Detecting unparticles and anomalous dimensions in the Strange Metal

Size: px
Start display at page:

Download "Detecting unparticles and anomalous dimensions in the Strange Metal"

Transcription

1 Detecting unparticles and anomalous dimensions in the Strange Metal Thanks to: NSF, EFRC (DOE) Andreas Karch Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Gabriele La Nave

2 Drude metal

3 Drude metal ṗ = e(e + p B m ) p momentum relaxation

4 Drude metal ṗ = e(e + p B m ) p momentum relaxation (!) = 0 1 i!

5 Drude metal ṗ = e(e + p B m ) p momentum relaxation (!) = 0 1 i! lim <!1!0

6 Drude metal ṗ = e(e + p B m ) p momentum relaxation (!) = 0 1 i! lim <!1!0 µ T µi = 1 T ti

7 Drude metal ṗ = e(e + p B m ) p momentum relaxation (!) = 0 1 i! lim <!1!0 µ T µi = 1 T ti massive graviton

8 standard metals resistivity / T 2 Weidemann-Franz law apple xx = 2 T xx 3 optical conductivity < / 1/! 2

9 standard metals resistivity / T 2 Weidemann-Franz law apple xx = 2 T xx 3 optical conductivity < / 1/! 2

10 strange metal: experimental facts T-linear resistivity

11 strange metal: experimental facts T-linear resistivity (!) =C! 2 3 n e 2 m 1 1 i!

12 strange metal: experimental facts T-linear resistivity L xy = apple xy /T xy 6=#/ T (!) =C! 2 3 n e 2 m 1 1 i!

13 / at

14 is the strange metal important? / at

15

16 Theories of cuprates Theories of strange metal = 1 = en O(0)

17 Theories of cuprates Theories of strange metal = 1 = en O(0)

18 Theories of cuprates Theories of strange metal = 1 = en O(0)

19 Theories of cuprates Theories of strange metal = 1 = en O(0) why is the problem hard?

20 single-parameter scaling / z / T (2 d)/z (!, T) /! (d 2)/z C v / T d/z

21 single-parameter scaling / z 1 / T (2 d)/z (!, T) /! (d 2)/z C v / T d/z

22 single-parameter scaling / z 1 / T (2 d)/z (!, T) /! (d 2)/z 2/3 C v / T d/z

23 single-parameter scaling / z 1 / T (2 d)/z (!, T) /! (d 2)/z 2/3 C v / T d/z anomalous dimension 2! 2d A

24 single-parameter scaling / z 1 / T (2 d)/z (!, T) /! (d 2)/z 2/3 C v / T d/z anomalous dimension 2! 2d A

25 new length scale?

26 strange metal

27 strange metal multi-scale sector

28 strange metal multi-scale sector [J] =

29 strange metal multi-scale sector [J] = fractional not d-1

30 strange metal multi-scale sector [J] = fractional not d-1 [A µ ]=d A 6=1

31 strange metal multi-scale sector [J] = fractional not d-1 [A µ ]=d A 6=1 probe by fractional Aharonov-Bohm effect

32 optical conductivity

33 N e ( ) = 2mV cell e 2 Z 0 (!)d!

34 N e ( ) = 2mV cell e 2 Uchida, et al. Z 0 (!)d! Cooper, et al. x

35 N e ( ) = 2mV cell e 2 Uchida, et al. Z 0 (!)d! Cooper, et al. x low-energy model for N e >x??

36 Drude conductivity n e 2 m 1 1 i! (!) =C! 2 e i (1 /2) =1.35

37 Drude conductivity n e 2 m 1 1 i! (!) =C! 2 e i (1 /2) =1.35

38 Drude conductivity n e 2 m 1 1 i! (!) =C! 2 e i (1 /2) =1.35 tan 2 / 1 = p 3 = 60

39 criticality scale invariance power law correlations

40 criticality scale invariance power law correlations

41 criticality scale invariance power law correlations

42 Anderson: use Luttinger Liquid propagators G R / 1 (! v s k) (!) / 1! Z dx Z dtg e (x, t)g h (x, t)e i!t / (i!) 1+2

43 problems 1.) cuprates are not 1- dimensional 2.) vertex corrections matter

44 problems 1.) cuprates are not 1- dimensional 2.) vertex corrections matter / G G( µ ) 2 µ, } [G] =L d+1 2d U µ ]=L 2d U d [ [ µ ]=L 2d U d+1

45 problems 1.) cuprates are not 1- dimensional 2.) vertex corrections matter / G G( µ ) 2 µ, } [G] =L d+1 2d U µ ]=L 2d U d [ [ µ ]=L 2d U d+1 [ ]=L 2 d independent of d U

46 1997 Anderson

47 1997 Anderson 2012 string theory AdS/CFT

48 optical conductivity from a gravitational lattice log-log plots for various parameters for G. Horowitz et al., Journal of High Energy Physics, 2012

49 optical conductivity from a gravitational lattice log-log plots for various parameters for a remarkable claim! replicates features of the strange metal? how? G. Horowitz et al., Journal of High Energy Physics, 2012

50 new equation! Einstein- Maxwell equations + non-uniform = charge density B! 2/3

51 not so fast!

52 Donos and Gauntlett (Q-lattice) Drude conductivity n e 2 m 1 1 i!

53 Donos and Gauntlett (Q-lattice) Drude conductivity n e 2 m 1 1 i! 2 3 =1+! 00 0

54 Donos and Gauntlett (Q-lattice) Drude conductivity n e 2 m 1 1 i! 2 3 =1+! 00 0 B! 2/3

55 Donos and Gauntlett (Q-lattice) Drude conductivity n e 2 m 1 1 i! 2 3 =1+! 00 0 B! 2/3 no power law!!

56 who is correct?

57 who is correct? let s redo the calculation

58 model action = gravity + EM + lattice S = 1 16 G N Z d 4 x p g R 2 12 F 2, L( )= p 2 V ( )]

59 model action = gravity + EM + lattice S = 1 16 G N Z d 4 x p g R 2 12 F 2, L( )= p 2 V ( )]

60 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) Q

61 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) Q

62 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) Q A t = µ(1 z)dt =lim z!0 p gf tz

63 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E

64 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a i = i + i

65 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a A x = E i! + J x(x,!)z + O(z 2 ) i = i + i = J x (x,!)/e

66 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a A x = E i! + J x(x,!)z + O(z 2 ) Brandon Langley i = i + i solve equations of motion with gauge invariance (without mistakes) = J x (x,!)/e

67 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a A x = E i! + J x(x,!)z + O(z 2 ) Brandon Langley i = i + i solve equations of motion with gauge invariance (without mistakes) = J x (x,!)/e

68 conductivity within AdS (g ab,v( ),A t ) (metric, potential, gaugefield) perturb with electric field Q A t = µ(1 z)dt =lim z!0 p gf tz ~ E g ab =ḡ ab + h ab A a = Āa + b a A x = E i! + J x(x,!)z + O(z 2 ) Brandon Langley i = i + i solve equations of motion with gauge invariance (without mistakes) = J x (x,!)/e

69 HST vs. DG

70 HST vs. DG Horowitz, Santos, Tong (HST) V ( ) = 2 /L 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2

71 HST vs. DG Horowitz, Santos, Tong (HST) V ( ) = 2 /L 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2 de Donder gauge

72 HST vs. DG Horowitz, Santos, Tong (HST) DG V ( ) = 2 /L 2 V 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2 (z,x) = (z)e ikx no inhomogeneity in x m 2 = 3/(2L 2 ) de Donder gauge

73 HST vs. DG Horowitz, Santos, Tong (HST) DG V ( ) = 2 /L 2 V 2 =z (1) + z 2 (2) +, (1) (x) =A 0 cos(kx) inhomogeneous in x m 2 = 2/L 2 de Donder gauge (z,x) = (z)e ikx no inhomogeneity in x m 2 = 3/(2L 2 ) radial gauge

74 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 )

75 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 ) 1(x) =A 0 cos kx 2,

76 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 ) 1(x) =A 0 cos kx 2, 2 = A 0 cos kx + 2

77 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 ) 1(x) =A 0 cos kx 2, 2 = A 0 cos kx + 2 =0 HST

78 Our Model L =(r 1 ) 2 +(r 2 ) 2 +2V ( 1 )+2V ( 2 ) 1(x) =A 0 cos kx 2, 2 = A 0 cos kx + 2 =0 = 2 HST DG

79 charge density

80 is there a power law?

81 is there a power law? Results 2/3 DG HST

82 is there a power law? Results k=2 2/3 k=1 DG HST

83 Results A 1 =0.75,k 1 =2,k 2 =2, =0,µ=1.4, T/µ =0.115

84 similar results: Rangamani, Rozali, Smyth arxiv:

85 No

86 Anderson AdS/CFT

87 scale invariance Anderson AdS/CFT

88 beyond single-parameter scaling multiple scale sector incoherent stuff (all energies)

89 beyond single-parameter scaling multiple scale sector unparticles (GFF) no well-defined mass incoherent stuff (all energies)

90 L µ (x, m)@ µ (x, m)+m 2 2 (x, m)

91 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 (m 2 )dm 2

92 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 (m 2 )dm 2 theory with all possible mass!

93 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 (m 2 )dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2

94 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 (m 2 )dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2 L! 4+d L scale invariance is restored!!

95 Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 (m 2 )dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2 L! 4+d L scale invariance is restored!! not particles

96 unparticles Z 1 L µ (x, m)@ µ (x, m)+m 2 2 (x, m) 0 (m 2 )dm 2 theory with all possible mass!! (x, m 2 / 2 ) x! x/ m 2 / 2! m 2 L! 4+d L scale invariance is restored!! not particles

97 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2

98 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2 d U 2

99 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2 d U 2 continuous mass (x, m 2 ) flavors

100 propagator Z 1 0 dm 2 m 2 p 2 i m 2 + i 1 / p 2 d U 2 continuous mass (x, m 2 ) flavors e 2 (m) Karch, 2015 multi-bands

101

102 take experiments seriously

103 take experiments seriously i (!) = n ie 2 i i m i 1 1 i! i

104 take experiments seriously i (!) = n ie 2 i i m i 1 1 i! i continuous mass

105 take experiments seriously i (!) = n ie 2 i i m i 1 1 i! i continuous mass (!) = Z M 0 (m)e 2 (m) (m) m 1 1 i! (m) dm

106 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c

107 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c (!) = 0e M a+2b+c Z M 0 dm ma+2b+c 2 1 i! 0 m c M c = 0e2 0 cm 1!(! 0 ) a+2b 1 c Z! 0 0 dx x a+2b 1 c 1 ix

108 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c (!) = 0e M a+2b+c Z M 0 dm ma+2b+c 2 1 i! 0 m c M c = 0e2 0 cm 1!(! 0 ) a+2b 1 c Z! 0 0 dx x a+2b 1 c 1 ix

109 variable masses for everything (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c (!) = 0e M a+2b+c Z M 0 dm ma+2b+c 2 1 i! 0 m c M c = 0e2 0 cm 1!(! 0 ) a+2b 1 c Z! 0 0 dx x a+2b 1 c 1 ix perform integral

110 a +2b 1 c = 1 3

111 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix

112 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix! 0!1

113 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix! 0!1 (!) = 1 3 (p 3+3i) 0e M! 2 3

114 a +2b 1 c = 1 3 (!) = 0e M 1! 2 3 Z! 0 0 dx x ix! 0!1 (!) = 1 3 (p 3+3i) 0e M! 2 3 tan = p 3 60

115 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c

116 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c hyperscaling violation

117 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c hyperscaling violation anomalous dimension

118 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c hyperscaling violation anomalous dimension momentum loss

119 are anomalous dimensions necessary a +2b 1 c = 1 3 (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 M c hyperscaling violation anomalous dimension momentum loss c =1 a +2b =2/3

120 are anomalous dimensions necessary a +2b 1 c (m) = 0 m a 1 M a m b e(m) =e 0 M b m c (m) = 0 c =1 = 1 3 M c a +2b =2/3 hyperscaling violation anomalous dimension momentum loss b =0 a =2/3

121 No

122 No but the Lorenz ratio is not a constant L H = apple xy T xy T T 2 /z

123 No but the Lorenz ratio is not a constant L H = apple xy T xy T T 2 /z Hartnoll/Karch =bz = 2/3

124 No but the Lorenz ratio is not a constant L H = apple xy T xy T T 2 /z Hartnoll/Karch =bz = 2/3 / T 2 /z

125 gauge invariance A µ!a µ µ G has no units [A µ ]= 1 L =1 if [A µ ] 6= 1

126 gauge invariance A µ!a µ µ G has no units [A µ ]= 1 L =1 if [A µ ] 6= 1

127 How can A µ have an anomalous dimension?

128 How can A µ have an anomalous dimension? solution A µ!a µ µ G

129 How can A µ have an anomalous dimension? solution A µ!a µ µ G F µ µ µ µ A µ

130 How can A µ have an anomalous dimension? solution A µ!a µ µ G F µ µ µ µ A µ ~r ~ A = ~ B

131 How can A µ have an anomalous dimension? solution A µ!a µ µ G F µ µ µ µ A µ ~r ~ A = ~ B no Stokes theorem I ~A d` 6= Z S B d ~ S

132 Aharonov-Bohm Effect must change flux through ring = e ~ I ~A d` = eb r2 ~ I Stokes theorem ~A d` = Z S B d ~ S

133 Aharonov-Bohm Effect must change flux through ring = e ~ I ~A d` = eb r2 ~ I Stokes theorem ~A d` = Z S B d ~ S

134 physical gauge connection a i [@ i,i i A i ]=@ i I i A i compute AB phase

135 physical gauge connection a i [@ i,i i A i ]=@ i I i A i A µ! A µ µ compute AB phase

136 physical gauge connection a i [@ i,i i A i ]=@ i I i A i A µ! A µ µ a µ! a µ µ compute AB phase

137 physical gauge connection a i [@ i,i i A i ]=@ i I i A i A µ! A µ µ ~ 2 a µ! a µ µ 2m (@ i i e ~ a i) 2 = i~@ t. compute AB phase

138 compute AB phase I = e ~a (r 0 ) ~d`0 ~

139 compute AB phase I = e ~a (r 0 ) ~d`0 ~

140 compute AB phase I = e ~a (r 0 ) ~d`0 ~ use fractional calculus R = eb`2 ~ b 1 d 1 2 ( ) c l, d l

141 compute AB phase I = e ~a (r 0 ) ~d`0 ~ use fractional calculus R = eb`2 ~ b 1 d 1 2 ( ) c l, d l

142 D = e p 2 ~ r2 BR (2 ) (1 2 )! ( ) ( ) sin F 1 (1, 2 ; 2; r2 R 2 )

143 D = e p 2 ~ r2 BR (2 ) (1 2 )! ( ) ( ) sin F 1 (1, 2 ; 2; r2 R 2 )

144 is the correction large? =1+2/3 =5/3

145 is the correction large? =1+2/3 =5/3 R = eb`2 ~ L 5/3 /(0.43) 2 yes!

146 what is the mechanism for the anomalous dimension?

147 what is the mechanism for the anomalous dimension? is the nonlocality real?

148 bulk-boundary operator correspondence operators O (@ µ ) 2 + m 2 2 IR UV QF T e R d d x O O

149 bulk-boundary operator correspondence operators O (@ µ ) 2 + m 2 2 IR UV QF T e R d d x O O

150 bulk-boundary operator correspondence operators O (@ µ ) 2 + m 2 2 IR UV QF T e R d d x O O smearing function

151 bulk-boundary operator correspondence operators O (@ µ ) 2 + m 2 2 IR UV QF T e R d d x O O see also K. Rehren (2000) smearing function

152 O = C O lim z!0 z (x, z)

153 O = C O lim z!0 z (x, lim za z!0 = C d, ( r) f = 1 a 2 use Caffarelli/ Silvestre

154 O = C O lim z!0 z (x, lim za z!0 = C d, ( r) f = 1 a 2 use Caffarelli/ Silvestre O =( ) 0 the O for massive scalar field = p 4m 2 + d 2 /2

155 mechanism: fractional gauge fields

156 mechanism: fractional gauge fields F µ F µ + m 2 A 2 y dynamical `Higgs mode

157 mechanism: fractional gauge fields F µ F µ + m 2 A 2 y A? µ A?µ dynamical `Higgs mode

158 mechanism: fractional gauge fields F µ F µ + m 2 A 2 y A? µ A?µ dynamical `Higgs mode new length scale

159 N e ( ) = 2mV cell e 2 Uchida, et al. Z 0 (!)d! Cooper, et al. x low-energy model for N e >x??

160 what if? K.E. / (@ 2 µ) f-sum rule W (n, T ) ce 2 = An 1+ 2( 1) d +

161 what if? K.E. / (@ 2 µ) f-sum rule W (n, T ) ce 2 = An 1+ 2( 1) d + W>n if <1

162

163 combine AC +DC transport fixes all exponents a,b,c [J] =d U

164 combine AC +DC transport fixes all exponents a,b,c probe with fractional Aharonov-Bohm effect [J] =d U

165 combine AC +DC transport fixes all exponents a,b,c boundary non-local action probe with fractional Aharonov-Bohm effect [J] =d U

Testing Mottness/unparticles and anomalous dimensions in the Cuprates

Testing Mottness/unparticles and anomalous dimensions in the Cuprates Testing Mottness/unparticles and anomalous dimensions in the Cuprates Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool / at what is strange about the strange metal?

More information

Optical Conductivity in the Cuprates from holography and unparticles

Optical Conductivity in the Cuprates from holography and unparticles Optical Conductivity in the Cuprates from holography and unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Properties all particles share? charge fixed mass!

More information

Optical Conductivity in the Cuprates from Holography and Unparticles

Optical Conductivity in the Cuprates from Holography and Unparticles Optical Conductivity in the Cuprates from Holography and Unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Drude conductivity n e 2 1 m 1 i! (!) =C! 2 3

More information

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool N e ( ) = 2mV cell e 2 Z 0 (!)d! optical

More information

`Anomalous dimensions for conserved currents and Noether s Second Theorem

`Anomalous dimensions for conserved currents and Noether s Second Theorem `Anomalous dimensions for conserved currents and Noether s Second Theorem Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool 0 no order Mott insulator x strange metal: experimental facts

More information

`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE)

`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE) `Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool Pippard s problem J s 6= c 4 2

More information

Do Cuprates Harbor Extra Dimensions?

Do Cuprates Harbor Extra Dimensions? Do Cuprates Harbor Extra Dimensions? Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool How would such dimensions be detected? Do they obey the standard electricity and magnetism? standard

More information

Holographic Q-Lattices and Metal-Insulator Transitions

Holographic Q-Lattices and Metal-Insulator Transitions Holographic Q-Lattices and Metal-Insulator Transitions Jerome Gauntlett Aristomenis Donos Holographic tools provide a powerful framework for investigating strongly coupled systems using weakly coupled

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Thermo-electric transport in holographic systems with moment

Thermo-electric transport in holographic systems with moment Thermo-electric Perugia 2015 Based on: Thermo-electric gauge/ models with, arxiv:1406.4134, JHEP 1409 (2014) 160. Analytic DC thermo-electric conductivities in with gravitons, arxiv:1407.0306, Phys. Rev.

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Unparticles in High T_c Superconductors

Unparticles in High T_c Superconductors Unparticles in High T_c Superconductors Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17

Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17 Anomalous dimensions, Mottness, Bose metals, and holography D. Dalidovich G. La Nave G. Vanacore Anomalous dimensions, Mottness, Bose metals, and holography 1 p 2 (p 2 ) d U d/2 Fermi liquids D. Dalidovich

More information

Unaprticles: MEELS, ARPES and the Strange Metal

Unaprticles: MEELS, ARPES and the Strange Metal Unaprticles: MEELS, ARPES and the Strange Metal K. Limtragool Chandan Setty Chandan Setty Zhidong Leong Zhidong Leong Bikash Padhi strange metal: experimental facts T-linear resistivity (!) =C! 2 3 L xy

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

AC conductivity of a holographic strange metal

AC conductivity of a holographic strange metal AC conductivity of a holographic strange metal F. Peña-Benítez INFN - Perugia 1507.05633 in collaboration with Elias Kiritsis Workshop on Holography and Condensed Matter 1 motivation holography is a good

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Optical Conductivity with Holographic Lattices

Optical Conductivity with Holographic Lattices PHYS 612 Quantum Field Theory II Spring 2013 Final Project Optical Conductivity with Holographic Lattices Kubra Yeter Instructor: George Siopsis Department of Physics and Astronomy, The University of Tennessee,

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

Transport w/o quasiparticles

Transport w/o quasiparticles Transport w/o quasiparticles Good metals, bad metals and insulators Sean Hartnoll (Stanford) -- Caneel Bay, Jan. 2013 Based on: 1201.3917 w/ Diego Hofman 1212.2998 w/ Aristos Donos (also work in progress

More information

Holographic matter at finite chemical potential

Holographic matter at finite chemical potential Holographic matter at finite chemical potential Talk at NumHol 2016 Santiago de Compostela, Spain Aristomenis Donos Durham University Base on work with: J. P. Gauntlett, E. Banks, T. Griffin, L. Melgar,

More information

Disordered spacetimes in AdS/CMT. Andrew Lucas

Disordered spacetimes in AdS/CMT. Andrew Lucas Disordered spacetimes in AdS/CMT Andrew Lucas Stanford Physics Disorder in Condensed Matter and Black Holes; Leiden January 9, 2017 Advertisement 2 350 page review article on AdS/CMT, together with: Sean

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Seungmin Hong Mott Problem Mott Problem + # + Mott Problem + # + σ(ω) Ω -1 cm -1 VO 2 T=360 K T=295

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Correlated Matter Correlated Matter What is carrying the current? current-carrying excitations? current-carrying

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley 2=3 goal 2 = 3 Properties all particles share? Properties all particles share? charge fixed mass! Properties

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

Unparticles and Emergent Mottness

Unparticles and Emergent Mottness Unparticles and Emergent Mottness Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Spatially Modulated Phases in Holography. Jerome Gauntlett Aristomenis Donos Christiana Pantelidou

Spatially Modulated Phases in Holography. Jerome Gauntlett Aristomenis Donos Christiana Pantelidou Spatially Modulated Phases in Holography Jerome Gauntlett Aristomenis Donos Christiana Pantelidou Spatially Modulated Phases In condensed matter there is a variety of phases that are spatially modulated,

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Mott Problem emergent gravity Mott Problem What interacting problems can we solve in quantum mechanics?

More information

Metal-insulator Transition by Holographic Charge Density Waves

Metal-insulator Transition by Holographic Charge Density Waves Metal-insulator Transition by Holographic Charge Density Waves Chao Niu (IHEP, CAS) Based mainly on arxiv:1404.0777 with: Yi Ling, Jianpin Wu, Zhuoyu Xian and Hongbao Zhang (May 9, 2014) Outlines 1. Introduction

More information

UC Davis UC Davis Previously Published Works

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title Spatial modulation and conductivities in effective holographic theories Permalink https://escholarship.org/uc/item/p733t9 Journal Journal of High Energy

More information

Cold Holographic matter in top-down models

Cold Holographic matter in top-down models Cold Holographic matter in top-down models A. V. Ramallo Univ. Santiago NumHol016, Santiago de Compostela June 30, 016 Based on 1503.0437, 160.06106, 1604.03665 with Y. Bea, G. Itsios and N. Jokela Motivation

More information

Holographic Lattices Give the Graviton an Effective Mass

Holographic Lattices Give the Graviton an Effective Mass Holographic Lattices Give the Graviton an Effective Mass Mike Blake, 1 David Tong, 1 and David Vegh 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA,

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) Mottness and Holography: A Discrete Marriage Thanks to: NSF, EFRC (DOE) Seungmin Hong M. Edalati R. G. Leigh emergent gravity spectral weight transfer 2-particle probe spectral weight transfer spectral

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

Dynamics, phase transitions and holography

Dynamics, phase transitions and holography Dynamics, phase transitions and holography Jakub Jankowski with R. A. Janik, H. Soltanpanahi Phys. Rev. Lett. 119, no. 26, 261601 (2017) Faculty of Physics, University of Warsaw Phase structure at strong

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

arxiv: v4 [hep-th] 15 Feb 2015

arxiv: v4 [hep-th] 15 Feb 2015 Holographic Superconductor on Q-lattice Yi Ling 1,2, Peng Liu 1, Chao Niu 1, Jian-Pin Wu 3,2, and Zhuo-Yu Xian 1 1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 149, China 2 State

More information

Hydrodynamic transport in holography and in clean graphene. Andrew Lucas

Hydrodynamic transport in holography and in clean graphene. Andrew Lucas Hydrodynamic transport in holography and in clean graphene Andrew Lucas Harvard Physics Special Seminar, King s College London March 8, 2016 Collaborators 2 Subir Sachdev Harvard Physics & Perimeter Institute

More information

Superfluid-insulator transition

Superfluid-insulator transition Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T Quantum critical T KT Superfluid Insulator 0 g c

More information

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT Chung-I Tan Brown University Dec. 19, 2008 Miami R. Brower, J. Polchinski, M. Strassler, and C-I Tan, The Pomeron and Gauge/String

More information

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES GRAVITY DUALS OF 2D SUSY GAUGE THEORIES BASED ON: 0909.3106 with E. Conde and A.V. Ramallo (Santiago de Compostela) [See also 0810.1053 with C. Núñez, P. Merlatti and A.V. Ramallo] Daniel Areán Milos,

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Towards a holographic formulation of cosmology

Towards a holographic formulation of cosmology Towards a holographic formulation of cosmology Gonzalo Torroba Stanford University Topics in holography, supersymmetry and higher derivatives Mitchell Institute, Texas A&M, April 2013 During the last century,

More information

Dynamics of Entanglement Entropy From Einstein Equation

Dynamics of Entanglement Entropy From Einstein Equation YITP Workshop on Quantum Information Physics@YITP Dynamics of Entanglement Entropy From Einstein Equation Tokiro Numasawa Kyoto University, Yukawa Institute for Theoretical Physics based on arxiv:1304.7100

More information

Charge transport in holography with momentum dissipation

Charge transport in holography with momentum dissipation Preprint typeset in JHEP style - HYPER VERSION NORDITA-014-7 Charge transport in holography with momentum dissipation arxiv:1401.5436v4 [hep-th] Dec 016 B. Goutéraux a a Nordita, KTH Royal Institute of

More information

Incoherent Transport and Black Holes Talk at Strings 2017, Tel-Aviv. Aristomenis Donos Durham University

Incoherent Transport and Black Holes Talk at Strings 2017, Tel-Aviv. Aristomenis Donos Durham University Incoherent Transport and Black Holes Talk at Strings 2017, Tel-Aviv Aristomenis Donos Durham University Holographic quantum matter Sean A. Hartnoll, 1, Andrew Lucas, 1, 2, 3, and Subir Sachdev 1 Department

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Effective field theory, holography, and non-equilibrium physics. Hong Liu Effective field theory, holography, and non-equilibrium physics Hong Liu Equilibrium systems Microscopic description low energy effective field theory: Macroscopic phenomena Renormalization group, universality

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) From Fermi Arcs to Holography Thanks to: NSF, EFRC (DOE) Seungmin Hong and S. Chakraborty T.-P. Choy M. Edalati R. G. Leigh Fermi Arcs P. Johnson, PRL 2011 Na-CCOC (Shen, Science 2006) La-Bi2201 (Meng,

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Lifshitz Geometries in String and M-Theory

Lifshitz Geometries in String and M-Theory Lifshitz Geometries in String and M-Theory Jerome Gauntlett Aristomenis Donos Aristomenis Donos, Nakwoo Kim, Oscar Varela (to appear) AdS/CMT The AdS/CFT correspondence is a powerful tool to study strongly

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Autocorrelators in models with Lifshitz scaling

Autocorrelators in models with Lifshitz scaling Autocorrelators in models with Lifshitz scaling Lárus Thorlacius based on V. Keränen & L.T.: Class. Quantum Grav. 29 (202) 94009 arxiv:50.nnnn (to appear...) International workshop on holography and condensed

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

AdS/CFT and Second Order Viscous Hydrodynamics

AdS/CFT and Second Order Viscous Hydrodynamics AdS/CFT and Second Order Viscous Hydrodynamics Micha l P. Heller Institute of Physics Jagiellonian University, Cracow Cracow School of Theoretical Physics XLVII Course Zakopane, 20.06.2007 Based on [hep-th/0703243]

More information

Holographic methods for cosmology. Gonzalo Torroba Stanford University

Holographic methods for cosmology. Gonzalo Torroba Stanford University Holographic methods for cosmology Gonzalo Torroba Stanford University Observations and Theoretical Challenges in Primordial Cosmology KITP, UCSB, April 2013 Members of the collaboration Matt Dodelson Shunji

More information

SYMMETRIES AND DISSIPATIVE MAGNETOHYDRODYNAMICS

SYMMETRIES AND DISSIPATIVE MAGNETOHYDRODYNAMICS SAŠO GROZDANOV INSTITUUT-LORENTZ FOR THEORETICAL PHYSICS LEIDEN UNIVERSITY GENERALISED GLOBAL SYMMETRIES AND DISSIPATIVE MAGNETOHYDRODYNAMICS OXFORD, 14.7.2017 2 OUTLINE hydrodynamics generalised global

More information

My talk Two different points of view:

My talk Two different points of view: Shin Nakamura (Dept. Phys. Kyoto Univ.) Reference: S.N., Hirosi Ooguri, Chang-Soon Park, arxiv:09.0679[hep-th] (to appear in Phys. Rev. D) ( k B = h= c=) My talk Two different points of view: rom the viewpoint

More information

Topologically Massive Gravity and AdS/CFT

Topologically Massive Gravity and AdS/CFT Topologically Massive Gravity and AdS/CFT Institute for Theoretical Physics University of Amsterdam The Planck Scale, XXV Max Born Symposium Wroclaw, 30 June 2009 Introduction Three dimensional gravity

More information

q form field and Hodge duality on brane

q form field and Hodge duality on brane Lanzhou University (=²ŒÆ) With C.E. Fu, H. Guo and S.L. Zhang [PRD 93 (206) 064007] 4th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry December 29-3, 206, December 3,

More information

Momentum relaxation in holographic massive gravity

Momentum relaxation in holographic massive gravity Momentum relaxation in holographic massive gravity Richard Davison Lorentz Institute, Leiden Based on 1306.5792 [hep-th] Gauge/Gravity Duality 2013, Munich July 30 th 2013 Introduction and motivation We

More information

Black holes in massive gravity

Black holes in massive gravity Black holes in massive gravity Eugeny Babichev LPT, Orsay IAP PARIS, MARCH 14 2016 REVIEW: in collaboration with: R. Brito, M. Crisostomi, C. Deffayet, A. Fabbri,P. Pani, ARXIV:1503.07529 1512.04058 1406.6096

More information

Non-Abelian Anyons in the Quantum Hall Effect

Non-Abelian Anyons in the Quantum Hall Effect Non-Abelian Anyons in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with L. Georgiev (Sofia), G. Zemba (Buenos Aires), G. Viola (Florence) Outline Incompressible Hall fluids:

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Anomalies, Hydrodynamics, and Nonequilibrium Phenomena

Anomalies, Hydrodynamics, and Nonequilibrium Phenomena Anomalies, Hydrodynamics, and Nonequilibrium Phenomena Hirosi Ooguri Strings 2013, Seoul 1/43 Two topics on applied holography: manifestation of anomalies in hydrodynamics edge current, Hall viscosity,

More information

Hyperscaling violation and entanglement entropy in gauge/string theory

Hyperscaling violation and entanglement entropy in gauge/string theory Hyperscaling violation and entanglement entropy in gauge/string theory K. Narayan Chennai Mathematical Institute Introduction, summary Lightcone SYM, string theory, AdS plane waves AdS plane waves, hyperscaling

More information

Yun Soo Myung Inje University

Yun Soo Myung Inje University On the Lifshitz black holes Yun Soo Myung Inje University in collaboration with T. Moon Contents 1. Introduction. Transition between Lifshitz black holes and other configurations 3. Quasinormal modes and

More information

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity 2012cüWâfÔn»Æï? Domain Wall Brane in Eddington Inspired Born-Infeld Gravity µ4œ Ç =²ŒÆnØÔnïÄ Email: yangke09@lzu.edu.cn I# Ÿ 2012.05.10 Outline Introduction to Brane World Introduction to Eddington Inspired

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

HIGHER SPIN DUALITY from THERMOFIELD DOUBLE QFT. AJ+Kenta Suzuki+Jung-Gi Yoon Workshop on Double Field Theory ITS, ETH Zurich, Jan 20-23,2016

HIGHER SPIN DUALITY from THERMOFIELD DOUBLE QFT. AJ+Kenta Suzuki+Jung-Gi Yoon Workshop on Double Field Theory ITS, ETH Zurich, Jan 20-23,2016 HIGHER SPIN DUALITY from THERMOFIELD DOUBLE QFT AJ+Kenta Suzuki+Jung-Gi Yoon Workshop on Double Field Theory ITS, ETH Zurich, Jan 20-23,2016 Overview } Construction of AdS HS Gravity from CFT } Simplest

More information

arxiv: v2 [hep-th] 27 Aug 2015

arxiv: v2 [hep-th] 27 Aug 2015 ACFI-T15-06 arxiv:1507.05534v2 [hep-th] 27 Aug 2015 Melvin Magnetic Fluxtube/Cosmology Correspondence David Kastor 1 and Jennie Traschen 2 Amherst Center for Fundamental Interactions Department of Physics,

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Holographic Transport.

Holographic Transport. Holographic Transport. Andreas Karch (University of Washington, Seattle) (talk at UC Davis, 3/19/15) 1 Holography = Solvable Toy Model Solvable models of strong coupling dynamics. Study Transport, real

More information

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP BPS non-local operators in AdS/CFT correspondence Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv:0812.1420 to appear in JHEP Introduction Non-local operators in quantum field theories

More information

Non-Equilibrium Steady States Beyond Integrability

Non-Equilibrium Steady States Beyond Integrability Non-Equilibrium Steady States Beyond Integrability Joe Bhaseen TSCM Group King s College London Beyond Integrability: The Mathematics and Physics of Integrability and its Breaking in Low-Dimensional Strongly

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Holography for non-relativistic CFTs

Holography for non-relativistic CFTs Holography for non-relativistic CFTs Herzog, Rangamani & SFR, 0807.1099, Rangamani, Son, Thompson & SFR, 0811.2049, SFR & Saremi, 0907.1846 Simon Ross Centre for Particle Theory, Durham University Liverpool

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES Danilo E. Díaz (UNAB-Talcahuano) joint work with F. Bugini (acknowledge useful conversations with R. Aros, A. Montecinos, R. Olea, S. Theisen,...) 5TH COSMOCONCE

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

A Supergravity Dual for 4d SCFT s Universal Sector

A Supergravity Dual for 4d SCFT s Universal Sector SUPERFIELDS European Research Council Perugia June 25th, 2010 Adv. Grant no. 226455 A Supergravity Dual for 4d SCFT s Universal Sector Gianguido Dall Agata D. Cassani, G.D., A. Faedo, arxiv:1003.4283 +

More information

Aspects of holography for theories with hyperscaling violation

Aspects of holography for theories with hyperscaling violation SLAC-PUB-14850 SU-ITP-12/01 Aspects of holography for theories with hyperscaling violation Xi Dong, Sarah Harrison, Shamit Kachru, Gonzalo Torroba and Huajia Wang arxiv:1201.1905v4 [hep-th] 28 May 2012

More information

AdS/CFT and holographic superconductors

AdS/CFT and holographic superconductors AdS/CFT and holographic superconductors Toby Wiseman (Imperial) In collaboration with Jerome Gauntlett and Julian Sonner [ arxiv:0907.3796 (PRL 103:151601, 2009), arxiv:0912.0512 ] and work in progress

More information

This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT ) under grant agreement No

This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT ) under grant agreement No This research has been co-financed by European Union s Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement No 316165. and the European Union (European Social Fund, ESF) and Greek

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 1207.4194, 12xx.xxxx in collaboration with Jerome Gauntlett & Toby Wiseman Benjamin Simons Miraculous

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information