Quantitative Genomics and Genetics BTRY 4830/6830; PBSB

Size: px
Start display at page:

Download "Quantitative Genomics and Genetics BTRY 4830/6830; PBSB"

Transcription

1 Quntttv Gnomcs n Gntcs BTRY 4830/6830; BSB Lctur8: Logstc rgrsson II Json Mzy jgm45@cornll.u Aprl 0, 208 (T 8:40-9:55

2 Announcmnts Grng (homworks n mtrm rojct wll b ssgn NEXT WEEK (!! Schul for th rst of th smstr (s nt sl

3 Schul Aprl 2 Gnom-W Assocton Stus (GWAS IX: Hplotyp tstng, ltrntv tsts Aprl 7 rojct Assgn Mnmum GWAS nlyss 3 Aprl 9 Avnc topcs I: M Mols Aprl 24 Avnc topcs II: Multpl rgrsson (pstss n multvrt rgrsson 4 Aprl 26 MAING LOCI: BAYESIAN ANALYSIS Bysn nfrnc I: nfrnc bscs n lnr mols My Bysn nfrnc II: MCMC lgorthms 5 My 3 EDIGREE / INBRED LINE ANALYSIS Bscs of lnkg nlyss / Inbr ln nlyss My 8 CLASSIC QUANTITATIVE GENETICS rojct Du Atv gntc vrnc n hrtblty 6

4 Rvw: Cs / Control hnotyps Whl lnr rgrsson my prov rsonbl mol for mny phnotyps, w r commonly ntrst n nlyzng phnotyps whr ths s NOT goo mol As n mpl, w r oftn n stutons whr w r ntrst n ntfyng cusl polymorphsms (loc tht contrbut to th rsk for vlopng ss,.g. hrt ss, bts, tc. In ths cs, th phnotyp w r msurng s oftn hs ss or os not hv ss or mor prcsly cs or control Rcll tht such phnotyps r proprts of msur nvuls n thrfor lmnts of smpl spc, such tht w cn fn rnom vrbl such s Y(cs n Y(control 0

5 Rvw: lnr vs. logstc Rcll tht for lnr rgrsson, th rgrsson functon ws ln n th rror trm ccount for th ffrnc btwn ch pont n th pct vlu (th lnr rgrsson ln, whch w ssum follow norml For logstc rgrsson, w us th logstc functon n th rror trm mks up th vlu to thr 0 or : Y Y X X Rcll n both of ths css w r plottng vrsus just X (bcus th pctur s sr to unrstn but th rl rgrsson (lnr or logstc s multpl rgrsson so th rl pctur s Y vs th X n X vrbls

6 Rvw: clcultng th componnts of n nvul I Rcll tht n nvul wth phnotyp Y s scrb by th followng quton: Y X Y (Y X Y,,,, To unrstn how n nvul wth phnotyp Y n gnotyp X brks own n ths quton, w n to consr th pct (prct! prt n th rror trm (w wll o ths sprtly

7 Rvw: clcultng th componnts of n nvul II For mpl, sy w hv n nvul tht hs gnotyp AA n phnotyp Y 0 W know X - n X - Sy w lso know tht for th populton, th tru prmtrs (whch w wll not know n prctc! W n to nfr thm! r: W cn thn clcult th X n th rror trm for : Y,,,, 0 0.2( 2.2( ( 2.2(

8 Rvw: clcultng th componnts of n nvul III For mpl, sy w hv n nvul tht hs gnotyp AA n phnotyp Y W know X - n X - Sy w lso know tht for th populton, th tru prmtrs (whch w wll not know n prctc! W n to nfr thm! r: W cn thn clcult th X n th rror trm for : Y,,,, 0.2( 2.2( ( 2.2(

9 0.2(02.2(0.2 X A A X k T j logstc( kx,, ( [t] T X [ W] 0. (76 2 (y ( 2 (, B r(b k (, B0.2 r(bkk k 0.2(2.2( (56 (56 0. rfor tks on of two vlus, whch s th rnc btwn, 0.9 (77 ( ( r(b ( r(b, ( k k ( ( ( r(b ( r(b (69 k k gnotyp 0.2 t n on or zro (s clss nots for grm. (DD 0.2(2.2(,, r(b r(bkk, (57 0.9,, B Bkk (57, 0. (78 Dth rror r(z brn(p (70 D Rcll tht trm s thr th ngtv of X(79 whn rnom vrbl hs Brnoull strbuton. Not tht 0ths r( brn(p X X fd > 0 ( fd > 0 (58 whn Y s on: mn( B,, B Y s zro n X 2 2 mn(, B by prmtrz sngl 2prmtr: T2(y ( [TW] ( (Y 0 X (7 r( brn(p X X (80 D 0 fd <0 0 (59 fd < (59,, Y X mn( B mn( B0, (Y X (Y (72 X(8 22,,B ,,, A logstc( XX,, XX (60 A logstc( (60 Aj,, (Y X (82,, vrbl wll tk th vlu 0.4 th probblty tht th rnom For A thantr strbuton populton, rcll tht logstc( of th X X (6 ( p? followng logstc( X,,, X (6 tks, j th,, mtr Ths vlu:,,,, ( (73 0. vrbl wll tk th (62 Z X (62 X (83 th probblty tht th rnom vlu,,,, p logstc( X X (23 tr p? Ths tks th followng vlu: brn(p (63 ( r(z 0.6 brn(p (74 Rvw: th rror trm p X X (24 5 p logstc( X (23 0. For 0.4mpl: (75 4 wth probblty logstc( X logstc( X X (24 wth0.9 stc( Xp0. X X probblty logstc( X (76 or rnt pnng on th pct vlu of th phnotyp p 0. (25 r( brn(p X X 0.9 (77 spcfc t wth gnotyp.

10 A Aj X logstc( X (22 k kx,, ( ( ( 2.2( 0.2 2, B r(b ( (, Bkk0.2(2.2( r(b 0.2 kk (56 (56 0. rfor tks on of two vlus, whch s th rnc btwn 0.9r(B (77 ( ( r(bkk( ( r(b r(b 0.2(02.2(0.2 k ( 0( ( ( k t gnotypn on or zro (s 0.2 clss nots for grm. 0.2(2.2( (68 D r(b (57 0.9,, B k k D B r(b (57 0.2(02.2( (78 k k D D Rcll tht th rror trm sfd thr ofnot tht X(79 whn r(z brn(p rnom vrbl hs Brnoull strbuton. 0ths r( 0th ngtv brn(p X X > (58 0.2(2.2( fd > 0 (58 mn( B22n - whn Y s on: Y s zro BX by 2prmtr: mn(,,b prmtrz,sngl 2 (69 [t] T T 0.2(2.2( 0.2 (Y 0 X (80 r( brn(p X X ( [ W] (y D 0 fd<<0 0 (59 fd (59 Y X mn( B, B22 mn( (Y r(z brn(p (Y,, (70 22,,B 0 X X(8 A logstc( (60 AA logstc( XX (60 jt XX,,,, ( T,, (Y X (82,, tht vrbl [ probblty W] (y ( (7 tht th rnom wll tk th vlu th probblty th rnom vrbl wll tk th vlu,, For A thantr strbuton populton, rcll tht logstc( ofth X X (6 ( p? followng logstc( X,,, X (6 tks, j th,, vlu: mtr Ths r p? Ths tks th vlu:,,,,, followng, Z, X (62 X (62 (83, (72, ( p logstc( X, X,,, (23 p logstc( X (23 brn(p (63 r(z X brn(p (63 5 Rvw: th rror trm I p 5 X (24 ( (73 (24 p X 0.6 mpl: X logstc( For X 4 wth probblty logstc( X p (25 stc( X X wth 0.4probblty logstc( X(74 or rnt pnng on th pct vlu of th phnotyp p 0.6 ( (75 0. t wth spcfc gnotyp.

11 Rvw: Notton Rmmbr tht whl w r plottng ths vrsus just X, th tru plot s vrsus BOTH X n X (hrr to s wht s gong on For n ntr smpl, w cn us mtr notton s follows: X (X X X X E(y ( 2 6 4!,,,,. n, n, n, n, 3 7 5

12 Infrnc Rcll tht our gol wth usng logstc rgrsson ws to mol th probblty strbuton of cs / control phnotyp whn thr s cusl polymorphsm To us ths for GWAS, w n to tst th null hypothss tht gnotyp s not cusl polymorphsm (or mor ccurtly tht th gntc mrkr w r tstng s not n LD wth cusl polymorphsm!: c 0 0 H 0 : 0\ 0 To ssss ths null hypothss, w wll us th sm pproch s n lnr rgrsson,.. w wll construct LRT lklhoo rto tst (rcll tht n F-tst s n LRT! W wll n MLE for th prmtrs of th logstc rgrsson for th LRT

13 MLE of logstc rgrsson prmtrs Rcll tht n MLE s smply sttstc ( functon tht tks th smpl s n nput n outputs th stmt of th prmtrs! In ths cs, w wnt to construct th followng MLE: MLE( ˆ MLE( ˆ, ˆ, ˆ To o ths, w n to mmz th log-lklhoo functon for th logstc rgrsson, whch hs th followng form (smpl sz n: l( n y ln( (,, ( y ln( (,, Unlk th cs of lnr rgrsson, whr w h clos-form quton tht llows us to plug n th Y s n X s n rturns th bt vlus tht mmz th log-lklhoo, thr s no such smpl quton for logstc rgrsson W wll thrfor n n lgorthm to clcult th MLE

14 Algorthm Bscs lgorthm - squnc of nstructons for tkng n nput n proucng n output W oftn us lgorthms n stmton of prmtrs whr th structur of th stmton quton (.g., th log-lklhoo s so complct tht w cnnot Drv smpl (clos form quton for th stmtor Cnnot sly trmn th vlu th stmtor shoul tk by othr mns (.g., by grphcl vsulzton W wll us lgorthms to srch for th prmtr vlus tht corrspon to th stmtor of ntrst Algorthms r not gurnt to prouc th corrct vlu of th stmtor (!!, bcus th lgorthm my convrg (rturn th wrong nswr (.g., convrgs to locl mmum or os not convrg! n bcus th comput tm to convrg to ctly th sm nswr s mprctcl for pplctons

15 IRLS lgorthm I For logstc rgrsson (n GLM s n gnrl! w wll construct n lgorthm to fn th prmtrs tht corrspon to th mmum of th log-lklhoo: l( n y ln( (,, ( y ln( (,, For logstc rgrsson (n GLM s n gnrl! w wll construct n Itrtv R-wght Lst Squrs (IRLS lgorthm, whch hs th followng structur:. Choos strtng vlus for th s. Snc w hv vctor of thr s n our cs, w ssgn ths numbrs n cll th rsultng vctor [0]. 2. Usng th r-wghtng quton (scrb nt sl, upt th vctor. 3. At ch stp t>0 chck f [t] (.. f ths r ppromtly qul usng n pproprt functon. If th vlu s blow fn thrshol, stop. If not, rpt stps 2,3.

16 Stp : IRLS lgorthm Ths r smply vlus of th vctor tht w ssgn (!! In on sns, ths cn b nythng w wnt (!! lthough for lgorthms n gnrl thr r usully som rstrctons n / or crtn strtng vlus tht r bttr thn othrs n th sns tht th lgorthm wll convrg fstr, fn mor optml soluton tc. In our cs, w cn ssgn our strtng vlus s follows: [0]

17 [t] [T W] T (y (,, Y (,, X,,,, (,,, ( Stp 2: IRLS lgorthm, (, ( Y, (,, ( (Y X (8, (,,,, (8, ( Y,,,, 0.6,, lcton, n mtr ton, w cn r-wrt ths s: Lt s consr th qutons,,,, (82,,, w n for vlu 0.4 wht w choos 2, w wll upt (,prouc nwmttr of thvlus vctor usngbcus, stp,, osn t 0.4 At r(z brn(p th sp ths tn to stop!: convrg. W cou l(ˆ yth followng l( ˆ, ˆ, ˆquton (83 y (thn o ths gn ntht gn untl w 0 X, l(, (Y ˆ ˆ (Y ˆ y 2 l( ˆ3 (83 0 X,, y 7 T T ˆ0 y l(7ˆ, 0,[t] 6 l( 0 y (84 [ W] (y ( 2, l(2,ˆ07 (Y X 2 (Y X ˆ 6 7 y4 l(5, 0, 0 y ( ,.. 7,,,,, ,,.,, [0] 2, (,, Howvr, gnrl, w o hv to b crful t,, n (2,, (,,,,, trcks, r,.n,.. 2, 2, n r possbl n thr som to choos n, n lgorthms clss.... multplcton, n, n, n mtrton, w (( r-wrt tton, mtr cn ths s: n, n, ( upt g compct mtr notton: For stp (2, w wll th prmtr n quton: y,, W2 3 n (,, ( y(,, D7 y [t] or[t] T y6 ln 2 6 y2 7 W 2, 2, or[t] or[t] D 2 y ln 4 5 ( y (4. 7,,,, or[t] or[t], , or[t] ( w of th, componnt tht ll W hv, sn. Not yn n, ( n, (,,,, y n our 0.4 hv us y n lnr rgrsson q n y ln yn (squr or[t] ˆ ˆ or[t] ˆ y mtr tht h l(or[t] ˆ y W l(,n,n by y ln ( mtr s, or[t], or[t] ((Wor[t] 0 for 6 j n ch of th gonl j,, l(ˆ0 y l( ˆ, 0, 0 y t usng th followng compct mtr notton: (Y 0 n YX y X (5

18 Stp 3: IRLS lgorthm D 2 At stp 3, w chck to s f w shoul stop th lgorthm n, f w c not to stop, w go bck to stp 2 If w c to stop, w wll ssum th fnl vlus of th vctor r th MLE (t my not b ctly th tru MLE, but w wll ssum tht [t] t s clos f w o not stop th lgorthm to rly!,.g. Thr r mny stoppng ruls, usng chng n Dvnc s on wy to D 2 n construct rul (not th ssu wth ln(0!!: n y ln y ln D D [t ] D y ( or[t], or[t], or[t] y or[t] or[t] or[t],, or[t] or[t] or[t],, ( y ln ( y ln s smll. Wh 4D <0 6 y ( or[t], or[t], or[t] y or[t] or[t] or[t],, or[t] or[t] or[t],,

19 Logstc hypothss tstng I Rcll tht our null n ltrntv hypothss r: W wll us th LRT for th null (0 n ltrntv (: LRT 2ln 2ln L(ˆ 0 y L(ˆ y H 0 : 0\ 0 H A : 6 0[ 6 0 For our cs, w n th followng: l( ˆ y l( LRT 2ln 2l(ˆ y 2l(ˆ 0 y ˆ, ˆ, ˆ y l( ˆ 0 y l( ˆ, 0, 0 y

20 Logstc hypothss tstng II For th ltrntv, w us our MLE stmts of our logstc rgrsson prmtrs w gt from our IRLS lgorthm n plug ths nto th log-lk quton l(ˆ y l(ˆ 0 y n X h y ln( ( ˆ, ˆ, ˆ ( y ln( ( ˆ, ˆ, ˆ For th null, w plug n th followng prmtr stmts nto ths sm quton nx h y ln( (,,,,,, ( ˆ,0, 0, 0 ( y ln( ( ˆ,0, 0, 0 whr w us th sm IRLS lgorthm to prov stmts of by runnng th lgorthm EXACTLY th sm wth ˆ,0 EXCET w st ˆ 0, ˆ 0 n w o not upt ths!

21 Logstc hypothss tstng III To clcult our p-vlu, w n to know th strbuton of our LRT sttstc unr th null hypothss Thr s no smpl form for ths strbuton for ny gvn n (contrst wth F-sttstcs!! but w know tht s n gos to nfnt, w know th strbuton s.. ( : LRT 2ln 2l(ˆ y 2l(ˆ 0 y n ct s LRT! 2 f, tht pn Wht s mor, t s rsonbly goo ssumpton tht unr our (not ll!! null, ths LRT s (ppromtly! ch-squr strbuton wth 2 grs of from (.f. ssumng n s not too smll! n!

22 S you on Thurs.! Tht s t for toy

Filter Design Techniques

Filter Design Techniques Fltr Dsgn chnqus Fltr Fltr s systm tht psss crtn frquncy componnts n totlly rcts ll othrs Stgs of th sgn fltr Spcfcton of th sr proprts of th systm ppromton of th spcfcton usng cusl scrt-tm systm Rlzton

More information

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz 96- Physcl Chmstry (I) Frst Quz lctron rst mss m 9.9 - klogrm, Plnck constnt h 6.66-4 oul scon Sp of lght c. 8 m/s, lctron volt V.6-9 oul. Th functon F() C[cos()+sn()] s n gnfuncton of /. Th gnvlu s (A)

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Fractions. Mathletics Instant Workbooks. Simplify. Copyright

Fractions. Mathletics Instant Workbooks. Simplify. Copyright Frctons Stunt Book - Srs H- Smplfy + Mthltcs Instnt Workbooks Copyrht Frctons Stunt Book - Srs H Contnts Topcs Topc - Equvlnt frctons Topc - Smplfyn frctons Topc - Propr frctons, mpropr frctons n mx numbrs

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab Fndmntls of Contnm Mchncs Sol Ntonl Unvrsty Grphcs & Md Lb Th Rodmp of Contnm Mchncs Strss Trnsformton Strn Trnsformton Strss Tnsor Strn T + T ++ T Strss-Strn Rltonshp Strn Enrgy FEM Formlton Lt s Stdy

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Special Random Variables: Part 1

Special Random Variables: Part 1 Spcl Rndom Vrbls: Prt Dscrt Rndom Vrbls Brnoull Rndom Vrbl (wth prmtr p) Th rndom vrbl x dnots th succss from trl. Th probblty mss functon of th rndom vrbl X s gvn by p X () p X () p p ( E[X ]p Th momnt

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

More Statistics tutorial at 1. Introduction to mathematical Statistics

More Statistics tutorial at   1. Introduction to mathematical Statistics Mor Sttstcs tutorl t wwwdumblttldoctorcom Itroducto to mthmtcl Sttstcs Fl Soluto A Gllup survy portrys US trprurs s " th mvrcks, drmrs, d lors whos rough dgs d ucompromsg d to do t thr ow wy st thm shrp

More information

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017.

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017. 0//0 Prvw Spnnng Tr Spnnng Tr Mnmum Spnnng Tr Kruskl s Algorthm Prm s Algorthm Corrctnss of Kruskl s Algorthm A spnnng tr T of connctd, undrctd grph G s tr composd of ll th vrtcs nd som (or prhps ll) of

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

The Theory of Small Reflections

The Theory of Small Reflections Jim Stils Th Univ. of Knss Dt. of EECS 4//9 Th Thory of Smll Rflctions /9 Th Thory of Smll Rflctions Rcll tht w nlyzd qurtr-wv trnsformr usg th multil rflction viw ot. V ( z) = + β ( z + ) V ( z) = = R

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

8. Linear Contracts under Risk Neutrality

8. Linear Contracts under Risk Neutrality 8. Lnr Contrcts undr Rsk Nutrlty Lnr contrcts r th smplst form of contrcts nd thy r vry populr n pplctons. Thy offr smpl ncntv mchnsm. Exmpls of lnr contrcts r mny: contrctul jont vnturs, quty jont vnturs,

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below.

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below. oa Euatons Thoughout all of chapt 4, ou focus s on th machn tslf, thfo w wll only pfom a y smpl tatmnt of th ntwok n o to s a complt mol. W o that h, but alz that w wll tun to ths ssu n Chapt 9. So lt

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black Stf-Boltzm lw stts tht th powr mttd pr ut r of th surfc of blck body s proportol to th fourth powr of th bsolut tmprtur: 4 S T whr T s th bsolut tmprtur d th Stf-Boltzm costt= 5 4 k B 3 5c h ( Clcult 5

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wv hnon hyscs 5c cur 4 Coupl Oscllors! H& con 4. Wh W D s T " u forc oscllon " olv h quon of oon wh frcon n foun h sy-s soluon " Oscllon bcos lr nr h rsonnc frquncy " hs chns fro 0 π/ π s h frquncy ncrss

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Logistic Regression I. HRP 261 2/10/ am

Logistic Regression I. HRP 261 2/10/ am Logstc Rgrsson I HRP 26 2/0/03 0- am Outln Introducton/rvw Th smplst logstc rgrsson from a 2x2 tabl llustrats how th math works Stp-by-stp xampls to b contnud nxt tm Dummy varabls Confoundng and ntracton

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information

INF5820/INF9820 LANGUAGE TECHNOLOGICAL APPLICATIONS. Jan Tore Lønning, Lecture 4, 14 Sep

INF5820/INF9820 LANGUAGE TECHNOLOGICAL APPLICATIONS. Jan Tore Lønning, Lecture 4, 14 Sep INF5820/INF9820 LANGUAGE TECHNOLOGICAL ALICATIONS Jn Tor Lønning Lctur 4 4 Sp. 206 tl@ii.uio.no Tody 2 Sttisticl chin trnsltion: Th noisy chnnl odl Word-bsd Trining IBM odl 3 SMT xpl 4 En kokk lgd n rtt

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: Derivation of Ideal MHD Equation

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: Derivation of Ideal MHD Equation .65, MHD Thory of Fuson Systms Prof. Frdbrg Lctur : Drvton of Idl MHD Equton Rvw of th Drvton of th Momnt Equton. Strtng Pont: Boltzmnn Equton for lctrons, ons nd Mxwll Equtons. Momnts of Boltzmnn Equton:

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of Do Bgyoko () FOURIER SERIES I. INTRODUCTION Srs psos r ubqutous too o scc d grg. Th kds o pso to utz dpd o () th proprts o th uctos to b studd d (b) th proprts or chrctrstcs o th systm udr vstgto. Powr

More information

Definition of vector and tensor. 1. Vector Calculus and Index Notation. Vector. Special symbols: Kronecker delta. Symbolic and Index notation

Definition of vector and tensor. 1. Vector Calculus and Index Notation. Vector. Special symbols: Kronecker delta. Symbolic and Index notation Dfnton of vctor nd tnsor. Vctor Clculus nd Indx Notton Crtsn nsor only Pnton s Chp. Vctor nd ordr tnsor v = c v, v = c v = c c, = c c k l kl kl k l m physcl vrbl, sm symbolc form! Cn b gnrlzd to hghr ordr

More information

Fitting Compartmental Models to Multiple Dose Pharmacokinetic Data using SAS PROC NLMIXED

Fitting Compartmental Models to Multiple Dose Pharmacokinetic Data using SAS PROC NLMIXED Ppr SP-2009 Fttng Comprtmntl Modls to Multpl Dos Phrmcokntc Dt usng SAS PROC NLMIXED Jng Su, Png Sun, Xodong L nd Aln H. Hrtford Mrck & Co., Inc, North Wls, PA ABSTRACT Phrmcokntc (PK) modlng uss systms

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information