Optical Conductivity in the Cuprates: from Mottness to Scale Invariance

Size: px
Start display at page:

Download "Optical Conductivity in the Cuprates: from Mottness to Scale Invariance"

Transcription

1 Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool

2

3

4

5 N e ( ) = 2mV cell e 2 Z 0 (!)d!

6 optical gap N e ( ) = 2mV cell e 2 Z 0 (!)d!

7 optical gap N e ( ) = 2mV cell e 2 Z 0 (!)d! }x

8 optical gap N e ( ) = 2mV cell e 2 Z 0 (!)d! }x N e / x

9 Uchida, et al. Cooper, et al.

10 Uchida, et al. Cooper, et al. x

11 excess carriers?

12 does the charge depend on the scale?

13

14 classical (atomic) limit

15 classical (atomic) limit

16 classical (atomic) limit number of empty sites=x

17 classical (atomic) limit number of empty sites=x N e / x

18 classical (atomic) limit 2 states number of empty sites=x N e / x

19 Mott insulator

20 Mott insulator U =

21 Mott insulator N U N U = PES IPES

22 Mott insulator N U N U = PES IPES no hopping:

23 Mott insulator N U N U = PES IPES no hopping: N-1 PES

24 Mott insulator N U N U = PES IPES no hopping: N-1 N-1 PES IPES

25 Mott insulator N U N U = PES IPES no hopping: N-1 N-1 PES IPES

26 Mott insulator N U N U = PES IPES no hopping: N-1 2 N-1 PES IPES Sawatzky

27 atomic limit: x holes density of states 1-x 2x 1-x PES IPES

28 atomic limit: x holes density of states 1-x 2x 1-x PES IPES 1+x

29 atomic limit: x holes density of states 1-x 2x 1-x PES IPES 1+x 2

30 U finite U t c i n i µ U c i (1 n i )

31 U finite U t c i n i µ U c i (1 n i ) double occupancy in ground state!!

32 U finite U t c i n i µ U c i (1 n i ) double occupancy in ground state!! W PES > 1 + x

33 U finite U t c i n i µ U c i (1 n i ) N e 6=#x double occupancy in ground state!! W PES > 1 + x

34 why is this a problem?

35 counting electron states need to know: N (number of sites)

36 counting electron states x = n h /N need to know: N (number of sites)

37 counting electron states x = n h /N removal states 1 x need to know: N (number of sites)

38 counting electron states x = n h /N removal states 1 x addition states 1+x need to know: N (number of sites)

39 counting electron states 2x x = n h /N removal states 1 x addition states 1+x need to know: N (number of sites)

40 counting electron states 2x x = n h /N removal states 1 x addition states 1+x low-energy electron states need to know: N (number of sites)

41 counting electron states 2x x = n h /N removal states 1 x addition states 1+x low-energy electron states 1 x +2x =1+x need to know: N (number of sites)

42 counting electron states 2x x = n h /N removal states 1 x addition states 1+x low-energy electron states 1 x +2x =1+x high energy 1 x need to know: N (number of sites)

43 spectral function (dynamics)

44 spectral function (dynamics)

45 spectral function (dynamics) U t density of states 1+x + >1+x Harris and Lange (1967)

46 spectral function (dynamics) U t density of states 1+x + >1+x / t/u 1 x Harris and Lange (1967)

47 spectral function (dynamics) U t density of states 1+x + >1+x / t/u 1 x Harris and Lange (1967) not exhausted by counting electrons alone

48 determination of N e Hubbard model x=0.1 d=1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 Phys. Rev. Lett. 105, (2010) M. Kohno, PRL, 105, Sawatzky

49 determination of N e chen/batlogg, 1990

50 DMFT on Hubbard model

51 DMFT on Hubbard model Millis, 2008 chakraborty & Phillips, 2007

52 spectral weight transfer Hubbard Model N e > #x optical conductivity (mid-ir)

53 is there anything else?

54 yes Drude conductivity n e 2 1 m 1 i!

55 yes Drude conductivity n e 2 1 m 1 i! (!) =C! 2 3

56 criticality scale invariance power law correlations

57 scale-invariant propagators 1 p 2

58 scale-invariant propagators 1 p 2 Anderson: use Luttinger Liquid propagators G R / 1 (! v s k)

59 compute conductivity without vertex corrections (PWA) (!) / 1! Z dx Z dtg e (x, t)g h (x, t)e i!t / (i!) 1+2

60 problems

61 problems 1.) cuprates are not 1- dimensional

62 problems 1.) cuprates are not 1- dimensional 2.) vertex corrections matter

63 problems 1.) cuprates are not 1- dimensional 2.) vertex corrections matter / G 2 µ µ }[ [G] =L d+1 2d U ]=L 3 d [ µ ]=L 2d U d [ µ ]=L 2d U d+1

64 problems 1.) cuprates are not 1- dimensional 2.) vertex corrections matter / G 2 µ µ }[ [G] =L d+1 2d U ]=L 3 d [ µ ]=L 2d U d [ µ ]=L 2d U d+1 independent of d U

65 power law?

66 power law? Could string theory be the answer?

67 UV QF T

68 UV IR?? QF T

69 IR?? UV QF T coupling constant g =1/ego

70 IR?? UV QF T coupling constant g =1/ego dg(e) dlne = (g(e)) locality in energy

71 replace coupled theory with geometry scale-invariant anti de-sitter g( ) 2 R R / p g

72 replace coupled theory with geometry scale-invariant anti de-sitter g( ) 2 R RG=GR R / p g

73 replace coupled theory with geometry scale-invariant anti de-sitter g( ) 2 AdS 2 R 2 R AdS 4 RG=GR R / p g

74 replace coupled theory with geometry scale-invariant anti de-sitter g( ) 2 AdS 2 R 2 R AdS 4 RG=GR R / p g cannot describe systems at g=0!

75 optical conductivity from a gravitational lattice G. Horowitz et al., Journal of High Energy Physics, 2012

76 optical conductivity from a gravitational lattice G. Horowitz et al., Journal of High Energy Physics, 2012

77 optical conductivity from a gravitational lattice log-log plots for various parameters G. Horowitz et al., Journal of High Energy Physics, 2012

78 optical conductivity from a gravitational lattice log-log plots for various parameters for G. Horowitz et al., Journal of High Energy Physics, 2012

79 optical conductivity from a gravitational lattice log-log plots for various parameters for a remarkable claim! replicates features of the strange metal? how? G. Horowitz et al., Journal of High Energy Physics, 2012

80 new equation! Einstein- Maxwell equations + non-uniform = charge density B! 2/3

81 not so fast!

82 Donos and Gauntlett (gravitational crystal) Drude conductivity n e 2 m 1 1 i!

83 Donos and Gauntlett (gravitational crystal) Drude conductivity n e 2 m 1 1 i! no power law!!

84 Donos and Gauntlett (gravitational crystal) Drude conductivity n e 2 m 1 1 i! no power law!! B! 2/3

85 who is correct?

86 who is correct? let s redo the calculation

87 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) Q

88 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) Q A t = µ(1 z)dt =lim z!0 p gf tz

89 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) Q A t = µ(1 z)dt =lim z!0 p gf tz

90 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E

91 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a i = i + i

92 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a A x = E i! + J x(x,!)z + O(z 2 ) i = i + i

93 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a A x = E i! + J x(x,!)z + O(z 2 ) i = i + i solve equations of motion with gauge invariance

94 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a A x = E i! + J x(x,!)z + O(z 2 ) i = i + i solve equations of motion with gauge invariance = J x (x,!)/e

95 model RNAdS ds 2 = L 2 r 2 f r H r dr 2 + r2 L 2 f rh r dt 2 + dx 2 + dy 2,

96 model RNAdS ds 2 = L 2 r 2 f r H r dr 2 + r2 L 2 f rh r dt 2 + dx 2 + dy 2, action = gravity + EM + lattice

97 model RNAdS ds 2 = L 2 r 2 f r H r dr 2 + r2 L 2 f rh r dt 2 + dx 2 + dy 2, action = gravity + EM + lattice S = 1 16 G N Z d 4 x p g R 2 12 F 2,

98 model RNAdS ds 2 = L 2 r 2 f r H r dr 2 + r2 L 2 f rh r dt 2 + dx 2 + dy 2, action = gravity + EM + lattice S = 1 16 G N Z d 4 x p g R 2 12 F 2,

99 model RNAdS ds 2 = L 2 r 2 f r H r dr 2 + r2 L 2 f rh r dt 2 + dx 2 + dy 2, action = gravity + EM + lattice S = 1 16 G N Z d 4 x p g R 2 12 F 2, L( )= p 2 V ( )]

100 HST vs. DG

101 HST vs. DG Horowitz, Santos, Tong (HST) V ( ) = 2 /L 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2

102 HST vs. DG Horowitz, Santos, Tong (HST) V ( ) = 2 /L 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2 de Donder gauge

103 HST vs. DG Horowitz, Santos, Tong (HST) DG V ( ) = 2 /L 2 V 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2 (z,x) = (z)e ikx no inhomogeneity in x m 2 = 3/(2L 2 ) de Donder gauge

104 HST vs. DG Horowitz, Santos, Tong (HST) DG V ( ) = 2 /L 2 V 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2 de Donder gauge (z,x) = (z)e ikx no inhomogeneity in x m 2 = 3/(2L 2 ) radial gauge

105 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 )

106 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 ) 1 = z (1) 1 + z 2 (2) 1 +, 2 = z (1) 2 + z 2 (2) 2 +, (1) 1 (x) =A 0 cos (1) 2 (x) =A 0 cos kx kx + 2 2,.

107 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 ) 1 = z (1) 1 + z 2 (2) 1 +, 2 = z (1) 2 + z 2 (2) 2 +, (1) 1 (x) =A 0 cos (1) 2 (x) =A 0 cos kx kx + 2 2,. =0 HST

108 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 ) 1 = z (1) 1 + z 2 (2) 1 +, 2 = z (1) 2 + z 2 (2) 2 +, (1) 1 (x) =A 0 cos (1) 2 (x) =A 0 cos kx kx + 2 2,. =0 = 2 HST DG

109 Einstein-De Turck EOM G H ab = G ab r (a b), a = g cd ( a cd(g) a cd(g)).

110 Einstein-De Turck EOM G H ab = G ab r (a b), a = g cd ( a cd(g) a cd(g)). reference metric

111 Einstein-De Turck EOM G H ab = G ab r (a b), a = g cd ( a cd(g) a cd(g)). metric ansatz reference metric ds 2 = L2 z 2 apple (1 z)p (z)q tt dt 2 + Q zzdz 2 (1 z)p (z) + Q xx(dx + z 2 Q zx dz) 2 + Q yy dy 2, P (z) =1+z + z 2 µ z3.

112 Einstein-De Turck EOM G H ab = G ab r (a b), a = g cd ( a cd(g) a cd(g)). metric ansatz reference metric ds 2 = L2 z 2 apple (1 z)p (z)q tt dt 2 + Q zzdz 2 (1 z)p (z) + Q xx(dx + z 2 Q zx dz) 2 + Q yy dy 2, P (z) =1+z + z 2 µ z3. RN-AdS when Q tt = Q zz = Q yy =1 =0 a t = µ 1 = µ

113 Dirchlet boundary conditions Q tt (0,x)=Q zz (0,x)=Q xx (0,x)=Q yy (0,x)=1 Q zx (0,x)=0 a t (0,x)=µ (0,x)= (1) (x)

114 Dirchlet boundary conditions Q tt (0,x)=Q zz (0,x)=Q xx (0,x)=Q yy (0,x)=1 Q zx (0,x)=0 a t (0,x)=µ (0,x)= (1) (x) regularity at z=1

115 Dirchlet boundary conditions Q tt (0,x)=Q zz (0,x)=Q xx (0,x)=Q yy (0,x)=1 Q zx (0,x)=0 a t (0,x)=µ (0,x)= (1) (x) regularity at z=1 Newton-Raphson on grid

116 Dirchlet boundary conditions Q tt (0,x)=Q zz (0,x)=Q xx (0,x)=Q yy (0,x)=1 Q zx (0,x)=0 a t (0,x)=µ (0,x)= (1) (x) regularity at z=1 Newton-Raphson on grid z 2 [0, 1],x2 (0, 2 )

117 =0 = 4 = 2

118 =0 = 4 = 2 translational invariance is broken in metric in multiples of 2k

119 charge density

120 perturb with electric field g ab =ḡ ab + h ab A a = Āa + b a i = i + i

121 perturb with electric field g ab =ḡ ab + h ab A a = Āa + b a i = i + i gauge invariance g ab + L g ab =0, A a + L A a + r a =e i!t µ J x, +L =0,

122 perturb with electric field g ab =ḡ ab + h ab A a = Āa + b a i = i + i gauge invariance g ab + L g ab =0, A a + L A a + r a =e i!t µ J x, +L =0, solve equations without mistakes!!

123 perturb with electric field g ab =ḡ ab + h ab A a = Āa + b a i = i + i gauge invariance g ab + L g ab =0, A a + L A a + r a =e i!t µ J x, +L =0, solve equations without mistakes!! Brandon Langley

124 dashed: RN-AdS solid: lattice - high-frequency behavior is identical - low-frequency RN has - low-frequency lattice has Drude form

125 sample conductivity plots dashed: RN-AdS solid: lattice - high-frequency behavior is identical - low-frequency RN has - low-frequency lattice has Drude form

126

127 Results

128 Results

129 Results

130 Results no power law...

131

132 Results

133 origin of power law?

134 origin of power law? phenomenology

135 origin of power law? phenomenology scale-invariant propagators (p 2 ) d U d/2

136 origin of power law? phenomenology scale-invariant propagators (p 2 ) d U d/2 no well-defined mass L e = Z 1 0 L(x, m 2 )dm 2

137 origin of power law? phenomenology scale-invariant propagators (p 2 ) d U d/2 no well-defined mass L e = Z 1 0 L(x, m 2 )dm 2 incoherent stuff (all energies)

138 massive free theory mass L = µ + m 2 2

139 massive free theory mass L = µ + m 2 2 x! x/ (x)! (x)

140 massive free theory mass L = µ + m 2 2 x! x/ (x)! (x) m 2 2

141 massive free theory mass L = µ + m µ x! x/ (x)! (x) m 2 2

142 massive free theory mass L = µ + m µ x! x/ (x)! (x) m 2 2

143 massive free theory mass L = µ + m µ x! x/ (x)! (x) m 2 2 no scale invariance

144 L µ (x, m)@ µ (x, m)+m 2 2 (x, m)

145 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 dm 2

146 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 dm 2 theory with all possible mass!

147 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2

148 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2 L! 4 L scale invariance is restored!!

149 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2 L! 4 L scale invariance is restored!! not particles

150 unparticles Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2 L! 4 L scale invariance is restored!! not particles

151 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2

152 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2 d U 2

153 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2 d U 2 continuous mass (x, m 2 ) flavors

154 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2 d U 2 continuous mass (x, m 2 ) flavors e 2 (m) Karch, 2005 multi-bands

155 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2 d U 2 continuous mass (x, m 2 ) flavors e 2 (m) Karch, 2005 multi-bands

156 use unparticle propagators to calculate conductivity

157 use unparticle propagators to calculate conductivity assume Gaussian action S = Z d d+1 p U (p)ig 1 (p) U (p)

158 use unparticle propagators to calculate conductivity assume Gaussian action S = Z d d+1 p U (p)ig 1 (p) U (p) U (x) = Z 1 dm 2 f(m 2 ) (x, m 2 ) 0

159 use unparticle propagators to calculate conductivity assume Gaussian action S = Z d d+1 p U (p)ig 1 (p) U (p) U (x) = Z 1 dm 2 f(m 2 ) (x, m 2 ) 0 G(p) i ( p 2 + i ) d+1 2 d U

160 gauge unparticles

161 gauge unparticles S = Z Wilson line d d+1 xd d+1 y U (x)f (x y)w (x, y) U (y),

162 gauge unparticles S = Z Wilson line d d+1 xd d+1 y U (x)f (x y)w (x, y) U (y), vertices

163 gauge unparticles S = Z Wilson line d d+1 xd d+1 y U (x)f (x y)w (x, y) U (y), vertices g µ (p, q) = 3 S A µ (q) (p + q) (p) 1-gauge g 2 µ (p, q 1,q 2 )= 4 S A µ (q 1 ) A (q 2 ) (p + q 1 + q 2 ) (p) 2-gauge

164 use Ward-Takahashi identities to simplify vertices

165 use Ward-Takahashi identities to simplify vertices iq µ µ (p, q) =G 1 (p + q) G 1 (p) q 1µ µ (p, q 1,q 2 )= (p + q 1,q 2 ) (p, q 2 )

166 use Ward-Takahashi identities to simplify vertices iq µ µ (p, q) =G 1 (p + q) G 1 (p) q 1µ µ (p, q 1,q 2 )= (p + q 1,q 2 ) (p, q 2 ) response function to an electric field

167 use Ward-Takahashi identities to simplify vertices iq µ µ (p, q) =G 1 (p + q) G 1 (p) q 1µ µ (p, q 1,q 2 )= (p + q 1,q 2 ) (p, q 2 ) response function to an electric field K µ n, n 0 ( q, q 0 )= (2 )2d T 2 Z 1 2 A µ,n (q) A,n 0(q 0 ) A=0 Z[A]

168 compute conductivity µ 1 (i! n )=lim K q!0! n µ (q)! n

169 compute conductivity µ 1 (i! n )=lim K q!0! n µ (q)! n no power law (i! n )=( d +1 2 d U ) 0 (i! n )

170 what went wrong?

171 what went wrong? free field U (x) = Z 1 dm 2 f(m 2 ) (x, m 2 ) 0

172 what went wrong? free field U (x) = Z 1 dm 2 f(m 2 ) (x, m 2 ) 0 unparticle field has particle content

173 what went wrong? free field U (x) = Z 1 dm 2 f(m 2 ) (x, m 2 ) 0 unparticle field has particle content

174 continuous mass taken seriously S = NX i=1 Z d Z d d x( D µ 2 i + m 2 i i 2 )

175 continuous mass taken seriously NX Z Z S = d d d x( D µ 2 i + m 2 i i 2 ) i=1 X! Z (m)dm i

176 continuous mass taken seriously NX Z Z S = d d d x( D µ 2 i + m 2 i i 2 ) i=1 X! Z (m)dm i (!) = Z M 0 dm (m)e 2 (m)f(!, m, T )

177 continuous mass taken seriously NX Z Z S = d d d x( D µ 2 i + m 2 i i 2 ) i=1 X! Z (m)dm i (!) = Z M 0 dm (m)e 2 (m)f(!, m, T ) /! >0(! <2M)

178 continuous mass taken seriously NX Z Z S = d d d x( D µ 2 i + m 2 i i 2 ) i=1 X! Z (m)dm i (!) = Z M 0 dm (m)e 2 (m)f(!, m, T ) /! >0(! <2M) >0 convergence of integral

179 last attempt

180 last attempt take experiments seriously

181 last attempt take experiments seriously i (!) = n ie 2 i i m i 1 1 i! i

182 last attempt take experiments seriously i (!) = n ie 2 i i m i 1 1 i! i continuous mass

183 last attempt take experiments seriously i (!) = n ie 2 i i m i 1 1 i! i continuous mass (!) = Z M 0 (m)e 2 (m) (m) m 1 1 i! (m) dm

184 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c Karch, 2015

185 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c Karch, 2015 (!) = 0e M a+2b+c Z M 0 dm ma+2b+c 2 1 i! 0 m c M c = 0e2 0 cm 1!(! 0 ) a+2b 1 c Z! 0 0 dx x a+2b 1 c 1 ix

186 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c Karch, 2015 (!) = 0e M a+2b+c Z M 0 dm ma+2b+c 2 1 i! 0 m c M c = 0e2 0 cm 1!(! 0 ) a+2b 1 c Z! 0 0 dx x a+2b 1 c 1 ix

187 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c Karch, 2015 (!) = 0e M a+2b+c Z M 0 dm ma+2b+c 2 1 i! 0 m c M c = 0e2 0 cm 1!(! 0 ) a+2b 1 c Z! 0 0 dx x a+2b 1 c 1 ix perform integral

188 a +2b 1 c = 1 3

189 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix

190 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix! 0!1

191 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix! 0!1 (!) = 1 3 (p 3+3i) 0e M! 2 3

192 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix! 0!1 (!) = 1 3 (p 3+3i) 0e M! 2 3 tan = p 3 60

193 experiments (!) =C! 2 e i (1 /2) =1.35

194 experiments (!) = 1 3 (p 3+3i) 0e M! 2 3 (!) =C! 2 e i (1 /2) =1.35

195 experiments (!) = 1 3 (p 3+3i) 0e M! 2 3 tan 2 / 1 = p 3 = 60 (!) =C! 2 e i (1 /2) =1.35

196 experiments (!) = 1 3 (p 3+3i) 0e M! 2 3 victory!! tan 2 / 1 = p 3 = 60 (!) =C! 2 e i (1 /2) =1.35

197 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c

198 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c hyperscaling violation

199 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c hyperscaling violation anomalous dimension

200 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c hyperscaling violation anomalous dimension c =1 a +2b =2/3

201 are anomalous dimensions necessary a +2b 1 c (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 c =1 = 1 3 M c a +2b =2/3 hyperscaling violation anomalous dimension b =0 a =2/3

202 No

203 but they are possible!

204 but they are possible! continuous mass

205 but they are possible! continuous mass charge nonconservation

206 but they are possible! continuous mass charge nonconservation

207 but they are possible! continuous mass charge nonconservation unparticles

208 what really is the summation over mass?

209 what really is the summation over mass? Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 m 2 dm 2

210 what really is the summation over mass? Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 m 2 dm 2 m = z 1

211 what really is the summation over mass? Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 m 2 dm 2 m = z 1 L = Z 1 0 dz 2R2 z 5+2 apple 1 2 z 2 R 2 µ (@ µ )(@ )+ 2 2R 2

212 what really is the summation over mass? Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 m 2 dm 2 m = z 1 L = Z 1 0 dz 2R2 z 5+2 apple 1 2 z 2 R 2 µ (@ µ )(@ )+ 2 2R 2 ds 2 = L2 z 2 µ dx µ dx + dz 2 anti de Sitter metric

213 what really is the summation over mass? Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 m 2 dm 2 m = z 1 L = Z 1 0 dz 2R2 z 5+2 apple 1 2 z 2 R 2 µ (@ µ )(@ )+ 2 2R 2 can be absorbed with AdS metric ds 2 = L2 z 2 µ dx µ dx + dz 2 anti de Sitter metric

214 action on AdS 5+2 S = 1 2 Z d 4+2 xdz p a + 2 R 2 p g =(R/z) 5+2

215 action on AdS 5+2 S = 1 2 Z d 4+2 xdz p a + 2 R 2 ds 2 = L2 z 2 µ dx µ dx + dz 2 p g =(R/z) 5+2

216 action on AdS 5+2 S = 1 2 Z d 4+2 xdz p a + 2 R 2 ds 2 = L2 z 2 µ dx µ dx + dz 2 p g =(R/z) 5+2 unparticle lives in d =4+2 apple 0

217 action on AdS 5+2 S = 1 2 Z d 4+2 xdz p a + 2 R 2 ds 2 = L2 z 2 µ dx µ dx + dz 2 p g =(R/z) 5+2 unparticle lives in d =4+2 apple 0 generating functional for unparticles

218 unparticles action on AdS

219 emergent gravity Mott problem

Optical Conductivity in the Cuprates from holography and unparticles

Optical Conductivity in the Cuprates from holography and unparticles Optical Conductivity in the Cuprates from holography and unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Properties all particles share? charge fixed mass!

More information

Optical Conductivity in the Cuprates from Holography and Unparticles

Optical Conductivity in the Cuprates from Holography and Unparticles Optical Conductivity in the Cuprates from Holography and Unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Drude conductivity n e 2 1 m 1 i! (!) =C! 2 3

More information

Testing Mottness/unparticles and anomalous dimensions in the Cuprates

Testing Mottness/unparticles and anomalous dimensions in the Cuprates Testing Mottness/unparticles and anomalous dimensions in the Cuprates Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool / at what is strange about the strange metal?

More information

Detecting unparticles and anomalous dimensions in the Strange Metal

Detecting unparticles and anomalous dimensions in the Strange Metal Detecting unparticles and anomalous dimensions in the Strange Metal Thanks to: NSF, EFRC (DOE) Andreas Karch Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Gabriele La Nave Drude metal Drude

More information

Unparticles in High T_c Superconductors

Unparticles in High T_c Superconductors Unparticles in High T_c Superconductors Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Correlated Matter Correlated Matter What is carrying the current? current-carrying excitations? current-carrying

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley 2=3 goal 2 = 3 Properties all particles share? Properties all particles share? charge fixed mass! Properties

More information

Unparticles and Emergent Mottness

Unparticles and Emergent Mottness Unparticles and Emergent Mottness Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) Mottness and Holography: A Discrete Marriage Thanks to: NSF, EFRC (DOE) Seungmin Hong M. Edalati R. G. Leigh emergent gravity spectral weight transfer 2-particle probe spectral weight transfer spectral

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) From Fermi Arcs to Holography Thanks to: NSF, EFRC (DOE) Seungmin Hong and S. Chakraborty T.-P. Choy M. Edalati R. G. Leigh Fermi Arcs P. Johnson, PRL 2011 Na-CCOC (Shen, Science 2006) La-Bi2201 (Meng,

More information

`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE)

`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE) `Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool Pippard s problem J s 6= c 4 2

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Mott Problem emergent gravity Mott Problem What interacting problems can we solve in quantum mechanics?

More information

Holographic Q-Lattices and Metal-Insulator Transitions

Holographic Q-Lattices and Metal-Insulator Transitions Holographic Q-Lattices and Metal-Insulator Transitions Jerome Gauntlett Aristomenis Donos Holographic tools provide a powerful framework for investigating strongly coupled systems using weakly coupled

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Seungmin Hong Mott Problem Mott Problem + # + Mott Problem + # + σ(ω) Ω -1 cm -1 VO 2 T=360 K T=295

More information

Thermo-electric transport in holographic systems with moment

Thermo-electric transport in holographic systems with moment Thermo-electric Perugia 2015 Based on: Thermo-electric gauge/ models with, arxiv:1406.4134, JHEP 1409 (2014) 160. Analytic DC thermo-electric conductivities in with gravitons, arxiv:1407.0306, Phys. Rev.

More information

Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17

Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17 Anomalous dimensions, Mottness, Bose metals, and holography D. Dalidovich G. La Nave G. Vanacore Anomalous dimensions, Mottness, Bose metals, and holography 1 p 2 (p 2 ) d U d/2 Fermi liquids D. Dalidovich

More information

Unaprticles: MEELS, ARPES and the Strange Metal

Unaprticles: MEELS, ARPES and the Strange Metal Unaprticles: MEELS, ARPES and the Strange Metal K. Limtragool Chandan Setty Chandan Setty Zhidong Leong Zhidong Leong Bikash Padhi strange metal: experimental facts T-linear resistivity (!) =C! 2 3 L xy

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Do Cuprates Harbor Extra Dimensions?

Do Cuprates Harbor Extra Dimensions? Do Cuprates Harbor Extra Dimensions? Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool How would such dimensions be detected? Do they obey the standard electricity and magnetism? standard

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Metal-insulator Transition by Holographic Charge Density Waves

Metal-insulator Transition by Holographic Charge Density Waves Metal-insulator Transition by Holographic Charge Density Waves Chao Niu (IHEP, CAS) Based mainly on arxiv:1404.0777 with: Yi Ling, Jianpin Wu, Zhuoyu Xian and Hongbao Zhang (May 9, 2014) Outlines 1. Introduction

More information

`Anomalous dimensions for conserved currents and Noether s Second Theorem

`Anomalous dimensions for conserved currents and Noether s Second Theorem `Anomalous dimensions for conserved currents and Noether s Second Theorem Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool 0 no order Mott insulator x strange metal: experimental facts

More information

Transport w/o quasiparticles

Transport w/o quasiparticles Transport w/o quasiparticles Good metals, bad metals and insulators Sean Hartnoll (Stanford) -- Caneel Bay, Jan. 2013 Based on: 1201.3917 w/ Diego Hofman 1212.2998 w/ Aristos Donos (also work in progress

More information

Q SON,' (ESTABLISHED 1879L

Q SON,' (ESTABLISHED 1879L ( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0

More information

Optical Conductivity with Holographic Lattices

Optical Conductivity with Holographic Lattices PHYS 612 Quantum Field Theory II Spring 2013 Final Project Optical Conductivity with Holographic Lattices Kubra Yeter Instructor: George Siopsis Department of Physics and Astronomy, The University of Tennessee,

More information

Autocorrelators in models with Lifshitz scaling

Autocorrelators in models with Lifshitz scaling Autocorrelators in models with Lifshitz scaling Lárus Thorlacius based on V. Keränen & L.T.: Class. Quantum Grav. 29 (202) 94009 arxiv:50.nnnn (to appear...) International workshop on holography and condensed

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

AC conductivity of a holographic strange metal

AC conductivity of a holographic strange metal AC conductivity of a holographic strange metal F. Peña-Benítez INFN - Perugia 1507.05633 in collaboration with Elias Kiritsis Workshop on Holography and Condensed Matter 1 motivation holography is a good

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

Spatially Modulated Phases in Holography. Jerome Gauntlett Aristomenis Donos Christiana Pantelidou

Spatially Modulated Phases in Holography. Jerome Gauntlett Aristomenis Donos Christiana Pantelidou Spatially Modulated Phases in Holography Jerome Gauntlett Aristomenis Donos Christiana Pantelidou Spatially Modulated Phases In condensed matter there is a variety of phases that are spatially modulated,

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Disordered spacetimes in AdS/CMT. Andrew Lucas

Disordered spacetimes in AdS/CMT. Andrew Lucas Disordered spacetimes in AdS/CMT Andrew Lucas Stanford Physics Disorder in Condensed Matter and Black Holes; Leiden January 9, 2017 Advertisement 2 350 page review article on AdS/CMT, together with: Sean

More information

Dynamics, phase transitions and holography

Dynamics, phase transitions and holography Dynamics, phase transitions and holography Jakub Jankowski with R. A. Janik, H. Soltanpanahi Phys. Rev. Lett. 119, no. 26, 261601 (2017) Faculty of Physics, University of Warsaw Phase structure at strong

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Holographic matter at finite chemical potential

Holographic matter at finite chemical potential Holographic matter at finite chemical potential Talk at NumHol 2016 Santiago de Compostela, Spain Aristomenis Donos Durham University Base on work with: J. P. Gauntlett, E. Banks, T. Griffin, L. Melgar,

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity 2012cüWâfÔn»Æï? Domain Wall Brane in Eddington Inspired Born-Infeld Gravity µ4œ Ç =²ŒÆnØÔnïÄ Email: yangke09@lzu.edu.cn I# Ÿ 2012.05.10 Outline Introduction to Brane World Introduction to Eddington Inspired

More information

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea Thick Brane World Seyen Kouwn Korea Astronomy and Space Science Institute Korea Introduction - Multidimensional theory 1 Why are the physically observed dimensions of our Universe = 3 + 1 (space + time)?

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

General Relativity ASTR 2110 Sarazin. Einstein s Equation

General Relativity ASTR 2110 Sarazin. Einstein s Equation General Relativity ASTR 2110 Sarazin Einstein s Equation Curvature of Spacetime 1. Principle of Equvalence: gravity acceleration locally 2. Acceleration curved path in spacetime In gravitational field,

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Black Hole solutions in Einstein-Maxwell-Yang-Mills-Born-Infeld Theory

Black Hole solutions in Einstein-Maxwell-Yang-Mills-Born-Infeld Theory 1 Black Hole solutions in Einstein-Maxwell-Yang-Mills-Born-Infeld Theory S Habib Mazharimousavi Eastern Mediterranean University, north Cyprus S. Habib Mazharimousavi and M. Halilsoy, Phys. Rev. D 76 (2007)

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

My talk Two different points of view:

My talk Two different points of view: Shin Nakamura (Dept. Phys. Kyoto Univ.) Reference: S.N., Hirosi Ooguri, Chang-Soon Park, arxiv:09.0679[hep-th] (to appear in Phys. Rev. D) ( k B = h= c=) My talk Two different points of view: rom the viewpoint

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

Non-Equilibrium Steady States Beyond Integrability

Non-Equilibrium Steady States Beyond Integrability Non-Equilibrium Steady States Beyond Integrability Joe Bhaseen TSCM Group King s College London Beyond Integrability: The Mathematics and Physics of Integrability and its Breaking in Low-Dimensional Strongly

More information

Inflationary Paradigm in Modified Gravity

Inflationary Paradigm in Modified Gravity Inflationary Paradigm in Modified Gravity Lavinia Heisenberg (ETH-ITS) Institute for Theoretical Studies, Zürich Jul. 21th, Nordita, Stockholm/Sweden Theoretical modelling of the Universe General Relativity

More information

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Shizhong Zhang The University of Hong Kong Institute for Advanced Study, Tsinghua 24 October 2012 The plan 1. Introduction to Bose-Hubbard

More information

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi BPS Black holes in AdS and a magnetically induced quantum critical point A. Gnecchi June 20, 2017 ERICE ISSP Outline Motivations Supersymmetric Black Holes Thermodynamics and Phase Transition Conclusions

More information

This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT ) under grant agreement No

This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT ) under grant agreement No This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement No 316165. and the European Union (European Social Fund, ESF) and Greek

More information

AdS/CFT and holographic superconductors

AdS/CFT and holographic superconductors AdS/CFT and holographic superconductors Toby Wiseman (Imperial) In collaboration with Jerome Gauntlett and Julian Sonner [ arxiv:0907.3796 (PRL 103:151601, 2009), arxiv:0912.0512 ] and work in progress

More information

Inflation in Flatland

Inflation in Flatland Inflation in Flatland Austin Joyce Center for Theoretical Physics Columbia University Kurt Hinterbichler, AJ, Justin Khoury, 1609.09497 Theoretical advances in particle cosmology, University of Chicago,

More information

Boson Vortex duality. Abstract

Boson Vortex duality. Abstract Boson Vortex duality Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 0238, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Dated:

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

How to model holes doped into a cuprate layer

How to model holes doped into a cuprate layer How to model holes doped into a cuprate layer Mona Berciu University of British Columbia With: George Sawatzky and Bayo Lau Hadi Ebrahimnejad, Mirko Moller, and Clemens Adolphs Stewart Blusson Institute

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

General Relativity I

General Relativity I General Relativity I presented by John T. Whelan The University of Texas at Brownsville whelan@phys.utb.edu LIGO Livingston SURF Lecture 2002 July 5 General Relativity Lectures I. Today (JTW): Special

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Effective field theory, holography, and non-equilibrium physics. Hong Liu Effective field theory, holography, and non-equilibrium physics Hong Liu Equilibrium systems Microscopic description low energy effective field theory: Macroscopic phenomena Renormalization group, universality

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

arxiv: v1 [hep-th] 18 May 2017

arxiv: v1 [hep-th] 18 May 2017 Holographic fermionic spectrum from Born-Infeld AdS black hole Jian-Pin Wu 1,2 1 Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou

More information

Lifshitz Geometries in String and M-Theory

Lifshitz Geometries in String and M-Theory Lifshitz Geometries in String and M-Theory Jerome Gauntlett Aristomenis Donos Aristomenis Donos, Nakwoo Kim, Oscar Varela (to appear) AdS/CMT The AdS/CFT correspondence is a powerful tool to study strongly

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

UC Davis UC Davis Previously Published Works

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title Spatial modulation and conductivities in effective holographic theories Permalink https://escholarship.org/uc/item/p733t9 Journal Journal of High Energy

More information

Thermodynamics of the BMN matrix model at strong coupling

Thermodynamics of the BMN matrix model at strong coupling hermodynamics of the BMN matrix model at strong coupling Miguel S. Costa Faculdade de Ciências da Universidade do Porto Work with L. Greenspan, J. Penedones and J. Santos Correlations, criticality, and

More information

Lorentz violations: from quantum gravity to black holes. Thomas P. Sotiriou

Lorentz violations: from quantum gravity to black holes. Thomas P. Sotiriou Lorentz violations: from quantum gravity to black holes Thomas P. Sotiriou Motivation Test Lorentz symmetry Motivation Old problem: Can we make gravity renormalizable? Possible solution: Add higher-order

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc Symmetry and Duality FACETS 2018 Nemani Suryanarayana, IMSc What are symmetries and why are they important? Most useful concept in Physics. Best theoretical models of natural Standard Model & GTR are based

More information

Flux Compactification of Type IIB Supergravity

Flux Compactification of Type IIB Supergravity Flux Compactification of Type IIB Supergravity based Klaus Behrndt, LMU Munich Based work done with: M. Cvetic and P. Gao 1) Introduction 2) Fluxes in type IIA supergravity 4) Fluxes in type IIB supergravity

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Casimir effect in background of static domain wall

Casimir effect in background of static domain wall Casimir effect in background of static domain wall M. R. Setare a, 1 and A. Saharian b, 2 a) Department of Physics, Sharif University of Technology, P.O.Box 11365-9161, Tehran, Iran b) Department of Physics,

More information

Superconductivity, Superfluidity and holography

Superconductivity, Superfluidity and holography Outline Department of Theoretical Physics and Institute of Theoretical Physics, Autònoma University of Madrid, Spain and Scuola Normale Superiore di Pisa, Italy 12 November 2012, Laboratori Nazionali del

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Hadrons in a holographic approach to finite temperature (and density) QCD

Hadrons in a holographic approach to finite temperature (and density) QCD Hadrons in a holographic approach to finite temperature (and density) QCD Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri EMMI Workshop:

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information

Lagrangian for Central Potentials

Lagrangian for Central Potentials Physics 411 Lecture 2 Lagrangian for Central Potentials Lecture 2 Physics 411 Classical Mechanics II August 29th 2007 Here we will review the Lagrange formulation in preparation for the study of the central

More information

Drag Force in a Chiral Plasma

Drag Force in a Chiral Plasma Drag Force in a Chiral Plasma A.V. Sadofyev MI January 23, 2015 A.V. Sadofyev (MI)Drag Force in a Chiral Plasma January 23, 2015 1 / 13 Probe string As it was argued a long time ago 1 one could calculate

More information

Gravitational perturbations on branes

Gravitational perturbations on branes º ( Ò Ò ) Ò ± 2015.4.9 Content 1. Introduction and Motivation 2. Braneworld solutions in various gravities 2.1 General relativity 2.2 Scalar-tensor gravity 2.3 f(r) gravity 3. Gravitational perturbation

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations Demystifying the Strange Metal in High-temperature Superconductors: Composite Excitations Thanks to: T.-P. Choy, R. G. Leigh, S. Chakraborty, S. Hong PRL, 99, 46404 (2007); PRB, 77, 14512 (2008); ibid,

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information