Graphcal Open Methods Bsecton False Poston (Regula-Fals) Newton Raphson Secant All Iteratve

More information

Bayesian belief networks

Bayesian belief networks CS 1571 Introducton to I Lecture 24 ayesan belef networks los Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square CS 1571 Intro to I dmnstraton Homework assgnment 10 s out and due next week Fnal exam: December

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Retrieval Models: Language models

Retrieval Models: Language models CS-590I Informaton Retreval Retreval Models: Language models Luo S Department of Computer Scence Purdue Unversty Introducton to language model Ungram language model Document language model estmaton Maxmum

More information

Second order approximations for probability models

Second order approximations for probability models Second order approxmatons for probablty models lbert Kappen Department of Bophyscs Njmegen Unversty Njmegen, the Netherlands bertmbfysunnl Wm Wegernc Department of Bophyscs Njmegen Unversty Njmegen, the

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced,

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced, FREQUENCY DISTRIBUTIONS Page 1 of 6 I. Introducton 1. The dea of a frequency dstrbuton for sets of observatons wll be ntroduced, together wth some of the mechancs for constructng dstrbutons of data. Then

More information

CS : Algorithms and Uncertainty Lecture 14 Date: October 17, 2016

CS : Algorithms and Uncertainty Lecture 14 Date: October 17, 2016 CS 294-128: Algorthms and Uncertanty Lecture 14 Date: October 17, 2016 Instructor: Nkhl Bansal Scrbe: Antares Chen 1 Introducton In ths lecture, we revew results regardng follow the regularzed leader (FTRL.

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Microwave Diversity Imaging Compression Using Bioinspired

Microwave Diversity Imaging Compression Using Bioinspired Mcrowave Dversty Imagng Compresson Usng Bonspred Neural Networks Youwe Yuan 1, Yong L 1, Wele Xu 1, Janghong Yu * 1 School of Computer Scence and Technology, Hangzhou Danz Unversty, Hangzhou, Zhejang,

More information

TAP Gibbs Free Energy, Belief Propagation and Sparsity

TAP Gibbs Free Energy, Belief Propagation and Sparsity TAP Gbbs Free Energy, Belef Propagaton and Sparsty Lehel Csató and Manfred Opper Neural Computng Research Group Dvson of Electronc Engneerng and Computer Scence Aston Unversty Brmngham B4 7ET, UK. [csatol,opperm]@aston.ac.uk

More information

Global Gaussian approximations in latent Gaussian models

Global Gaussian approximations in latent Gaussian models Global Gaussan approxmatons n latent Gaussan models Botond Cseke Aprl 9, 2010 Abstract A revew of global approxmaton methods n latent Gaussan models. 1 Latent Gaussan models In ths secton we ntroduce notaton

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. 9 No. 3 4 pp. 69-8 Solvng Fractonal Nonlnear Fredholm Integro-dfferental Equatons va Hybrd of Ratonalzed Haar Functons Yadollah Ordokhan

More information

Sensor localization using nonparametric generalized belief propagation in network with loop

Sensor localization using nonparametric generalized belief propagation in network with loop Sensor localzaton usng nonparametrc generalzed belef propagaton n network wth loop Vladmr Savc and Santago Zazo Post Prnt N.B.: When ctng ths work, cte the orgnal artcle. 009 IEEE. Personal use of ths

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Overview. Hidden Markov Models and Gaussian Mixture Models. Acoustic Modelling. Fundamental Equation of Statistical Speech Recognition

Overview. Hidden Markov Models and Gaussian Mixture Models. Acoustic Modelling. Fundamental Equation of Statistical Speech Recognition Overvew Hdden Marov Models and Gaussan Mxture Models Steve Renals and Peter Bell Automatc Speech Recognton ASR Lectures &5 8/3 January 3 HMMs and GMMs Key models and algorthms for HMM acoustc models Gaussans

More information

Cell Biology. Lecture 1: 10-Oct-12. Marco Grzegorczyk. (Gen-)Regulatory Network. Microarray Chips. (Gen-)Regulatory Network. (Gen-)Regulatory Network

Cell Biology. Lecture 1: 10-Oct-12. Marco Grzegorczyk. (Gen-)Regulatory Network. Microarray Chips. (Gen-)Regulatory Network. (Gen-)Regulatory Network 5.0.202 Genetsche Netzwerke Wntersemester 202/203 ell ology Lecture : 0-Oct-2 Marco Grzegorczyk Gen-Regulatory Network Mcroarray hps G G 2 G 3 2 3 metabolte metabolte Gen-Regulatory Network Gen-Regulatory

More information

CIS587 - Artificial Intellgence. Bayesian Networks CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intellgence. Bayesian Networks CIS587 - AI. KB for medical diagnosis. Example. CIS587 - Artfcal Intellgence Bayesan Networks KB for medcal dagnoss. Example. We want to buld a KB system for the dagnoss of pneumona. Problem descrpton: Dsease: pneumona Patent symptoms (fndngs, lab tests):

More information

MAXIMUM A POSTERIORI TRANSDUCTION

MAXIMUM A POSTERIORI TRANSDUCTION MAXIMUM A POSTERIORI TRANSDUCTION LI-WEI WANG, JU-FU FENG School of Mathematcal Scences, Peng Unversty, Bejng, 0087, Chna Center for Informaton Scences, Peng Unversty, Bejng, 0087, Chna E-MIAL: {wanglw,

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

On the Repeating Group Finding Problem

On the Repeating Group Finding Problem The 9th Workshop on Combnatoral Mathematcs and Computaton Theory On the Repeatng Group Fndng Problem Bo-Ren Kung, Wen-Hsen Chen, R.C.T Lee Graduate Insttute of Informaton Technology and Management Takmng

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence Int. J. Adv. Appl. Math. and Mech. 6(3 (2019 14 20 (ISSN: 2347-2529 Journal homepage: www.jaamm.com IJAAMM Internatonal Journal of Advances n Appled Mathematcs and Mechancs The bnomal transforms of the

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

error in mean TAP 0.25

error in mean TAP 0.25 Belef Optmzaton for Bnary Networks: A Stable Alternatve to Loopy Belef Propagaton Max Wellng Gatsby Computatonal Neuroscence Unt Unversty College London Queen Square London, WCN AR, U.K. Abstract We present

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

An Application of Fuzzy Hypotheses Testing in Radar Detection

An Application of Fuzzy Hypotheses Testing in Radar Detection Proceedngs of the th WSES Internatonal Conference on FUZZY SYSEMS n pplcaton of Fuy Hypotheses estng n Radar Detecton.K.ELSHERIF, F.M.BBDY, G.M.BDELHMID Department of Mathematcs Mltary echncal Collage

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Inference in Multilayer Networks via. Michael Kearns and Lawrence Saul. AT&T Labs Research. Shannon Laboratory. 180 Park Avenue A-235

Inference in Multilayer Networks via. Michael Kearns and Lawrence Saul. AT&T Labs Research. Shannon Laboratory. 180 Park Avenue A-235 Inference n Multlayer etworks va arge Devaton Bounds Mchael Kearns and awrence Saul AT&T abs Research Shannon aboratory 180 Park Avenue A-235 Florham Park, J 07932 fmkearns,lsaulg@research.att.com Abstract

More information

Gaussian Mixture Models

Gaussian Mixture Models Lab Gaussan Mxture Models Lab Objectve: Understand the formulaton of Gaussan Mxture Models (GMMs) and how to estmate GMM parameters. You ve already seen GMMs as the observaton dstrbuton n certan contnuous

More information

Low Complexity Soft-Input Soft-Output Hamming Decoder

Low Complexity Soft-Input Soft-Output Hamming Decoder Low Complexty Soft-Input Soft-Output Hammng Der Benjamn Müller, Martn Holters, Udo Zölzer Helmut Schmdt Unversty Unversty of the Federal Armed Forces Department of Sgnal Processng and Communcatons Holstenhofweg

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Expectation propagation

Expectation propagation Expectaton propagaton Lloyd Ellott May 17, 2011 Suppose p(x) s a pdf and we have a factorzaton p(x) = 1 Z n f (x). (1) =1 Expectaton propagaton s an nference algorthm desgned to approxmate the factors

More information

Gaussian process classification: a message-passing viewpoint

Gaussian process classification: a message-passing viewpoint Gaussan process classfcaton: a message-passng vewpont Flpe Rodrgues fmpr@de.uc.pt November 014 Abstract The goal of ths short paper s to provde a message-passng vewpont of the Expectaton Propagaton EP

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

Clock Synchronization in WSN: from Traditional Estimation Theory to Distributed Signal Processing

Clock Synchronization in WSN: from Traditional Estimation Theory to Distributed Signal Processing Clock Synchronzaton n WS: from Tradtonal Estmaton Theory to Dstrbuted Sgnal Processng Yk-Chung WU The Unversty of Hong Kong Emal: ycwu@eee.hku.hk, Webpage: www.eee.hku.hk/~ycwu Applcatons requre clock

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

An Improved multiple fractal algorithm

An Improved multiple fractal algorithm Advanced Scence and Technology Letters Vol.31 (MulGraB 213), pp.184-188 http://dx.do.org/1.1427/astl.213.31.41 An Improved multple fractal algorthm Yun Ln, Xaochu Xu, Jnfeng Pang College of Informaton

More information

A New Evolutionary Computation Based Approach for Learning Bayesian Network

A New Evolutionary Computation Based Approach for Learning Bayesian Network Avalable onlne at www.scencedrect.com Proceda Engneerng 15 (2011) 4026 4030 Advanced n Control Engneerng and Informaton Scence A New Evolutonary Computaton Based Approach for Learnng Bayesan Network Yungang

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Belief Propagation Based Multi User Detection

Belief Propagation Based Multi User Detection Belef Propagaton Based Mult User Detecton arxv:cs/050044v2 [cs.it] 22 May 2006 Andrea Montanar Laboratore de Physque Théorque Ecole ormale Supéreure 75005 Pars, FRACE montanar@lpt.ens.fr Davd Tse Balaj

More information

Queueing Networks II Network Performance

Queueing Networks II Network Performance Queueng Networks II Network Performance Davd Tpper Assocate Professor Graduate Telecommuncatons and Networkng Program Unversty of Pttsburgh Sldes 6 Networks of Queues Many communcaton systems must be modeled

More information

A New Algorithm for Training Multi-layered Morphological Networks

A New Algorithm for Training Multi-layered Morphological Networks A New Algorthm for Tranng Mult-layered Morphologcal Networs Rcardo Barrón, Humberto Sossa, and Benamín Cruz Centro de Investgacón en Computacón-IPN Av. Juan de Dos Bátz esquna con Mguel Othón de Mendzábal

More information

Note on EM-training of IBM-model 1

Note on EM-training of IBM-model 1 Note on EM-tranng of IBM-model INF58 Language Technologcal Applcatons, Fall The sldes on ths subject (nf58 6.pdf) ncludng the example seem nsuffcent to gve a good grasp of what s gong on. Hence here are

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information