A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

Size: px
Start display at page:

Download "A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS"

Transcription

1 Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ISSN Scence Publcatons do:1.844/jmssp Publshed Onlne 9 (1) 1 ( A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS Kanttha Chompuvsed Department of Mathematcs and Appled Statstcs, Faculty of Scence and Technology, Nahon Ratchasma Rajabhat Unversty, Nahon Ratchasma, Thaland Receved 1-1-8, Revsed 1--16; Accepted ABSTRACT Solvng systems of nonlnear equaton s a great mportant whch arses n varous branches of scence and engneerng. In the last decades, several numercal technques were proposed to solve these problems. In ths study, we propose a modfed of teratve method whch s based on the dea of and Fed pont teraton method. The proposed method has been llustrated wth several eamples from the reference. The numercal results ndcate that ths proposed method provde the good performance of teratons. Keywords: System of Nonlnear Equaton, Newton Method, Fed Pont Iteraton Scence Publcatons 1. INTRODUCTION Solvng systems of nonlnear equatons s a great mportance, because these systems frequently arse n varous branches of pure and appled scences. The general form of a system of nonlnear equatons s Equaton 1: f 1( 1,,, n) =,f ( 1,,, n) =,f n( 1,,, n) = (1) where, each functon f can be thought of as mappng a vector = ( 1,,, n ) of the n dmensonal space R n, nto the real lne R. The system can alternatvely be represented by defnng a functonal F, mappng R n nto R n by. F( 1,,, n ) = (f 1 ( 1,,, n ),,f n ( 1,,, n )) T Usng vector notaton to represent the varables 1,,, n, a system (1) can be wrtten as the form: F() = The functons f 1, f,,f n are called the coordnate functons of F (Burden and Farres, 1). Recently, several teratve methods have been used to solve nonlnear equatons and the system of nonlnear equatons (Awawdeh, 9; Noor, 1; Cordero et al., 11; Sharma and Sharma, 11; Vahd et al., 1). 4 Wang (11) usng a thrd order famly of Newton-Le teraton method for solvng nonlnear equatons; Ozel (1) has consdered a new decomposton method for solvng the system of nonlnear equatons. Saha (1) has presented a modfed method to solvng nonlnear equatons by hybrdsng the results of and fed pont teraton method. Km et al. (1) developed a new scheme for the constructon of teratve methods for the soluton of nonlnear equatons and gvng a new class of methods from any teratve method. Furthermore, several teratve methods have been developed for solvng the system of nonlnear equatons by usng varous technques such as Newton s method, Revsed Adoman decomposton method, homotopy perturbaton method, Householder teratve method (Darvsh, 9; Noor and Waseem, 9; Hossen and Kafash, 1; Darvsh and Shn, 11; Hafz and Bahgat, 1a; 1b; Noor et al., 1). It s the purpose of ths study to ntroduce a new mprovement of by fed pont teraton method. We etend the Saha (1) method to solve systems of nonlnear equatons. Some eamples are tested and the obtaned results suggest that ths newly mprovement technque ntroduces a promsng tool and powerful mprovement for solvng a System of Nonlnear Equatons.

2 Kanttha Chompuvsed /Journal of Mathematcs and Statstcs 9 (1): 4-8, Descrpton of an Iteratve Method Consder a nonlnear equaton: f() = () We assume that the Equaton () admts a unque soluton *. In the all nown teratve formula used to fnd the real root s Equaton : +1 = - f ( ) Scence Publcatons f( ) () In fed pont teraton method () wll be rewrtten n the form: = g() (4) Equaton 4 whch s equvalent to () wll converge to a real root n the nterval D f g`() <1 for all n D provded the ntal appromaton s chosen n D. Choose the ntal appromaton then (, g ( )) s a pont on the curve Equaton 5: y = g() (5) The equaton of the tangent to the curve gven by (5) at the pont (, g ( )) s Equaton 6: y - g( ) = g ( )( - ) (6) Now we consder the lne Equaton 7: y = (7) Substtutng y = n (6) we have: - g( ) = g ( )( - ) g( ) - g ( ) [1- g ( )] = g( ) - g ( ) = 1- g ( ) whch produces the followng teraton scheme Equatons 8: g( ) - g ( ) +1 = 1- g ( ) 1.. The N-Dmensonal Case (8) The (Gautsch, 11; Sauer, 11) s commonly used for solvng such systems Equaton 9: 5 F() = (9) where, F: Ω R n R n s defned Equaton 1: +1 = - F ( ) F( ) (1) where, F ( ) s the Jacoban matr n pont. In fed pont teraton method (9) wll be rewrtten n the form = g() We rewrte Equaton 8 to solve the nonlnear system F() =, ths produces the followng teraton scheme Equatons 11: = [I - g ( )] [g( ) - g ( ) ] (11) where, I s an dentty matr. 1.. Numercal Eamples We present some eamples to llustrate the effcency of our proposed methods, we solve four systems of nonlnear equatons and one of a nonlnear boundary value problem. The followng tables show the Number of Iteratons (NI) to receve the requred soluton. For all test problems the stop crtera s F() <1 9. Eample 1 Consder the followng system of nonlnear equatons: + - = - = 1 1 * * * T T The eact solutons are = ( 1, ) = (1,1). To solve ths system, we set = (.1,) T as an ntal value. The results are presented n Table 1. Eample Consder the followng system of nonlnear equatons (Hossen and Kafash, 1): = = The eact solutons are * * * T T 1 = (, ) = (1,1) = (.57779, ) T To solve ths system, we set = (.5,.5) as an ntal value. The results are presented n Table.

3 Kanttha Chompuvsed /Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 Table 1. Numercal results for Eample NI X 1 X X 1 X Table. Numercal results for Eample NI X 1 X X 1 X Table. Numercal results for Eample NI X 1 X X X 1 X X Table 4. Numercal results for Eample 4 Number of teratons Method m = 5 m = 75 m = Table 5. Numercal results for Eample 5 Number of teratons Method M = 5 M = 75 M = Scence Publcatons 6 Eample Consder the followng system of nonlnear equatons (Awawdeh, 9): 1 - cos( ) -.5 = 1-81( +.1) + sn +1.6 = -1 1π - e + + = The eact solutons = (,, ) = (.5,, ). To solve are * * * * T T 1

4 Kanttha Chompuvsed /Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ths system, we set = (5, 4, ) T as an ntal value. The results are presented n Table. Eample 4 Consder the followng system of nonlnear equatons (Darvsh and Shn, 11): Scence Publcatons - cos( -1) =, = 1,,,m The eact solutons = (,,, ) = (1,1,,1). To solve ths system, are * * * * T T 1 m we set = (.5,.5,,.5) T as an ntal value. The results are presented n Table 4. Eample 5 Consder the nonlnear boundary value problem (Noor and Waseem, 9): y = -(y) - y + ln, 1, y(1) =, y() = ln Whose eact solutons s y = In. We consder the followng partton of the nterval: 1 = 1, n =, j = + jh, h =, j = 1,,,m -1 m Let us defne now: y = y( ) =, y m = ln, y = f( ), = 1,,,m -1 If we dscretze the problem by usng the second order fnte dfferences method defned by the numercal formulas: y - y y = h y+1 - y + y-1 =, = 1,,,m -1 h +1-1, = 1,,,m -1, y Then, we obtan a (m-1) (m-1) system of nonlnear equatons: 4y + y + 4y (h - ) - 4h ln =,4(y + y ) (y - y ) + 4y (h - ) - 4h ln =, =,,m -, +1-1 ( ) ( ) ( ) 4 In + y + In y + 4y h 4h In = m m m 1 m 1 we tae X wth () y = ln, = 1,,,m -1, as a 1 startng pont. The results are presented n Table 5. 7.CONCLUSION In ths study, we have demonstrated the applcablty of the modfed method for the system of nonlnear equatons wth the help of some concrete eamples. The results show that: the proposed problem can be solved by the proposed method.. REFERENCES Awawdeh, F., 9. On new teratve method for solvng systems of nonlnear equatons. Numercal Algorthms, 54: DOI: 1.17/s Burden, R.L. and J.D. Farres, 1. Numercal Analyss. 9th Edn., Cengage Learnng, Boston, MA., ISBN-1: , pp: 87. Cordero, A., J.L. Hueso, E. Martnez, J.R. Torregrosa, 11. Effcent hgh-order methods based on golden rato for nonlnear systems. Appled Math. Comput., 17: DOI: 1.116/j.amc Darvsh, M.T. and B.C. Shn, 11. Hgh-order newtonrylov methods to solve systems of nonlnear equatons. J. KSIAM., 15: 19-. Darvsh, M.T., 9. A two-step hgh order newton-le method for solvng systems of nonlnear equatons. Int. J. Pure Appled Math., 57: Gautsch, W., 11. Numercal Analyss. nd Edn., Sprnger, Boston, ISBN-1: , pp: 588. Hafz, M.A. and M.S.M. Bahgat, 1a. An effcent two-step teratve method for solvng system of nonlnear equatons. J. Math. Res., 4: 8-4. DOI: 1.559/jmr.v4n4p8 Hafz, M.A. and M.S.M. Bahgat, 1b. Modfed of householder teratve method for solvng nonlnear systems. J. Math. Comput. Sc. Hossen, M.M. and B. Kafash, 1. An effcent algorthm for solvng system of nonlnear equatons. Appled Math. Sc., 4: Km, Y.L., C. Chun and W. Km., 1. Some thrdorder curvature based methods for solvng nonlnear equatons. Stud. Nonlnear Sc., 1: Noor, M.A. and M. Waseem, 9. Some teratve methods for solvng a system of nonlnear equatons. Comput. Math. Appl., 57: DOI: 1.116/j.camwa Noor, M.A., 1. Iteratve methods for nonlnear equatons usng homotopy perturbaton technque. Appled Math. Inform. Sc., 4: 7-5.

5 Kanttha Chompuvsed /Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 Noor, M.A., M. Waseem, K.I. Noor and E. Al-Sad, 1. Varatonal teraton technque for solvng a system of nonlnear equatons. Optm Lett., DOI: 1.17/s Ozel, M., 1. A new decomposton method for solvng system of nonlnear equatons. J. Appled Math. Comput., 15: Saha, S., 1. A modfed method for solvng nonlnear equatons. Int. J. Comput. Sc. Intell. Comput., : Sauer, T., 11. Numercal Analyss. nd Edn., Prentce Hall, US., ISBN-1: , pp: 646. Sharma, J.R. and R. Sharma, 11. Some thrd order methods for solvng systems of nonlnear equatons. World Acad. Sc. Eng. Technol., 6: Vahd, A.R., S.H. Javad and S.M. Khorasan, 1. Solvng system of nonlnear equatons by restarted adoman s method. Appled Math. Comput., 6: Wang, P., 11. A thrd-order famly of newton-le teraton methods for solvng nonlnear equatons. J. Num. Math. Stochast., : Scence Publcatons 8

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to ChE Lecture Notes - D. Keer, 5/9/98 Lecture 6,7,8 - Rootndng n systems o equatons (A) Theory (B) Problems (C) MATLAB Applcatons Tet: Supplementary notes rom Instructor 6. Why s t mportant to be able to

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11: 764: Numercal Analyss Topc : Soluton o Nonlnear Equatons Lectures 5-: UIN Malang Read Chapters 5 and 6 o the tetbook 764_Topc Lecture 5 Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. 9 No. 3 4 pp. 69-8 Solvng Fractonal Nonlnear Fredholm Integro-dfferental Equatons va Hybrd of Ratonalzed Haar Functons Yadollah Ordokhan

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind MATEMATIKA, 217, Volume 33, Number 2, 191 26 c Penerbt UTM Press. All rghts reserved Fxed pont method and ts mprovement for the system of Volterra-Fredholm ntegral equatons of the second knd 1 Talaat I.

More information

1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions

1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions Lakshm Sreesha Ch. Non Standard Fnte Dfference Method for Sngularly Perturbed Sngular wo Pont Boundary Value Problem usng Non Polynomal Splne LAKSHMI SIREESHA CH Department of Mathematcs Unversty College

More information

CHAPTER 7 CONSTRAINED OPTIMIZATION 2: SQP AND GRG

CHAPTER 7 CONSTRAINED OPTIMIZATION 2: SQP AND GRG Chapter 7: Constraned Optmzaton CHAPER 7 CONSRAINED OPIMIZAION : SQP AND GRG Introducton In the prevous chapter we eamned the necessary and suffcent condtons for a constraned optmum. We dd not, however,

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation

Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation Appled Mathematcs 79-749 do:.46/am..698 Publshed Onlne June (http://www.scrp.org/ournal/am) Septc B-Splne Collocaton Method for the umercal Soluton of the Modfed Equal Wdth Wave Equaton Abstract Turab

More information

Counterexamples to the Connectivity Conjecture of the Mixed Cells

Counterexamples to the Connectivity Conjecture of the Mixed Cells Dscrete Comput Geom 2:55 52 998 Dscrete & Computatonal Geometry 998 Sprnger-Verlag New York Inc. Counterexamples to the Connectvty Conjecture of the Mxed Cells T. Y. L and X. Wang 2 Department of Mathematcs

More information

Chapter 4: Root Finding

Chapter 4: Root Finding Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

More information

Solution of Singularly Perturbed Differential Difference Equations Using Higher Order Finite Differences

Solution of Singularly Perturbed Differential Difference Equations Using Higher Order Finite Differences Amercan Journal of Numercal Analyss, 05, Vol. 3, No., 8-7 Avalable onlne at http://pubs.scepub.com/ajna/3// Scence and Educaton Publshng DOI:0.69/ajna-3-- Soluton of Sngularly Perturbed Dfferental Dfference

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

CISE301: Numerical Methods Topic 2: Solution of Nonlinear Equations

CISE301: Numerical Methods Topic 2: Solution of Nonlinear Equations CISE3: Numercal Methods Topc : Soluton o Nonlnear Equatons Dr. Amar Khoukh Term Read Chapters 5 and 6 o the tetbook CISE3_Topc c Khoukh_ Lecture 5 Soluton o Nonlnear Equatons Root ndng Problems Dentons

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

A MODIFIED NEWTON METHOD FOR SOLVING NON-LINEAR ALGEBRAIC EQUATIONS

A MODIFIED NEWTON METHOD FOR SOLVING NON-LINEAR ALGEBRAIC EQUATIONS 38 Journal of Marne Scence and Technology, Vol. 7, No. 3, pp. 38-47 (9) A MODIFIED NEWTON METHOD FOR SOLVING NON-LINEAR ALGEBRAIC EQUATIONS Satya N. Atlur*, Chen-Shan Lu**, and Chung-Lun Kuo*** Key words:

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Integral Transforms and Dual Integral Equations to Solve Heat Equation with Mixed Conditions

Integral Transforms and Dual Integral Equations to Solve Heat Equation with Mixed Conditions Int J Open Probles Copt Math, Vol 7, No 4, Deceber 214 ISSN 1998-6262; Copyrght ICSS Publcaton, 214 www-csrsorg Integral Transfors and Dual Integral Equatons to Solve Heat Equaton wth Mxed Condtons Naser

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

FUZZY TOPOLOGICAL DIGITAL SPACE OF FLAT ELECTROENCEPHALOGRAPHY DURING EPILEPTIC SEIZURES

FUZZY TOPOLOGICAL DIGITAL SPACE OF FLAT ELECTROENCEPHALOGRAPHY DURING EPILEPTIC SEIZURES Journal of Mathematcs and Statstcs 9 (3): 180-185, 013 ISSN: 1549-3644 013 Scence Publcatons do:10.3844/jmssp.013.180.185 Publshed Onlne 9 (3) 013 (http://www.thescpub.com/jmss.toc) FUY TOPOLOGICAL DIGITAL

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros Appled Mathematcal Scences, Vol. 5, 2011, no. 75, 3693-3706 On the Interval Zoro Symmetrc Sngle-step Procedure for Smultaneous Fndng of Polynomal Zeros S. F. M. Rusl, M. Mons, M. A. Hassan and W. J. Leong

More information

Newton s Method for One - Dimensional Optimization - Theory

Newton s Method for One - Dimensional Optimization - Theory Numercal Methods Newton s Method for One - Dmensonal Optmzaton - Theory For more detals on ths topc Go to Clck on Keyword Clck on Newton s Method for One- Dmensonal Optmzaton You are free to Share to copy,

More information

Existence results for a fourth order multipoint boundary value problem at resonance

Existence results for a fourth order multipoint boundary value problem at resonance Avalable onlne at www.scencedrect.com ScenceDrect Journal of the Ngeran Mathematcal Socety xx (xxxx) xxx xxx www.elsever.com/locate/jnnms Exstence results for a fourth order multpont boundary value problem

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

New numerical scheme for solving Troesch s Problem

New numerical scheme for solving Troesch s Problem Mathematcal Theory and Modelng ISSN 4-584 (Paper) ISSN 5-5 (Onlne) Vol4 No 4 wwwsteorg Abstract New numercal scheme for solvng Troesch s Problem Abdelmajd El hajaj * Khald Hlal El ghordaf Jalla and El

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

Maejo International Journal of Science and Technology

Maejo International Journal of Science and Technology Maejo Int. J. Sc. Technol. () - Full Paper Maejo Internatonal Journal of Scence and Technology ISSN - Avalable onlne at www.mjst.mju.ac.th Fourth-order method for sngularly perturbed sngular boundary value

More information

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation. 3 Interpolaton {( y } Gven:,,,,,, [ ] Fnd: y for some Mn, Ma Polynomal Appromaton Theorem (Weerstrass Appromaton Theorem --- estence ε [ ab] f( P( , then there ests a polynomal

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Neumann Asymptotic Eigenvalues of Sturm-liouville Problem with Three Turning Points

Neumann Asymptotic Eigenvalues of Sturm-liouville Problem with Three Turning Points Australan Journal of Basc and Appled Scences 5(5): 89-96 ISSN 99-878 Neumann Asymptotc Egenalues of Sturm-loulle Problem wth Three Turnng Ponts E.A.Sazgar Department of Mathematcs Yerean state Unersty

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department gerry@pdx.edu Overvew Techncal topcs Basc Concepts Statonary

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

1. Statement of the problem

1. Statement of the problem Volue 14, 010 15 ON THE ITERATIVE SOUTION OF A SYSTEM OF DISCRETE TIMOSHENKO EQUATIONS Peradze J. and Tsklaur Z. I. Javakhshvl Tbls State Uversty,, Uversty St., Tbls 0186, Georga Georgan Techcal Uversty,

More information

ELE B7 Power Systems Engineering. Power Flow- Introduction

ELE B7 Power Systems Engineering. Power Flow- Introduction ELE B7 Power Systems Engneerng Power Flow- Introducton Introducton to Load Flow Analyss The power flow s the backbone of the power system operaton, analyss and desgn. It s necessary for plannng, operaton,

More information

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method Appled Mathematcs, 6, 7, 5-4 Publshed Onlne Jul 6 n ScRes. http://www.scrp.org/journal/am http://.do.org/.436/am.6.77 umercal Solutons of a Generalzed th Order Boundar Value Problems Usng Power Seres Approxmaton

More information

Quadratic Bezier Homotopy Function for Solving System of Polynomial Equations

Quadratic Bezier Homotopy Function for Solving System of Polynomial Equations MATEMATIKA, 2013, Volume 29, Number 2, 159 171 c Department of Mathematcal Scences, UTM Quadratc Bezer Homotopy Functon for Solvng System of Polynomal Equatons 1 Hafzudn Mohamad Nor, 2 Ahmad Izan Md. Ismal

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

Modified Mass Matrices and Positivity Preservation for Hyperbolic and Parabolic PDEs

Modified Mass Matrices and Positivity Preservation for Hyperbolic and Parabolic PDEs COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2000; 00:6 Prepared usng cnmauth.cls [Verson: 2000/03/22 v.0] Modfed Mass Matrces and Postvty Preservaton for Hyperbolc and

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Binomial transforms of the modified k-fibonacci-like sequence

Binomial transforms of the modified k-fibonacci-like sequence Internatonal Journal of Mathematcs and Computer Scence, 14(2019, no. 1, 47 59 M CS Bnomal transforms of the modfed k-fbonacc-lke sequence Youngwoo Kwon Department of mathematcs Korea Unversty Seoul, Republc

More information

Least squares cubic splines without B-splines S.K. Lucas

Least squares cubic splines without B-splines S.K. Lucas Least squares cubc splnes wthout B-splnes S.K. Lucas School of Mathematcs and Statstcs, Unversty of South Australa, Mawson Lakes SA 595 e-mal: stephen.lucas@unsa.edu.au Submtted to the Gazette of the Australan

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

A Fast Computer Aided Design Method for Filters

A Fast Computer Aided Design Method for Filters 2017 Asa-Pacfc Engneerng and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 A Fast Computer Aded Desgn Method for Flters Gang L ABSTRACT *Ths paper presents a fast computer aded desgn method

More information

Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transportation Problems

Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transportation Problems Internatonal Journal of Innovatve Research n Advanced Engneerng (IJIRAE) ISSN: 349-63 Volume Issue 6 (July 04) http://rae.com Heurstc Algorm for Fndng Senstvty Analyss n Interval Sold Transportaton Problems

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

SHIFTED JACOBI COLLOCATION METHOD BASED ON OPERATIONAL MATRIX FOR SOLVING THE SYSTEMS OF FREDHOLM AND VOLTERRA INTEGRAL EQUATIONS

SHIFTED JACOBI COLLOCATION METHOD BASED ON OPERATIONAL MATRIX FOR SOLVING THE SYSTEMS OF FREDHOLM AND VOLTERRA INTEGRAL EQUATIONS Mathematcal and Computatonal Applcatons, Vol., o., pp. 76-93, 5 http://d.do.org/.9/mca-5-7 SHIFED JACOBI COLLOCAIO MEHOD BASED O OPERAIOAL MARIX FOR SOLVIG HE SYSEMS OF FREDHOLM AD VOLERRA IEGRAL EQUAIOS

More information

IV. Performance Optimization

IV. Performance Optimization IV. Performance Optmzaton A. Steepest descent algorthm defnton how to set up bounds on learnng rate mnmzaton n a lne (varyng learnng rate) momentum learnng examples B. Newton s method defnton Gauss-Newton

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Lecture 16 Statistical Analysis in Biomaterials Research (Part II) 3.051J/0.340J 1 Lecture 16 Statstcal Analyss n Bomaterals Research (Part II) C. F Dstrbuton Allows comparson of varablty of behavor between populatons usng test of hypothess: σ x = σ x amed for Brtsh statstcan

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

CHAPTER 4d. ROOTS OF EQUATIONS

CHAPTER 4d. ROOTS OF EQUATIONS CHAPTER 4d. ROOTS OF EQUATIONS A. J. Clark School o Engneerng Department o Cvl and Envronmental Engneerng by Dr. Ibrahm A. Assakka Sprng 00 ENCE 03 - Computaton Methods n Cvl Engneerng II Department o

More information

Nonlinear Overlapping Domain Decomposition Methods

Nonlinear Overlapping Domain Decomposition Methods Nonlnear Overlappng Doman Decomposton Methods Xao-Chuan Ca 1 Department of Computer Scence, Unversty of Colorado at Boulder, Boulder, CO 80309, ca@cs.colorado.edu Summary. We dscuss some overlappng doman

More information

Sampling Theory MODULE V LECTURE - 17 RATIO AND PRODUCT METHODS OF ESTIMATION

Sampling Theory MODULE V LECTURE - 17 RATIO AND PRODUCT METHODS OF ESTIMATION Samplng Theory MODULE V LECTURE - 7 RATIO AND PRODUCT METHODS OF ESTIMATION DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOG KANPUR Propertes of separate rato estmator:

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant Summary wth Eamples or Root ndng Methods -Bsecton -Newton Raphson -Secant Nonlnear Equaton Solvers Bracketng Graphcal Open Methods Bsecton False Poston (Regula-Fals) Newton Raphson Secant All Iteratve

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information