Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline

Size: px
Start display at page:

Download "Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline"

Transcription

1 Outlne Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Huzhen Yu Dept. Computer Scence, Unv. of Helsnk Probablstc Models, Sprng, 200 Notces: I corrected a number of errors/typos n the sldes of Lec.. Ths affected n partcular sldes 5, 6, 32, 34, 36. There may be other correctons after today s lecture. Please check the onlne verson of the sldes; I wll put an update sgn besde the lnk. Please do not hestate to contact me f you have any questons before the exam. Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb. 23 / 20 Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Outlne Our Model and Data Let = { v, v V } be a collecton of dscrete random varables. G: a DAG on V. Our model for : the set of all dstrbutons P( ) that factorze recursvely accordng to G. The true, unknown dstrbuton of : Q, not necessarly n our model. Maxmum lkelhood (ML) estmaton: Data: {x, x 2,..., x n }, n observatons ndependently generated accordng to Q, (.e., a random sample of sze n). The emprcal dstrbuton Q( ): Q( = x) s the observed frequency of the confguraton x n the data. P ML : the dstrbuton n our model that maxmzes the lkelhood functon based on the data, ny ny Y L(P) = P( = x ) = p`xv xpa(v). = = (For smplcty, we do not use the θ notaton for parameters here.) Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20

2 Relaton between the ML Estmate, the emprcal and the true dstrbutons The relaton between P ML, Q and Q : Q* (unknown) P ML Q (emprcal) { P() : P factorzes recursvely accordng to G } Among all P n our model, P ML s the closest dstrbuton to Q n terms of the KL-dvergence KL(q, p). (q s the PMF of Q.) (See dscussons n Lec. 3 and Problem 3 of Exercse 2.) Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Expresson of the ML Estmate The ML estmate P ML s the dstrbuton gven by p ML (x) = Y p ML (x v x pa(v) ), where the component condtonal dstrbutons are defned by p ML (x v x pa(v) ) = Q( v = x v pa(v) = x pa(v) ) = n(xv, x pa(v)), () n(x pa(v) ) and n the last expresson, n(x pa(v) ): the counts for the confguraton x pa(v) n the data; n(x v, x pa(v) ): the counts for the confguraton (x v, x pa(v) ) n the data. The maxmzed log lkelhood can be expressed as l(p ML ) = n E Qˆ ln p ML ( ) = n E Q ln q( v pa(v) ), (2) where E Q denotes expectaton wth respect to the dstrbuton Q. (Eqs. ()-(2) can be derved usng the nformaton nequalty; see sldes 8-9 for detals.) Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Outlne Learnng a Rooted Tree Problem: Gven the data as descrbed earler, fnd a rooted tree G whch maxmzes the profle log lkelhood l p(g): l p(g) def = l(g, PG ML ) = max l(g, P). P P(G) Here P(G) s the set of all dstrbutons that factorze recursvely accordng to G. Such a tree s also called a Chow-Lu tree, and can be found by the Chow-Lu tree algorthm (Chow and Lu, 968). The algorthm can be generalzed to solve smlar types of problems (we wll show one). Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20

3 Recall Mutual Informaton and Condtonal Mutual Informaton Let, Y, Z be dscrete random varables wth jont dstrbuton P. The mutual nformaton between and Y s defned as» p(, Y ) I( ; Y ) = E ln, p( )p(y ) and equvalently, I( ; Y ) = x,y «p(x, y) p(x, y) ln. p(x)p(y) The condtonal mutual nformaton between and Y gven Z s defned as» p(, Y Z) I( ; Y Z) = E ln, p( Z)p(Y Z) and equvalently, I( ; Y Z) = z By the nformaton nequalty, p(z) x,y «p(x, y z) p(x, y z) ln. p(x z)p(y z) I( ; Y ) 0, and I( ; Y ) = 0 ff. Y ; I( ; Y Z) 0, and I( ; Y Z) = 0 ff. Y Z. Dervng the We start wth the profle log lkelhood: by Eq. (2), l p(g) = n E Q ln q( v pag (v)). Here pa G (v) s the parent of v n the rooted tree G. Rewrte l p(g) n terms of the mutual nformaton I Q ( v ; pag (v)), v V (w.r.t. the dstrbuton Q): h» q(v pag (v)) q( pag (v)) q( v ) E Q ln q( v pag (v)) = E Q ln q( v ) q( pag (v)) q(v, pag (v)) = E Q + E Qˆ ln q(v ) q( v ) q( pag (v)) hence = I Q ( v ; pag (v)) + E Qˆ ln q(v ) ; n lp(g) = I Q ( v ; pag (v)) + E Qˆ ln q(v ). (3) Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Dervng the In the last equaton, n lp(g) = I Q ( v ; pag (v)) + E Qˆ ln q(v ), the second term does not dependent on G and therefore can be left out when maxmzng l p(g) over G; the mutual nformaton s symmetrc: I Q ( v ; pag (v)) = I Q ( pag (v); v ). Therefore, max l p(g) max G {rooted trees} G {undrected trees} v G u where the summaton P v G u s over all edges of G. I Q ( v ; u), (4) () Compute all parwse mutual nformaton q(v, u) I Q ( v ; u) = E Q, v, u V. q( v )q( u) (2) Fnd a maxmum spannng tree of the undrected, fully connected graph on V wth edge weght I Q ( v ; u) between node v and u. Ths can be done by Kruskal s algorthm: repeatedly select an edge wth maxmum weght that does not create a cycle. (3) Make any node of the spannng tree as the root and drect edges away from t. The result s a rooted tree G that maxmzes l p(g). Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb. 23 / 20 Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20

4 Generalzaton to Learnng Tree Augmented Nave Bayes A nave Bayes classfer wth class varable C and feature varables F : C F F Fm 2 Tree augmented nave Bayes classfers (TAN): Nave Bayes neglects the dependence between feature varables. Ths can be troublesome for rare classes that have characterstc combnatons of features. Each feature varable has at most one other feature varable as ts parent besdes the class varable. In other words, the subgraph nduced by the feature varables s a rooted tree or forest. Consder the problem of learnng a TAN G wth maxmum lkelhood. Notaton: v, v V : feature varables. Learnng TAN b G: the subgraph of G nduced by the feature varables v, v V. pa bg (v): the parent of v n b G,.e., the parent of v n G besdes C. Note that a TAN G s unquely determned by ts assocated b G. Apply the Chow-Lu tree algorthm to learnng TAN: Replace all parwse mutual nformaton by the condtonal mutual nformaton between all pars of feature varables gven the class varable: q(v, u C) I Q ( v ; u C) = E Q, v, u V. q( v C)q( u C) The output of the algorthm s the subgraph b G whose assocated TAN G maxmzes the profle log lkelhood among all TANs. Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Dervng the for TAN Smlarly to learnng a rooted tree, we start wth the profle log lkelhood: by Eq. (2), l p( G) b = l p(g) = n E Q ln q( v pa bg (v), C) + n E Qˆ ln q(c). (5) We rewrte l p( b G) n terms of the condtonal mutual nformaton I Q`v ; pa bg (v) C between v and pa bg (v) gven C for v V : E Qˆ ln q(v pa bg (v), C) = E Q "ln hence = E Q "ln!# q` v pa bg (v), C q` pa bg (v) C q` v C q` v C q` pa bg (v) C!# q` v, pa bg (v) C + E Qˆ ln q(v C) q` v C q` pa bg (v) C = I Q`v ; pa bg (v) C + E Qˆ ln q(v C) ; n lp( G) b = I Q`v ; pa bg (v) C + E Qˆ ln q(v C) +E Qˆ ln q(c). (6) Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Dervng the for TAN In the last equaton, n lp( G) b = I Q`v ; pa bg (v) C + E Qˆ ln q(v C) + E Qˆ ln q(c), the second and thrd terms do not dependent on b G and therefore can be left out when maxmzng l p( b G) over b G; the condtonal mutual nformaton s symmetrc: I Q ( v ; pa bg (v) C) = I Q ( pa bg (v); v C); f b G s a forest, addng edges to make t a tree wll not decrease l p( b G). Therefore, max l p( G) b max bg {rooted trees} bg {undrected trees} v b G u I Q ( v ; u C), (7) where the summaton P s over all edges of G b. G v b u Ths verfes the clam n slde 4, that we can apply the Chow-Lu tree algorthm wth I Q ( v ; u C) replacng I Q ( v ; u) for all v, u V, to obtan the desrable G. b Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20

5 Dscusson Further Readngs For TAN:. Fnn V. Jensen and Thomas D. Nelsen. Bayesan Networks and Decson Graphs. Sprnger, Chap. 8. Rooted trees and TANs are perfect DAGs: G m = G. So the models are equvalent to those assocated wth the undrected graphs G, and t s not surprsng that the structure learnng algorthms we derved can dsregard edge drectons. For learnng a sngly connected network (under certan assumptons) wth the Chow-Lu tree algorthm, see Pearl s 988 book. An old revew artcle dscussng the deas and steps nvolved n developng a probablstc expert system, usng the example CHILD network: 2. Davd J. Spegelhalter et al. Bayesan analyss n expert systems, Statstcal Scence, Vol. 8, No. 3, pp , 993. (It ncludes Bayesan nference, whch we dd not talk about.) You may also fnd the related materals n the book by Cowell et al A recent book by Koller and Fredman, Probablstc Graphcal Models, 2009 has many materals on both approxmate and exact nference algorthms. Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Dervaton of Eqs. ()-(2) The lkelhood and log lkelhood functons are ny Y n L(P) = p`xv xpa(v), l(p) = ln p`xv xpa(v). = = The varables n the maxmzaton of l(p) are the condtonal dstrbutons p(x v x pa(v) ) of v for each confguraton x pa(v) of v s parents, for all v V. We next express l(p) n terms of these varables (colored n blue below) By exchangng the order of summatons n the expresson of l(p), l(p) = n ln p`xv x pa(v) = n(x v, x pa(v) ) ln p`x v x pa(v). = x v x pa(v) where n(x v, x pa(v) ) s the counts for the confguraton (x v, x pa(v) ) n the data. Under our model, there are no constrants between the component condtonal dstrbutons we can choose. So the maxmzaton problem max P l(p) decomposes nto separate maxmzaton problems, one for each v and ts parent confguraton x pa(v) : max p( x pa(v) ) x v n(x v, x pa(v) ) ln p`x v x pa(v). (8) (x pa(v) s fxed n the above subproblem.) Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20 Dervaton of Eqs. ()-(2) The subproblem (8) s equvalent to n(x v, x pa(v)) max ln p`x v x pa(v), (9) p( x pa(v) ) n(x x v pa(v) ) where n(x pa(v) ) = P x v n(x v, x pa(v) ), and t s the counts of the parent confguraton x pa(v) n the data. By the nformaton nequalty (see Lec. 3), the maxmum of (9) s attaned at p(x v x pa(v) ) = n(xv, x pa(v)), x v, n(x pa(v) ) whch s the ML estmate p ML ( x pa(v) ) gven n Eq. (). The maxmzed log lkelhood thus equals l(p ML ) = n(x v, x pa(v) ) ln n(xv, x pa(v)) n(x x v pa(v) ) x pa(v) = n n(x v, x pa(v)) ln n(xv, x pa(v)) n n(x x pa(v) x v pa(v) ) = n q(x v, x pa(v) ) ln q(x v x pa(v) ) = n E Q ln q( v pa(v) ). x pa(v) x v (q s the PMF of Q.) Ths verfes Eq. (2). Huzhen Yu (U.H.) Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Feb / 20

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artfcal Intellgence Bayesan Networks Adapted from sldes by Tm Fnn and Mare desjardns. Some materal borrowed from Lse Getoor. 1 Outlne Bayesan networks Network structure Condtonal probablty tables Condtonal

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF 10-708: Probablstc Graphcal Models 10-708, Sprng 2014 8 : Learnng n Fully Observed Markov Networks Lecturer: Erc P. Xng Scrbes: Meng Song, L Zhou 1 Why We Need to Learn Undrected Graphcal Models In the

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machne Learnng - Lectures Lecture 1-2: Concept Learnng (M. Pantc Lecture 3-4: Decson Trees & CC Intro (M. Pantc Lecture 5-6: Artfcal Neural Networks (S.Zaferou Lecture 7-8: Instance ased Learnng

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

Expectation propagation

Expectation propagation Expectaton propagaton Lloyd Ellott May 17, 2011 Suppose p(x) s a pdf and we have a factorzaton p(x) = 1 Z n f (x). (1) =1 Expectaton propagaton s an nference algorthm desgned to approxmate the factors

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Gaussian process classification: a message-passing viewpoint

Gaussian process classification: a message-passing viewpoint Gaussan process classfcaton: a message-passng vewpont Flpe Rodrgues fmpr@de.uc.pt November 014 Abstract The goal of ths short paper s to provde a message-passng vewpont of the Expectaton Propagaton EP

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

Gaussian Conditional Random Field Network for Semantic Segmentation - Supplementary Material

Gaussian Conditional Random Field Network for Semantic Segmentation - Supplementary Material Gaussan Condtonal Random Feld Networ for Semantc Segmentaton - Supplementary Materal Ravtea Vemulapall, Oncel Tuzel *, Mng-Yu Lu *, and Rama Chellappa Center for Automaton Research, UMIACS, Unversty of

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors Stat60: Bayesan Modelng and Inference Lecture Date: February, 00 Reference Prors Lecturer: Mchael I. Jordan Scrbe: Steven Troxler and Wayne Lee In ths lecture, we assume that θ R; n hgher-dmensons, reference

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin Fnte Mxture Models and Expectaton Maxmzaton Most sldes are from: Dr. Maro Fgueredo, Dr. Anl Jan and Dr. Rong Jn Recall: The Supervsed Learnng Problem Gven a set of n samples X {(x, y )},,,n Chapter 3 of

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Goodness of fit and Wilks theorem

Goodness of fit and Wilks theorem DRAFT 0.0 Glen Cowan 3 June, 2013 Goodness of ft and Wlks theorem Suppose we model data y wth a lkelhood L(µ) that depends on a set of N parameters µ = (µ 1,...,µ N ). Defne the statstc t µ ln L(µ) L(ˆµ),

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Learning from Data 1 Naive Bayes

Learning from Data 1 Naive Bayes Learnng from Data 1 Nave Bayes Davd Barber dbarber@anc.ed.ac.uk course page : http://anc.ed.ac.uk/ dbarber/lfd1/lfd1.html c Davd Barber 2001, 2002 1 Learnng from Data 1 : c Davd Barber 2001,2002 2 1 Why

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Representing arbitrary probability distributions Inference. Exact inference; Approximate inference

Representing arbitrary probability distributions Inference. Exact inference; Approximate inference Bayesan Learnng So far What does t mean to be Bayesan? Naïve Bayes Independence assumptons EM Algorthm Learnng wth hdden varables Today: Representng arbtrary probablty dstrbutons Inference Exact nference;

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Clustering gene expression data & the EM algorithm

Clustering gene expression data & the EM algorithm CG, Fall 2011-12 Clusterng gene expresson data & the EM algorthm CG 08 Ron Shamr 1 How Gene Expresson Data Looks Entres of the Raw Data matrx: Rato values Absolute values Row = gene s expresson pattern

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Probabilistic Classification: Bayes Classifiers. Lecture 6:

Probabilistic Classification: Bayes Classifiers. Lecture 6: Probablstc Classfcaton: Bayes Classfers Lecture : Classfcaton Models Sam Rowes January, Generatve model: p(x, y) = p(y)p(x y). p(y) are called class prors. p(x y) are called class condtonal feature dstrbutons.

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

The Basic Idea of EM

The Basic Idea of EM The Basc Idea of EM Janxn Wu LAMDA Group Natonal Key Lab for Novel Software Technology Nanjng Unversty, Chna wujx2001@gmal.com June 7, 2017 Contents 1 Introducton 1 2 GMM: A workng example 2 2.1 Gaussan

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X The EM Algorthm (Dempster, Lard, Rubn 1977 The mssng data or ncomplete data settng: An Observed Data Lkelhood (ODL that s a mxture or ntegral of Complete Data Lkelhoods (CDL. (1a ODL(;Y = [Y;] = [Y,][

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

1 The Mistake Bound Model

1 The Mistake Bound Model 5-850: Advanced Algorthms CMU, Sprng 07 Lecture #: Onlne Learnng and Multplcatve Weghts February 7, 07 Lecturer: Anupam Gupta Scrbe: Bryan Lee,Albert Gu, Eugene Cho he Mstake Bound Model Suppose there

More information

CIS 519/419 Appled Machne Learnng www.seas.upenn.edu/~cs519 Dan Roth danroth@seas.upenn.edu http://www.cs.upenn.edu/~danroth/ 461C, 3401 Walnut Sldes were created by Dan Roth (for CIS519/419 at Penn or

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

The big picture. Outline

The big picture. Outline The bg pcture Vncent Claveau IRISA - CNRS, sldes from E. Kjak INSA Rennes Notatons classes: C = {ω = 1,.., C} tranng set S of sze m, composed of m ponts (x, ω ) per class ω representaton space: R d (=

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan. THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY Wllam A. Pearlman 2002 References: S. Armoto - IEEE Trans. Inform. Thy., Jan. 1972 R. Blahut - IEEE Trans. Inform. Thy., July 1972 Recall

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

9 : Learning Partially Observed GM : EM Algorithm

9 : Learning Partially Observed GM : EM Algorithm 10-708: Probablstc Graphcal Models 10-708, Sprng 2012 9 : Learnng Partally Observed GM : EM Algorthm Lecturer: Erc P. Xng Scrbes: Mrnmaya Sachan, Phan Gadde, Vswanathan Srpradha 1 Introducton So far n

More information

Clustering with Gaussian Mixtures

Clustering with Gaussian Mixtures Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm, or to modfy them to ft your

More information

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing CSC321 Tutoral 9: Revew of Boltzmann machnes and smulated annealng (Sldes based on Lecture 16-18 and selected readngs) Yue L Emal: yuel@cs.toronto.edu Wed 11-12 March 19 Fr 10-11 March 21 Outlne Boltzmann

More information

Stat 543 Exam 2 Spring 2016

Stat 543 Exam 2 Spring 2016 Stat 543 Exam 2 Sprng 206 I have nether gven nor receved unauthorzed assstance on ths exam. Name Sgned Date Name Prnted Ths Exam conssts of questons. Do at least 0 of the parts of the man exam. I wll score

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

A New Evolutionary Computation Based Approach for Learning Bayesian Network

A New Evolutionary Computation Based Approach for Learning Bayesian Network Avalable onlne at www.scencedrect.com Proceda Engneerng 15 (2011) 4026 4030 Advanced n Control Engneerng and Informaton Scence A New Evolutonary Computaton Based Approach for Learnng Bayesan Network Yungang

More information

Computing MLE Bias Empirically

Computing MLE Bias Empirically Computng MLE Bas Emprcally Kar Wa Lm Australan atonal Unversty January 3, 27 Abstract Ths note studes the bas arses from the MLE estmate of the rate parameter and the mean parameter of an exponental dstrbuton.

More information