`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE)

Size: px
Start display at page:

Download "`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE)"

Transcription

1 `Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool

2 Pippard s problem J s 6= c 4 2 A London Eq. failure of local London relations

3 inside superconductor r A =0 stable equilibrium Z 1 L m = L m0 2 around minimum C µ (x, x 0 )(A µ µ (x)) (A (x 0 (x 0 ))d 3 x 0 d 3 x +

4 Pippard Current J µ (x) = L m A µ = Z C µ (x, x 0 )(A (x 0 (x 0 ))d 3 x 0 Pippard kernel J s = 3 4 c 0 Z (~r ~r 0 )((~r ~r 0 ) ~A(~r 0 ))e (~r ~r0 )/ (`) (~r ~r 0 ) 4 d 3 ~r 0 non-local

5 Units of Current J µ (x) = L m A µ = Z C µ (x, x 0 )(A (x 0 (x 0 ))d 3 x 0 [J] =d d C d A anomalous dimension Standard Result Z d 3 xj µ A µ no anomalous dimension [J] =d d A = d 1 A µ! A µ µ J µ =0

6 Are there other examples of currents with anomalous dimensions? underlying electricity and magnetism? is symmetry breaking necessary?

7 ! 2/3 T Mott insulator 0 x

8 why is the problem hard?

9 single-parameter scaling / z 2 ln Z! A µ A µ 1 / T (2 d)/z (!, T) /! (d 2)/z 2/3 C v / T d/z anomalous dimension 2! 2d A

10 strange metal explained! Hall Angle cot H xx xy T 2 T-linear resistivity Hall Lorenz ratio L xy = apple xy /T xy 6=#/ T all explained if [J µ ]=d + + z 1 Hartnoll/Karch [A µ ]=1 = 2/3

11 strange metal: strange E&M [J µ ]=d + + z 1 [A µ ]=1 = 2/3 [E] =1+z [B] =2 note r 2 B 6= flux ha i (k)a j ( k)i / ij k 2(1 ) non-local propagator

12 what is the new gauge principle? if [A µ ] 6= 1 A µ! A µ µ

13 µ J µ =0 current conservation what if [@ µ, Ŷ ]=0 new µ ŶJ µ µ J µ =0 [ J] =d 1 D Y

14 possible gauge transformations Z S = 1 d d xf 2 4 S = 1 2 Z d d k 2 d A µ(k)[k 2 µ M µ { k µ k ]A (k) k =0 zero eigenvector ik A µ! A µ µ

15 family of zero eigenvalues M µ fk =0 { generator of gauge symmetry 1.) rotational invariance 2.) A is still a 1-form 3.) [f,k µ ]=0

16 only choice f f(k 2 ) ( ) A µ! A µ +( ) ( 1) µ [A µ ]= what kind of E&M has such gauge transformations?

17 gauge-gravity duality (Maldacena, 1997) gravity IR?? UV QF T coupling constant g =1/ego dg(e) dlne = (g(e)) locality in energy

18 model with anomalous dimensions claim [A] 6= 1 y =1 S = Z dv d dy y a F 2 + y =0 how?? F = da

19 if holography is RG then how can it lead to an anomalous dimension?

20 standard case A J Z d d xa J A(y = 0) = A bc does not satisfy A(y = 0) 6= A + d

21 alternatively (A + d = a + boundary theory has non-trivial gauge structure AdS/ Lifshitz Z dy/y = 1 large gauge transformation

22 S = Z dv d dy y a F 2 + eom d(y a? da) =0 y 6= 0 A! A what about the boundary?

23 Caffarelli-Silvestre extension theorem (2006) y g(x, y = 0) = f(x) xg + a y g y + g yy =0 r (y a rg(x, y)) = 0 lim y!0 y g? C d, ( ) f x g(z =0,x)=f(x) fractional Laplacian = 1 a 2

24 closer look r (y a ru) =0 scalar field (use CS theorem) d(y a? da) =0 holography similar equations generalize CS theorem to p-forms GL,PP: (CIMP)

25 boundary action: fractional Maxwell equations A? = J boundary action has `anomalous dimension (non-locality)

26 if holography is RG then how can it lead to an anomalous dimension? Z S = dv d dy y a F 2 + [A] =1 a/2 dimension of A is fixed by the bulk theory: not really anomalous dimension

27 define F ij i A j A i d A = d 1 2 A, S = Z 1 4 F ijf ij integrate by parts S = Z 1 2 A i( ) 2 A i, non-local boundary action

28 new gauge transformation A! A + d, d ( ) 1 2 d [A] = boundary lies at infinity (large gauge transformation)

29 causality A µ =0 [, ] =0 share the same eigenfunctions e i ( ~ k ~x!t) =(k 2! 2 ) e i ( ~ k ~x!t)! = ck

30 answer? µ, Ŷ ]=0 [d, ]=0 Ŷ = J! J [J] =d 1

31 current-current correlator ij k i k j C ij (k) / (k 2 ) k 2. standard Ward identity k i C ij (k) i C ij (k) =0 but k 1 k µ C µ µ ( ) 1 2 C µ =0 inherent ambiguity in E&M

32 family of zero eigenvalues M µ fk =0 most fundamental conservation µ ( r 2 ) ( 1)/2 J µ =0

33 Noether s Theorems A µ! A µ µ G +,

34 is there a hidden broken symmetry?

35 1 2 (@ µ ) 2 + m 2 2 O = C O lim z!0 z (x, z) solves massive scalar problem g = z d/2 solves CS extension problem O =( ) 0

36 application: gauge fields with anomalous dimensions F µ F µ + m 2 A 2 y A? µ ( ) A?µ = p d 2 + m 2 1/2 dynamical `Higgs mode additional length scale

37 m IR J UV non-local E&M broken symmetry in higher dimension

38 experiments?

39 ~B magnetic flux r 2 B should be dimensionless [B] =2 =2+2/3 6= 2 what s the resolution?

40 correct dimensionless quantity D i i e ~ a i fictitious gauge field a i [@ i,i i A i ]=@ i I i A i a µ! a µ µ A! A + d = e ~ I ~a(~r) d ~ l.

41 New Aharonov-Bohm Effect D = e p 2 ~ r2 BR (2 ) (1 2 )! ( ) ( ) sin F 1 (1, 2 ; 2; r2 R 2 )

42 is the correction large? =1+2/3 =5/3 R = eb`2 ~ L 5/3 /(0.43) 2 yes!

43 experiment Planckian dissipation = ~ k B T ybco, s

44 if in the strange metal [A µ ]=d A 6=1 1 2 r ~ B God said ~! E v 2 = µ ~ 1 2 r E ~ = 1 2 r ~ E ~ =0 1 2 r ~ B =0. Pippard Kernel Z J µ (x) = d d x 0 C µ ( x [J] 6= d 1 [A] 6= 1 x 0 )A fractional E&M in SC!! = ck U(1)! Z 2

Do Cuprates Harbor Extra Dimensions?

Do Cuprates Harbor Extra Dimensions? Do Cuprates Harbor Extra Dimensions? Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool How would such dimensions be detected? Do they obey the standard electricity and magnetism? standard

More information

`Anomalous dimensions for conserved currents and Noether s Second Theorem

`Anomalous dimensions for conserved currents and Noether s Second Theorem `Anomalous dimensions for conserved currents and Noether s Second Theorem Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool 0 no order Mott insulator x strange metal: experimental facts

More information

Detecting unparticles and anomalous dimensions in the Strange Metal

Detecting unparticles and anomalous dimensions in the Strange Metal Detecting unparticles and anomalous dimensions in the Strange Metal Thanks to: NSF, EFRC (DOE) Andreas Karch Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Gabriele La Nave Drude metal Drude

More information

Unaprticles: MEELS, ARPES and the Strange Metal

Unaprticles: MEELS, ARPES and the Strange Metal Unaprticles: MEELS, ARPES and the Strange Metal K. Limtragool Chandan Setty Chandan Setty Zhidong Leong Zhidong Leong Bikash Padhi strange metal: experimental facts T-linear resistivity (!) =C! 2 3 L xy

More information

Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17

Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17 Anomalous dimensions, Mottness, Bose metals, and holography D. Dalidovich G. La Nave G. Vanacore Anomalous dimensions, Mottness, Bose metals, and holography 1 p 2 (p 2 ) d U d/2 Fermi liquids D. Dalidovich

More information

Testing Mottness/unparticles and anomalous dimensions in the Cuprates

Testing Mottness/unparticles and anomalous dimensions in the Cuprates Testing Mottness/unparticles and anomalous dimensions in the Cuprates Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool / at what is strange about the strange metal?

More information

Unparticles in High T_c Superconductors

Unparticles in High T_c Superconductors Unparticles in High T_c Superconductors Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Optical Conductivity in the Cuprates from holography and unparticles

Optical Conductivity in the Cuprates from holography and unparticles Optical Conductivity in the Cuprates from holography and unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Properties all particles share? charge fixed mass!

More information

Optical Conductivity in the Cuprates from Holography and Unparticles

Optical Conductivity in the Cuprates from Holography and Unparticles Optical Conductivity in the Cuprates from Holography and Unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Drude conductivity n e 2 1 m 1 i! (!) =C! 2 3

More information

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool N e ( ) = 2mV cell e 2 Z 0 (!)d! optical

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley 2=3 goal 2 = 3 Properties all particles share? Properties all particles share? charge fixed mass! Properties

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Mott Problem emergent gravity Mott Problem What interacting problems can we solve in quantum mechanics?

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Correlated Matter Correlated Matter What is carrying the current? current-carrying excitations? current-carrying

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Seungmin Hong Mott Problem Mott Problem + # + Mott Problem + # + σ(ω) Ω -1 cm -1 VO 2 T=360 K T=295

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) From Fermi Arcs to Holography Thanks to: NSF, EFRC (DOE) Seungmin Hong and S. Chakraborty T.-P. Choy M. Edalati R. G. Leigh Fermi Arcs P. Johnson, PRL 2011 Na-CCOC (Shen, Science 2006) La-Bi2201 (Meng,

More information

Unparticles and Emergent Mottness

Unparticles and Emergent Mottness Unparticles and Emergent Mottness Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) Mottness and Holography: A Discrete Marriage Thanks to: NSF, EFRC (DOE) Seungmin Hong M. Edalati R. G. Leigh emergent gravity spectral weight transfer 2-particle probe spectral weight transfer spectral

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

3.15. Some symmetry properties of the Berry curvature and the Chern number.

3.15. Some symmetry properties of the Berry curvature and the Chern number. 50 Phys620.nb z M 3 at the K point z M 3 3 t ' sin 3 t ' sin (3.36) (3.362) Therefore, as long as M 3 3 t ' sin, the system is an topological insulator ( z flips sign). If M 3 3 t ' sin, z is always positive

More information

Coupled differential equations

Coupled differential equations Coupled differential equations Example: dy 1 dy 11 1 1 1 1 1 a y a y b x a y a y b x Consider the case with b1 b d y1 a11 a1 y1 y a1 ay dy y y e y 4/1/18 One way to address this sort of problem, is to

More information

Autocorrelators in models with Lifshitz scaling

Autocorrelators in models with Lifshitz scaling Autocorrelators in models with Lifshitz scaling Lárus Thorlacius based on V. Keränen & L.T.: Class. Quantum Grav. 29 (202) 94009 arxiv:50.nnnn (to appear...) International workshop on holography and condensed

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Holographic Q-Lattices and Metal-Insulator Transitions

Holographic Q-Lattices and Metal-Insulator Transitions Holographic Q-Lattices and Metal-Insulator Transitions Jerome Gauntlett Aristomenis Donos Holographic tools provide a powerful framework for investigating strongly coupled systems using weakly coupled

More information

Holography, Soft Theorems, and Infinite Dimensional Symmetries of Flat Space

Holography, Soft Theorems, and Infinite Dimensional Symmetries of Flat Space Holography, Soft Theorems, and Infinite Dimensional Symmetries of Flat Space Clifford Cheung w/ Anton de la Fuente & Raman Sundrum (1607.xxxxx) Asymptotic Symmetries of Yang-Mills Theory Andrew Strominger

More information

AC conductivity of a holographic strange metal

AC conductivity of a holographic strange metal AC conductivity of a holographic strange metal F. Peña-Benítez INFN - Perugia 1507.05633 in collaboration with Elias Kiritsis Workshop on Holography and Condensed Matter 1 motivation holography is a good

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Dimensional Reduction in the Early Universe

Dimensional Reduction in the Early Universe Dimensional Reduction in the Early Universe Giulia Gubitosi University of Rome Sapienza References: PLB 736 (2014) 317 PRD 88 (2013) 103524 PRD 88 (2013) 041303 PRD 87 (2013) 123532 (with G. Amelino-Camelia,

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22.

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22. 61 Matrices Definition: A Matrix A is a rectangular array of the form A 11 A 12 A 1n A 21 A 22 A 2n A m1 A m2 A mn The size of A is m n, where m is the number of rows and n is the number of columns The

More information

Partial differential equations (ACM30220)

Partial differential equations (ACM30220) (ACM3. A pot on a stove has a handle of length that can be modelled as a rod with diffusion constant D. The equation for the temperature in the rod is u t Du xx < x

More information

On higher-spin gravity in three dimensions

On higher-spin gravity in three dimensions On higher-spin gravity in three dimensions Jena, 6 November 2015 Stefan Fredenhagen Humboldt-Universität zu Berlin und Max-Planck-Institut für Gravitationsphysik Higher spins Gauge theories are a success

More information

Black holes with AdS asymptotics and holographic RG flows

Black holes with AdS asymptotics and holographic RG flows Black holes with AdS asymptotics and holographic RG flows Anastasia Golubtsova 1 based on work with Irina Aref eva (MI RAS, Moscow) and Giuseppe Policastro (ENS, Paris) arxiv:1803.06764 (1) BLTP JINR,

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Floquet Superconductor in Holography

Floquet Superconductor in Holography Floquet Superconductor in Holography Takaaki Ishii (Utrecht) arxiv:1804.06785 [hep-th] w/ Keiju Murata 11 June 2018, Nonperturbative QCD Paris Motivations Holography in time dependent systems To understand

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Holographic Metals. Valentina Giangreco Marotta Puletti Chalmers Institute of Technology. XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012

Holographic Metals. Valentina Giangreco Marotta Puletti Chalmers Institute of Technology. XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012 Holographic Metals Valentina Giangreco Marotta Puletti Chalmers Institute of Technology XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012 in collaboration with S. Nowling, L. Thorlacius, and T. Zingg

More information

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers 2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

More information

Sturm-Liouville Theory

Sturm-Liouville Theory More on Ryan C. Trinity University Partial Differential Equations April 19, 2012 Recall: A Sturm-Liouville (S-L) problem consists of A Sturm-Liouville equation on an interval: (p(x)y ) + (q(x) + λr(x))y

More information

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory 1 Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory Itzhak Bars University of Southern California Talk at 4 th Sakharov Conference, May 2009 http://physics.usc.edu/~bars/homepage/moscow2009_bars.pdf

More information

SYMMETRIES AND DISSIPATIVE MAGNETOHYDRODYNAMICS

SYMMETRIES AND DISSIPATIVE MAGNETOHYDRODYNAMICS SAŠO GROZDANOV INSTITUUT-LORENTZ FOR THEORETICAL PHYSICS LEIDEN UNIVERSITY GENERALISED GLOBAL SYMMETRIES AND DISSIPATIVE MAGNETOHYDRODYNAMICS OXFORD, 14.7.2017 2 OUTLINE hydrodynamics generalised global

More information

Holographic Anyonic Superfluids

Holographic Anyonic Superfluids Holographic Anyonic Superfluids Matt Lippert (Amsterdam) with Niko Jokela (USC) and Gilad Lifschytz (Haifa) Plan Anyons, SL(2,Z), and Quantum Hall Effect Superfluids and Anyon Superfliuds A Holographic

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Lifshitz Geometries in String and M-Theory

Lifshitz Geometries in String and M-Theory Lifshitz Geometries in String and M-Theory Jerome Gauntlett Aristomenis Donos Aristomenis Donos, Nakwoo Kim, Oscar Varela (to appear) AdS/CMT The AdS/CFT correspondence is a powerful tool to study strongly

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local RG, Quantum RG, and Holographic RG Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local renormalization group The main idea dates back to Osborn NPB 363 (1991) See also my recent review

More information

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016 MA34 Geometry and Motion Selected answers to Sections A and C Dwight Barkley 26 Example Sheet d n+ = d n cot θ n r θ n r = Θθ n i. 2. 3. 4. Possible answers include: and with opposite orientation: 5..

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Vectors, matrices, eigenvalues and eigenvectors

Vectors, matrices, eigenvalues and eigenvectors Vectors, matrices, eigenvalues and eigenvectors 1 ( ) ( ) ( ) Scaling a vector: 0.5V 2 0.5 2 1 = 0.5 = = 1 0.5 1 0.5 ( ) ( ) ( ) ( ) Adding two vectors: V + W 2 1 2 + 1 3 = + = = 1 3 1 + 3 4 ( ) ( ) a

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

Solutions to Homework 11

Solutions to Homework 11 Solutions to Homework 11 Read the statement of Proposition 5.4 of Chapter 3, Section 5. Write a summary of the proof. Comment on the following details: Does the proof work if g is piecewise C 1? Or did

More information

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 1207.4194, 12xx.xxxx in collaboration with Jerome Gauntlett & Toby Wiseman Benjamin Simons Miraculous

More information

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc Symmetry and Duality FACETS 2018 Nemani Suryanarayana, IMSc What are symmetries and why are they important? Most useful concept in Physics. Best theoretical models of natural Standard Model & GTR are based

More information

dynamics of broken symmetry

dynamics of broken symmetry dynamics of broken symmetry Julian Sonner, MIT Simons Symposium - Quantum Entanglement Caneel Bay, USVI a physics connection in paradise 1957: J. R. Oppenheimer purchases small plot of land in Hawksnest

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Thermo-electric transport in holographic systems with moment

Thermo-electric transport in holographic systems with moment Thermo-electric Perugia 2015 Based on: Thermo-electric gauge/ models with, arxiv:1406.4134, JHEP 1409 (2014) 160. Analytic DC thermo-electric conductivities in with gravitons, arxiv:1407.0306, Phys. Rev.

More information

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar Warped Penguins Based on arxiv:1004.2037 In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo Cornell University LEPP Particle Theory Seminar Yuhsin Tsai, Cornell University/LEPP Warped Penguins

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Dark energy and nonlocal gravity

Dark energy and nonlocal gravity Dark energy and nonlocal gravity Michele Maggiore Vacuum 2015, Barcelona based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou, PLB 2014, 1311.3421 Foffa, MM, Mitsou,

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Elements of Bi-Local Holography

Elements of Bi-Local Holography Elements of Bi-Local Holography Antal Jevicki Brown University Fifteenth Workshop on Non- Perturbative QCD,-4 June 08 Vector Model / Higher Spin Gravity } Large N } d=3 : * L =(@ ~ ) (@ ~ )+ ( ~ ~) N UV

More information

Superconductivity, Superfluidity and holography

Superconductivity, Superfluidity and holography Outline Department of Theoretical Physics and Institute of Theoretical Physics, Autònoma University of Madrid, Spain and Scuola Normale Superiore di Pisa, Italy 12 November 2012, Laboratori Nazionali del

More information

Elementary/Composite Mixing in Randall-Sundrum Models

Elementary/Composite Mixing in Randall-Sundrum Models Elementary/Composite Mixing in Randall-Sundrum Models Brian Batell University of Minnesota with Tony Gherghetta - arxiv:0706.0890 - arxiv:0710.1838 Cornell 1/30/08 5D Warped Dimension = 4D Strong Dynamics

More information

Study Guide/Practice Exam 3

Study Guide/Practice Exam 3 Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material. The distribution

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

chapter 3 Spontaneous Symmetry Breaking and

chapter 3 Spontaneous Symmetry Breaking and chapter 3 Spontaneous Symmetry Breaking and Nambu-Goldstone boson History 1961 Nambu: SSB of chiral symmetry and appearance of zero mass boson Goldstone s s theorem in general 1964 Higgs (+others): consider

More information

Thermodynamics of the BMN matrix model at strong coupling

Thermodynamics of the BMN matrix model at strong coupling hermodynamics of the BMN matrix model at strong coupling Miguel S. Costa Faculdade de Ciências da Universidade do Porto Work with L. Greenspan, J. Penedones and J. Santos Correlations, criticality, and

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Anomalies and SPT phases

Anomalies and SPT phases Anomalies and SPT phases Kazuya Yonekura, Kavli IPMU Review (mainly of [1508.04715] by Witten) [1607.01873] KY [1610.07010][1611.01601] collaboration with Yuji Tachikawa Introduction What is the most general

More information

Introduction to Differentials

Introduction to Differentials Introduction to Differentials David G Radcliffe 13 March 2007 1 Increments Let y be a function of x, say y = f(x). The symbol x denotes a change or increment in the value of x. Note that a change in the

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points Nonlinear Control Lecture # 2 Stability of Equilibrium Points Basic Concepts ẋ = f(x) f is locally Lipschitz over a domain D R n Suppose x D is an equilibrium point; that is, f( x) = 0 Characterize and

More information

M412 Assignment 5 Solutions

M412 Assignment 5 Solutions M41 Assignment 5 Solutions 1. [1 pts] Haberman.5.1 (a). Solution. Setting u(x, y) =X(x)Y(y), we find that X and Y satisfy X + λx = Y λy =, X () = X () = Y() =. In this case, we find from the X equation

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Symmetries Then and Now

Symmetries Then and Now Symmetries Then and Now Nathan Seiberg, IAS 40 th Anniversary conference Laboratoire de Physique Théorique Global symmetries are useful If unbroken Multiplets Selection rules If broken Goldstone bosons

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L 8.03 Lecture 1 Systems we have learned: Wave equation: ψ = ψ v p x There are three different kinds of systems discussed in the lecture: (1) String with constant tension and mass per unit length ρ L T v

More information

The E&M of Holographic QCD

The E&M of Holographic QCD The E&M of Holographic QCD Oren Bergman Technion and IAS O.B., G. Lifschytz, M. Lippert arxiv: 0802.3720, 080m.xxxx Also: Johnson, Kundu 0803.0038 Kim, Sin, Zahed 0803.0318 So you see, string theory provides

More information

21-256: Partial differentiation

21-256: Partial differentiation 21-256: Partial differentiation Clive Newstead, Thursday 5th June 2014 This is a summary of the important results about partial derivatives and the chain rule that you should know. Partial derivatives

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Convergence Tests. Academic Resource Center

Convergence Tests. Academic Resource Center Convergence Tests Academic Resource Center Series Given a sequence {a 0, a, a 2,, a n } The sum of the series, S n = A series is convergent if, as n gets larger and larger, S n goes to some finite number.

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Towards a holographic formulation of cosmology

Towards a holographic formulation of cosmology Towards a holographic formulation of cosmology Gonzalo Torroba Stanford University Topics in holography, supersymmetry and higher derivatives Mitchell Institute, Texas A&M, April 2013 During the last century,

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

q form field and Hodge duality on brane

q form field and Hodge duality on brane Lanzhou University (=²ŒÆ) With C.E. Fu, H. Guo and S.L. Zhang [PRD 93 (206) 064007] 4th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry December 29-3, 206, December 3,

More information

Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 28, 2011

Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 28, 2011 Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 8, Solutions to Problems 5 are omitted since they involve topics no longer covered on the Comprehensive

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information