Structured quantum search in NP-complete problems using the cumulative density of states

Size: px
Start display at page:

Download "Structured quantum search in NP-complete problems using the cumulative density of states"

Transcription

1 Structured quantum search n NP-complete problems usng the cumulatve densty of states Keth Kastella and Rchard Freelng Keth.Kastella@Verdan.com Freelng@ERI-Int.com Verdan Ann Arbor Research and Development Center P.O. Box 348, Ann Arbor, I (December 3, ) In the multtarget Grover algorthm, we are gven an unstructured N -element lst of objects S contanng a T -element subset τ and functon f, called an oracle, such that f ( S ) = f S τ, otherwse f ( ) =. By usng quantum parallelsm, an element of S τ can be retreved n O( N / T) steps, compared to ON ( / T) for any classcal algorthm. In ths paper, we show that n combnatoral optmzaton problems wth N = 4, the densty of states can be used n conjuncton wth the multtarget Grover algorthm to construct a sequence of oracles that structure the search so that the optmum state s obtaned wth certanty n O (log N) steps. PACS numbers: 3.67, 89.7, 89.8 The last decade has seen great progress n the development of quantum algorthms that explot quantum parallelsm to solve problems much faster than classcal algorthms. Perhaps the best known of these are the Shor factorzaton and the Grover search algorthms. Inspred by these results, a number of researchers have explored applcaton of these methods to NP-complete problems such as decson and combnatoral search. Stmulated by the realzaton that for a completely unstructured problem, the Grover algorthm s optmal, most of ths work has centered on the explotaton of problem structure combned wth the Grover search 3,4. Chen 5 et al assume that a sequence of auxlary oracles can be constructed that mark states that agree wth the target state n the frst j bts. Then they use a recursve argument to show that O (log N) steps are requred to fnd the target state. Ths paper presents an algorthm that a) uses the densty of states to structure quantum search effcently n a combnatoral optmzaton problem and b) exhbts non-recursve constructon of the untary transformatons requred to mplement t. In statstcal physcs, the densty of states characterzes the number of contnuum or dscrete states as a functon of the system energy. In combnatoral optmzaton, ths generalzes naturally to the number of confguratons as a functon of a cost parameter to be optmzed. For a system wth N states K S N labeled S, S,,, the cost of state s the realvalued functon C ( S j ). Defnng = C S c, the cumulatve densty of Q c { ( ) } states s defned here as ν ( j c ) = Qc elements of Q c. Whle our goal s to fnd the unque state that mnmzes C ( S), the densty of states provdes nformaton about the dstrbuton of costs but not about the cost of ndvdual states. Ths s the type of nformaton that s lkely to be avalable to help structure quantum optmzaton problems. Whle not rgorously establshed, many combnatoral optmzaton problems are thought to be selfaveragng 6. Ths means that many propertes of such problems converge to sample ndependent values n the lmt of large N. For example, the travelng salesman problem s to fnd the shortest closed connected path connectng ctes, gven ther par-wse dstance matrx. In ths case there are N = ( )!/ unque tours correspondng to states of the system. Nevertheless, the optmal tour dstance, the system entropy and related quanttes can be obtaned analytcally n the large- N lmt 7. Our algorthm bulds on the Grover search algorthm. To brefly revew the Grover algorthm and defne notaton, we are gven an N -element lst of objects S, =, K,N. Wthn the lst, there s a T -element subset τ and functon f, called an, the number of oracle, such the f ( ) = f τ, otherwse S f ( ) =. The elements of τ are referred to as S S

2 good or target states. The remanng elements are bad. Let P denote the operator wth matrx elements S P =. The operator U ( P / N ) exp( πf ), referred to as the Grover terate, s untary. The untarty of U follows from the observaton that n the bass, P s an N N matrx of ones wth P = NP so UU = ( P/ N ) = (here U s the Hermtan conjugate). In the Grover algorthm, the system s prepared n the state = S and U s appled repeatedly. N In most applcatons, T << N, and t turns out π N that after m teratons of U the 4 T ampltude of the system s nearly n the T S good states and very small n the bad states. In the usual applcaton of the Grover algorthm, the system state s now measured. The outcome of the measurement has nearly unt probablty to be n a good state, so that n ths way, one of the good states s located, wth some small probablty of error. Whle the orgnal Grover algorthm contans a small probablty of error, there have been several varants developed that can provde a good state wth certanty 8,9,. One nterestng such case occurs when T = N / 4, n whch case, the soluton s found wth certanty n only a sngle teraton (.e., one applcaton of U ). The mportant pont for our optmzaton applcaton s that when T = N / 4, one applcaton of U places all of the system ampltude unformly n the target states whle the bad state ampltudes vansh. The other mportant buldng block n the algorthm presented below s the proof that a combnaton of one- and two-bt quantum gates s unversal n the sense that any untary operator on n - Cumulatve Densty of States nu(c) - deal densty realzed densty c s - c Fgure Cumulatve densty of states for a model optmzaton problem wth Raylegh-dstrbuted costs. The deal densty s obtaned from the cumulatve probablty dstrbuton for the costs. The realzed densty s computed from the costs obtaned n a sngle 64-element problem nstances. The parttonng costs c, =,, 3are used to construct a nested sequence of Hlbert spaces that structure the quantum search process.

3 qubts can be constructed usng a fnte number of two-qubt gates. Thus, for the algorthm to be effcently mplementable, t suffces to show that t s emboded as a untary transformaton. Then the procedure of Reck 3 et al. can be used to obtan an explct decomposton of the transformaton. Note that wth perfect knowledge of the densty of states, we also have the cost of the optmal state. Ths could n theory be used to construct an optmzaton algorthm by defnng the oracle to be unty only on the optmal state. However, ths would not be a very effcent algorthm, snce t would requre O ( N ) teratons. As shown below, we can obtan O(log ( N )) complexty by extractng more nformaton from the densty of states. To obtan ths mproved scalng, we use the cumulatve densty of states n two ways. Frst, t s used to construct a sequence of oracles that mark a nested sequence of good states contanng the optmal state. Second, the densty of states enables the constructon of a sequence of projecton operators that decouple the prevous bad subspaces n subsequent processng. In ths way the algorthm concentrates all of the ampltude on a progressvely smaller porton of the Hlbert space. Once the ampltude has been forced to vansh on a bad subspace, t s held at zero durng the remander of the process. The nput assumptons on ths optmzaton algorthm are as follows. Let a system have N = 4 states labeled S, S, K, S N. A real-valued cost functon C(S) s defned on the states. Our goal s to fnd the unque state that mnmzes C (S). In addton to the cost, we post that the densty of states ν (c) for ths system s also provded,.e., for any cost c n the range of C(S) we can compute number of states ν (c) such that CS ( ) c. The frst step of the algorthm s to use construct a cost sequence ν ( c ) = 4 f = I f ( S) Θ( C(S) ) c c, =, =, K, Θ ( x) ν (c) where the satsfes Θ =, x ;, otherwse. f Wrtten as a matrx, f s N N wth 4 ones on ts dagonal and zeros elsewhere. Recallng that S P =, defne, f = f D P = P, + 4 R V = f ) = exp(π, f D R f + ( f ), P = f D f VV and The functons = f Pf Pf = 4 P + ( f ) =. Intalze the = S to =,K, such that. Then defne the sequence of oracles () are a set of real-valued lnear operators on the Hlbert space H wth bass. = f Pf, () (3) (4) (5) The V s are untary, whch can be seen as follows: and system n the superposton state, so j ( S ) Fgure Intermedate and fnal results for the ampltude dstrbuted n structured quantum search usng the densty of states. 3

4 and defne = V, =, K,. Then measurement of the state wll produce the optmal state wth unt probablty. The optmalty of follows from the followng observatons. Denote the range of by R H has dmenson T. Its f - complment V - R - \ R -. On R, D s the usual Grover terate, R ( ) 4 actng on the number T = ν c = of good states. The rato of good states to non-nvarant bad states s T / T = / 4, so that the Grover terate provdes certan convergence after a sngle teraton. The net result s that V moves R - R certanty, whle the ampltude n R - s held fxed at. At the concluson of steps, all of the ampltude s concentrated n the sngle optmal state. Fgures and show ths algorthm appled to a test problem wth N = 64 states, ndexed =, K, 64. The costs are a random draw from a mean Raylegh dstrbuton, pc ( ) = cexp( c / ). Fgure shows a realzaton of the cumulatve densty of states ν () c. For comparson, we show the deal cumulatve densty of states ν deal () c N c xdxex p( x /) )) parttonng costs c determned from ν () c that are used to defne the sequence of oracles (Eq. ()). Fgure shows how the modulus of evolves for the problem nstance of Fgure. Note that the number of computatonal bass states n wth non-vanshng ampltude s = H s nvarant under the probablty ampltude from to wth ( ( = N exp c /. Fgure also shows the reduced by a factor of 4 wth each step. The fnal ampltude s n the optmal state ( = 6 n ths nstance), as desred. In general applcatons the densty of states s unlkely to be known wth certanty. We have performed some anecdotal exploraton of the algorthm behavor when there s some error n the densty of states so that at each stage ( ) 4 ν c s only approxmately correct. Interestngly, n ths case the optmal soluton s stll obtaned wth hgh probablty, although certan convergence s lost. A lkely more vable approach when ( ) 4 ν s to use the approxmate parttonng c sequence of c s to generate nested subsets, and then use quantum countng 4 to provde the exact values of the ν ( ). To estmate ν ( ) to O () accuracy wll c requre a countng regster wth roughly bts. Once the ν ( c ) have been determned, we proceed as before wth a slght modfcaton to the terate, whch s requred to guarantee convergence when the rato of good states to bad states s no longer exactly ¼. As long as the rato s close to ¼, only or teratons are requred to provde assured convergence, and the complexty of the optmzaton process s stll only O(log N ). Each ν ( c ) s evaluated n a countng process that requres about O (log N) work wth a falure rate that can be ( ) made vanshngly small. The number of c O(log N) s held fxed at O(log N), so that the total complexty of the ( ) 3 countng process s O (log N). In summary, we have shown that for combnatoral optmzaton problem wth N = 4 confguratons and a known cumulatve densty of states, ths quantum search algorthm obtans the optmal confguraton n O(log N) steps wth unt probablty. Ths new quantum search methodology appears to have potental for wdespread applcatons n areas such as schedulng, bonformatcs, communcatons, and sgnal processng. ACKNOWLEDGEENTS The authors benefted from stmulatng dscusson wth K. Augustyn, I. arkov and C. Zalka. Ths work was supported by the Verdan Ann Arbor Research and Development Center and by the Ar Force Research Laboratory and Ar Force Offce of Scentfc Research under contract SPO9-96-D- 8. Shor P W, Polynomal-tme algorthms for prme factorzaton and dscrete logarthms on a quantum computer, SIA J. Comp., 6, No. 5, pp , Oct Grover L K, Quantum mechancs helps n searchng for a needle n a haystack, Phys. Rev. Lett. 79, (quant-ph/97633); From Schrodnger s equaton to the quantum search algorthm, Am. J. Phys. 69 (7) July, pp Cerf N J, Grover L K, and Wllams CP, Nested quantum search and NP-complete problems, quantph/98678 c 4

5 4 Hogg T, Hghly structured searches wth quantum computes, Phys. Rev. Lett. 8, (998) pp Chen G, and Dao Z, Exponentally fast quantum search algorthm, quant-ph/9 6 ezard, Pars G, and Vrasoro, Spn Glass Theory and Beyond, (World Scentfc, Sngapore 987) 7 ezard, and Pars G, A replca analyss of the travelng salesman problem, J. Physque 47, (986) Brassard G, Hoyer P, osca and Tapp A, Quantum ampltude amplfcaton and estmaton, quant-ph/555, () 9 Hoyer P, On arbtrary phases n quantum ampltude amplfcaton, Phys. Rev. A6, 534 (), (quant-ph/63) Long G L, Grover algorthm wth zero theoretcal falure rate, quant-ph/67 () Boyer, Brassard, G, Hoyer P and Tapp A, Tght bounds on quantum searchng, quantph/96534, (996) Barenco A, Bennett, C H, Cleve R, DVencenzo D P, argolus N, Shor P, Sleator T, Smoln J A and Wenfurter H, Elementary gates for quantum computaton, Phys. Rev. A 5, , 995 (quant-ph/9536) 3. Reck, A. Zelnger, H. J. Bernsten, P. Bertan, "Expermental realzaton of any dscrete untary operator," Phys. Rev. Lett. 73, 58 (994) 4 Brassard G, Hoyer P and Tapp A, Quantum countng, quant-ph/9858, (998) 5

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

arxiv:quant-ph/ Jul 2002

arxiv:quant-ph/ Jul 2002 Lnear optcs mplementaton of general two-photon proectve measurement Andrze Grudka* and Anton Wóck** Faculty of Physcs, Adam Mckewcz Unversty, arxv:quant-ph/ 9 Jul PXOWRZVNDR]QDRODQG Abstract We wll present

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

Quadratic speedup for unstructured search - Grover s Al-

Quadratic speedup for unstructured search - Grover s Al- Quadratc speedup for unstructured search - Grover s Al- CS 94- gorthm /8/07 Sprng 007 Lecture 11 001 Unstructured Search Here s the problem: You are gven a boolean functon f : {1,,} {0,1}, and are promsed

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008 1 Ph 19a/CS 19a Exercses Due: Wednesday 1 November 008.1 Whch state dd Alce make? Consder a game n whch Alce prepares one of two possble states: ether ρ 1 wth a pror probablty p 1, or ρ wth a pror probablty

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds.

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds. U.C. Berkeley CS273: Parallel and Dstrbuted Theory Lecture 1 Professor Satsh Rao August 26, 2010 Lecturer: Satsh Rao Last revsed September 2, 2010 Lecture 1 1 Course Outlne We wll cover a samplng of the

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

OPTIMAL COMBINATION OF FOURTH ORDER STATISTICS FOR NON-CIRCULAR SOURCE SEPARATION. Christophe De Luigi and Eric Moreau

OPTIMAL COMBINATION OF FOURTH ORDER STATISTICS FOR NON-CIRCULAR SOURCE SEPARATION. Christophe De Luigi and Eric Moreau OPTIMAL COMBINATION OF FOURTH ORDER STATISTICS FOR NON-CIRCULAR SOURCE SEPARATION Chrstophe De Lug and Erc Moreau Unversty of Toulon LSEET UMR CNRS 607 av. G. Pompdou BP56 F-8362 La Valette du Var Cedex

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Factoring Using Shor's Quantum Algorithm

Factoring Using Shor's Quantum Algorithm Factorng Usng Shor's uantum Algorthm Frank Rou Emertus Professor of Chemstry CSB SJU Ths tutoral presents a toy calculaton dealng wth quantum factorzaton usng Shor's algorthm. Before begnnng that task,

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Technical Note: A Simple Greedy Algorithm for Assortment Optimization in the Two-Level Nested Logit Model

Technical Note: A Simple Greedy Algorithm for Assortment Optimization in the Two-Level Nested Logit Model Techncal Note: A Smple Greedy Algorthm for Assortment Optmzaton n the Two-Level Nested Logt Model Guang L and Paat Rusmevchentong {guangl, rusmevc}@usc.edu September 12, 2012 Abstract We consder the assortment

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION 1 2 MULTIPLIERLESS FILTER DESIGN Realzaton of flters wthout full-fledged multplers Some sldes based on support materal by W. Wolf for hs book Modern VLSI Desgn, 3 rd edton. Partly based on followng papers:

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

Attacks on RSA The Rabin Cryptosystem Semantic Security of RSA Cryptology, Tuesday, February 27th, 2007 Nils Andersen. Complexity Theoretic Reduction

Attacks on RSA The Rabin Cryptosystem Semantic Security of RSA Cryptology, Tuesday, February 27th, 2007 Nils Andersen. Complexity Theoretic Reduction Attacks on RSA The Rabn Cryptosystem Semantc Securty of RSA Cryptology, Tuesday, February 27th, 2007 Nls Andersen Square Roots modulo n Complexty Theoretc Reducton Factorng Algorthms Pollard s p 1 Pollard

More information

Provable Security Signatures

Provable Security Signatures Provable Securty Sgnatures UCL - Louvan-la-Neuve Wednesday, July 10th, 2002 LIENS-CNRS Ecole normale supéreure Summary Introducton Sgnature FD PSS Forkng Lemma Generc Model Concluson Provable Securty -

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013 Stanford Unversty Graph Parttonng and Expanders Handout 3 Luca Trevsan May 8, 03 Lecture 3 In whch we analyze the power method to approxmate egenvalues and egenvectors, and we descrbe some more algorthmc

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Lecture 10. Reading: Notes and Brennan Chapter 5

Lecture 10. Reading: Notes and Brennan Chapter 5 Lecture tatstcal Mechancs and Densty of tates Concepts Readng: otes and Brennan Chapter 5 Georga Tech C 645 - Dr. Alan Doolttle C 645 - Dr. Alan Doolttle Georga Tech How do electrons and holes populate

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

arxiv:cs.cv/ Jun 2000

arxiv:cs.cv/ Jun 2000 Correlaton over Decomposed Sgnals: A Non-Lnear Approach to Fast and Effectve Sequences Comparson Lucano da Fontoura Costa arxv:cs.cv/0006040 28 Jun 2000 Cybernetc Vson Research Group IFSC Unversty of São

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information