Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17

Size: px
Start display at page:

Download "Anomalous dimensions, Mottness, Bose metals, and holography. D. Dalidovich G. La Nave G. Vanacore. Wednesday, January 18, 17"

Transcription

1 Anomalous dimensions, Mottness, Bose metals, and holography D. Dalidovich G. La Nave G. Vanacore

2 Anomalous dimensions, Mottness, Bose metals, and holography 1 p 2 (p 2 ) d U d/2 Fermi liquids D. Dalidovich G. La Nave G. Vanacore

3 = d ln g(l) d ln L = d 2 no metals for d apple 2

4 = d ln g(l) d ln L = d 2 no metals for d apple 2 2D MIT 2D IST Kravchenko 1995 Goldman 1989

5 = d ln g(l) d ln L = d 2 no metals for d apple 2 2D MIT 2D IST? Kravchenko 1995 Goldman 1989

6 = d ln g(l) d ln L = d 2 no metals for d apple 2 2D MIT 2D IST? Kravchenko 1995 unresolved? Goldman 1989

7 insulator-superconductor transition = h/4e 2

8 insulator-superconductor transition insulator = h/4e 2

9 insulator-superconductor transition insulator = h/4e 2 superconductor

10 phase-only critical bosons X H = E C p 2 X + J i i hiji cos( i i! i g c g = E C /J

11 phase-only critical bosons X H = E C p 2 X + J i i hiji cos( i i! i g c hni i6=0 h i i6=0 g = E C /J

12 phase-only critical bosons X H = E C p 2 X + J i i hiji cos( i i! i g c hni i6=0 h i i6=0 g = E C /J vortex-particle duality (MPAF 1990)

13 phase-only critical bosons X H = E C p 2 X + J i i hiji cos( i i! i g c hni i6=0 h i i6=0 g = E C /J vortex-particle duality (MPAF 1990)

14 insulator-superconductor transition =# h 4e 2

15 insulator-superconductor transition =# h 4e 2 g c g = E C /J

16 insulator-superconductor transition =# h 4e 2 #=1 g c =0 g = E C /J

17 insulator-superconductor transition =# h 4e 2 #=1 g c #=0 =0 g = E C /J =0

18 insulator-superconductor transition =# h 4e 2 #=1 #=1 g c #=0 =0 g = E C /J =0

19 insulator-superconductor transition =# h 4e 2 #=1 #=1 g c #=0 =0 g = E C /J G(k,!) =k d/2! F k z =0 anomalous dimension

20 does this theory really work?

21 non-universality of c?

22 is a metallic phase for bosons possible?

23 is a metallic phase for bosons possible?

24 is a metallic phase for bosons possible? 1989

25 is a metallic phase for bosons possible?

26 is a metallic phase for bosons possible?

27 metal below H c2 activated region shifts to lower T as H increases

28 metal below H c2 mason/kapitulnik activated region (2000) shifts to lower T as H increases

29 not a refrigeration artifact

30 not a refrigeration artifact bose metal

31 not a refrigeration artifact bose metal / (H H SM ) 3

32 phases disrupting superconductivity dissipation (Kapitulnik)

33 phases disrupting superconductivity dissipation (Kapitulnik) Bose-Hubbard model (disordered) disorder-localised insulator (shortrange hopping)

34

35 is a Bose metal possible?

36 is a Bose metal possible? dc =lim T!0 lim!!0 (!, T)

37 is a Bose metal possible? dc =lim T!0 lim!!0 (!, T) collision-dominated transport Damle/Sachdev (hydrodynamic regime)

38 X H = E C p 2 X + J i i hiji cos( i j ) T T BKT m / T m<t m T g = E c /J

39 X H = E C p 2 X + J i i hiji cos( i j ) T T BKT m / T =? m<t m T g = E c /J

40 qp collisions n / e m/t

41 qp collisions n / e m/t / e m/t

42 qp collisions n / e m/t / e m/t / n O(1)

43 qp collisions n / e m/t / e m/t / n O(1) = 2 e 2 h

44 the insulator is a metal

45 the insulator is a metal but it is fragile 1! 1 +

46 the insulator is a metal but it is fragile 1! 1 +! 0

47 dissipation Z Z apple r + ie F [ ] = d 2 r d apple r ie ~ ~ A(~r, ) (~r, ) ~ ~ A(~r, ) (~r, ) +apple (~r, ) 2 + m 2 (~r, ) 2o + L dis 127,000 hits

48 dissipation Z Z apple r + ie F [ ] = d 2 r d apple r ie ~ ~ A(~r, ) (~r, ) ~ ~ A(~r, ) (~r, ) +apple (~r, ) 2 + m 2 (~r, ) 2o + L dis L dis = X ~k,!n! n ( ~ k,! n ) 2 ohmic dissipation 127,000 hits

49 but conductivity diverges at low T 4 =(e 2 /h)exp UT applet < /apple

50 but conductivity diverges at low T 4 =(e 2 /h)exp UT applet < /apple dissipation alone is not enough

51 disorder H = E C i 2 X hi,ji J ij cos( i j ) P (J ij )=1/ p 2 J 2 exp (J ij J 0 ) 2 /2J 2

52 disorder H = E C i 2 X hi,ji J ij cos( i j ) P (J ij )=1/ p 2 J 2 exp (J ij J 0 ) 2 /2J 2 3-phases

53 disorder H = E C i 2 X hi,ji J ij cos( i j ) P (J ij )=1/ p 2 J 2 exp (J ij J 0 ) 2 /2J 2 3-phases phase glass paramagnet superconductor

54 ln[z] = lim n!0 ([Z n ] 1)/n S i = (cos i, sin i )

55 ln[z] = lim n!0 ([Z n ] 1)/n S i = (cos i, sin i ) Q ab µ ( ~ k, ~ k 0,, 0 )=hs a µ( ~ k, )S b ( ~ k 0, 0 )i D( 0 1 )= lim n!0 Mn hqaa µµ( ~ k, ~ k 0,, 0 )i Edwards-Anderson order parameter

56 ln[z] = lim n!0 ([Z n ] 1)/n S i = (cos i, sin i ) Q ab µ ( ~ k, ~ k 0,, 0 )=hs a µ( ~ k, )S b ( ~ k 0, 0 )i D( 0 1 )= lim n!0 Mn hqaa µµ( ~ k, ~ k 0,, 0 )i Edwards-Anderson order parameter a µ( ~ k, ) =hs a µ( ~ k, )i SC order

57 F[,Q]=F SG (Q)+ X 1 applet Z d d x Z d 1 d 2 a,b,µ, free energy (k 2 +! n 2 + m 2 ) a,µ,k,! n X a µ(x, 1 ) +U Z d X a,µ a µ( ~ k,! n ) 2 b (x, 2 )Q ab µ (x, 1, 2 ) aµ (x, ) a 2 µ(x, ) Q ab µ ( ~ k,! 1,! 2 )= (2 ) d d (k) µ [D(! 1 )!1 +! 2,0 ab +!1,0! 2,0q ab. D(!) =! /apple

58 F[,Q]=F SG (Q)+ X 1 applet Z d d x Z d 1 d 2 a,b,µ, free energy (k 2 +! n 2 + m 2 ) a,µ,k,! n X a µ(x, 1 ) +U Z d X a,µ a µ( ~ k,! n ) 2 b (x, 2 )Q ab µ (x, 1, 2 ) [ aµ (x, ) new term a 2 µ(x, ) Q ab µ ( ~ k,! 1,! 2 )= (2 ) d d (k) µ [D(! 1 )!1 +! 2,0 ab +!1,0! 2,0q ab. D(!) =! /apple

59 similar problem F gauss = X a, ~ k,! n (k 2 +! 2 n +! n + m 2 ) a ( ~ k,! n ) 2 q X a,b, ~ k,! n! n,0 a ( ~ k,! n )[ b ( ~ k,! n )] new term propagator is replica offdiagonal G (0) ab (~ k,! n )=G 0 ( ~ k,! n ) ab + G 2 0( ~ k,! n )q!n,0

60 conductivity (! =0,T! 0) = 2 3 q EA m 4 e 2 h

61 conductivity (! =0,T! 0) = 2 3 q EA m 4 e 2 h / (g g c ) 2z

62 conductivity (! =0,T! 0) = 2 3 q EA m 4 e 2 h / (g g c ) 2z experiments: / (H H SM ) 3

63 is a phase glass stiff? F / s k 2?

64 energy landscape

65 energy landscape s 6=0

66 energy landscape s 6=0

67 energy landscape s 6=0 s =0

68

69 No

70 F gauss = X bose metal a, ~ k,! n (k 2 +! 2 n +! n + m 2 ) a ( ~ k,! n ) 2 q X a,b, ~ k,! n! n,0 a ( ~ k,! n )[ b ( ~ k,! n )] glassy physics

71 IST G(k,!) =k d/2 F! k z anomalous dimension

72 disorder holographically IST G(k,!) =k d/2 F! k z anomalous dimension

73 disorder holographically IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension

74 disorder holographically P [g(x)] / e 1 2f R d d xg(x) 2 IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension

75 disorder holographically P [g(x)] / e 1 2f R d d xg(x) 2 IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension 1 2 (@ µ ) 2 + m 2 2

76 disorder holographically P [g(x)] / e 1 2f R d d xg(x) 2 IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension Z d d x 0 (x)o(x) 1 2 (@ µ ) 2 + m 2 2

77 disorder holographically P [g(x)] / e 1 2f R d d xg(x) 2 IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension Z d d x 0 (x)o(x) 1 2 (@ µ ) 2 + m 2 2 [O] =d/2+

78 disorder holographically P [g(x)] / e 1 2f R d d xg(x) 2 IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension Z d d x 0 (x)o(x) 1 2 (@ µ ) 2 + m 2 2 [O] =d/2+

79 disorder holographically P [g(x)] / e 1 2f R d d xg(x) 2 IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension Z d d x 0 (x)o(x) 1 2 (@ µ ) 2 + m 2 2 [O] =d/2+ [O] <d Harris criterion

80 disorder holographically P [g(x)] / e 1 2f R d d xg(x) 2 IST G(k,!) =k d/2 F! k z Z S = S 0 + d d xg(x)o(x) anomalous dimension Z d d x 0 (x)o(x) 1 2 (@ µ ) 2 + m 2 2 [O] =d/2+ [O] <d Harris criterion are these anomalous dimensions related?

81 G(k,!) =k d/2 F! k µ

82 G(k,!) =k d/2 F! k µ anomalous dimension O/@ µ

83 use Caffarelli-Silvestre extension theorem (2006) g(x, 0) = f(x) xg + a zg 2 zg lim za z!0 = C d, ( r) f = 1 a 2

84 lim za z!0 C d, ( r) f x

85 lim za z!0 C d, ( r) f x

86 lim za z!0 C d, ( r) f x g(z =0,x)=f(x) = 1 a 2

87 BDHM(P) apple (x 1 ) (x n ) Z bulk[ ] =0 lim z n h (x 1,z) (x n,z)i bulk z!0 z d non-normalizable mode

88 BDHM(P) apple (x 1 ) (x n ) Z bulk[ ] =0 lim z n h (x 1,z) (x n,z)i bulk z!0 z d non-normalizable mode Heemskerk/Polchinski holographic renormalization z (x, `) = (x) IR UV z = ` z = x

89 Z bulk [ ]= Z D Z D z>`e S z>` Z D z<`e S z<`

90 Z Z Z bulk [ ]= D Z Z bulk [ ]= D z>`e S z>` } Z D z<`e S z<` } D IR[ ; `] UV[, ;, `]

91 Z Z Z bulk [ ]= D Z Z bulk [ ]= D z>`e S z>` } Z D z<`e S z<` } D IR[ ; `] UV[, ;, `] n-point function n-insertions of lim `!0

92 Z apple lim `!0 D IR (x 1 ) (x n ) UV[ ] =0

93 Z apple lim `!0 D IR (x 1 ) (x n ) UV[ ] =0 lim ` n `!0 Z D IR (x 1 ) (x n ) UV[ ] =0

94 Z apple lim `!0 D IR (x 1 ) (x n ) UV[ ] =0 lim ` n `!0 Z D IR (x 1 ) (x n ) UV[ ] =0 operator identity (P): O = C O lim z!0 z (x, z)

95 O = C O lim z!0 z (x, z)

96 use conjugate momentum O = C O lim z!0 z (x, z) = C O lim z!0 z z (x, z)

97 use conjugate momentum O = C O lim z!0 z (x, z) = C O lim z!0 z z (x, z) + m 2 =0 = Fz d 2 + Gz d 2 +, F,G 2C 1 (H), F = 0 + O(z 2 ), G = g 0 + O(z 2 )

98 use conjugate momentum O = C O lim z!0 z (x, z) = C O lim z!0 z z (x, z) + m 2 =0 = Fz d 2 + Gz d 2 +, F,G 2C 1 (H), F = 0 + O(z 2 ), G = g 0 + O(z 2 ) O(x) =2 g 0

99 solves massive scalar eom

100 solves massive scalar eom g = z d/2 solves CS extension problem p d2 +4m 2 := 2

101 solves massive scalar eom g = z d/2 solves CS extension problem p d2 +4m 2 := 2 O =( ) 0 the O for massive scalar field

102 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( )

103 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( ) z = y/`

104 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( ) S bulk [ ] /`<z<1 = 1`d Z d d x Z 1 /` dz z d+1 z = y/` z 2 2 (@ z ) 2 z2`2 + 2 r x 2 + V ( )

105 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( ) S bulk [ ] /`<z<1 = 1`d Z d d x Z 1 /` dz z d+1 z = y/` z 2 2 (@ z ) 2 z2`2 + 2 r x 2 + V ( )

106 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( ) S bulk [ ] /`<z<1 = 1`d Z d d x Z 1 /` dz z d+1 z = y/` z 2 2 (@ z ) 2 z2`2 + 2 r x 2 + V ( )

107 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( ) S bulk [ ] /`<z<1 = 1`d Z d d x Z 1 /` dz z d+1 z = y/` z 2 2 (@ z ) 2 z2`2 + 2 r x 2 + V ( ) saddle point is exact

108 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( ) S bulk [ ] /`<z<1 = 1`d Z d d x Z 1 /` dz z d+1 z = y/` z 2 2 (@ z ) 2 z2`2 + 2 r x 2 + V ( ) saddle point is exact = Fy d 2 + Gy d 2 +, F = 0 + O(y 2 ), G =( 0) + O(y 2 )

109 independent of interactions Z (`)= ( )= Z S bulk [ ] <y<`= D d d x Z ` <y<` e S bulk[ ] <y<` dy y d+1 y 2 2 (@ y ) 2 + r x 2 + V ( ) S bulk [ ] /`<z<1 = 1`d Z d d x Z 1 /` dz z d+1 z = y/` z 2 2 (@ z ) 2 z2`2 + 2 r x 2 + V ( ) saddle point is exact = Fy d 2 + Gy d 2 +, F = 0 + O(y 2 ), G =( 0) + O(y 2 ) same asymptotics!

110 boundary `action = Z 0( ) 0 + S int S int = f Z d d x nx O i (x)! 2 + Z d d x nx (O i (x)) 2 i=1 i=1 Fujita, et al. 2008

111 boundary `action Z = 0( ) 0 + S int S int = f Z d d x nx O i (x)! 2 + Z d d x nx (O i (x)) 2 i=1 i=1 ho(k)iho( k)i = fg(k) G(k)) 2 Fujita, et al glassy order

112 boundary `action Z = 0( ) 0 + S int S int = f Z d d x nx O i (x)! 2 + Z d d x nx (O i (x)) 2 i=1 i=1 ho(k)iho( k)i = fg(k) G(k)) 2 Fujita, et al glassy order

113 IMT Phys. Rev. Lett. 109, (2012)

114

115

116 holographic construction strong interaction +disorder (Mott physics)

117 holographic construction strong interaction +disorder (Mott physics) probe fermions [ (r, k,!)] = m k

118 holographic construction strong interaction +disorder (Mott physics) probe fermions [ (r, k,!)] = m k

119 Mott-like physics S probe (, ) = Z d d x p gi ( M D M m + )

120 Mott-like physics S probe (, ) = Z d d x p gi ( M D M m + ) what is hidden here?

121 Mott-like physics S probe (, ) = Z d d x p gi ( M D M m + ) what is hidden here? consider p gi (D m ipf µ µ )

122 Mott-like physics S probe (, ) = Z d d x p gi ( M D M m + ) what is hidden here? one possibility consider p gi (D m ipf µ µ )

123 AdS 2 ±(r,!, k) / r ±m kl p changes scaling dimension m 2 k = m 2 + pe d ± kl 2 r 0 e d =1/ p 2d(d 1) increasing p should change the spectral weight at 0

124 How is the spectrum modified? P=0 Fermi surface peak

125 How is the spectrum modified? P P=0 Fermi surface peak

126 How is the spectrum modified? P P= <p< > kf > 1/2 <! / k k F =! / (k k F ) 2 k F `Fermi Liquid Fermi surface peak

127 How is the spectrum modified? P P=0 Fermi surface peak

128 How is the spectrum modified? P P=0 p = 0.53 kf =1/2 MFL 0.53 <p<1/ p 6 1/2 > kf > 0 <! = =! / (k k F ) 1/(2 k F ) NFL Fermi surface peak

129 How is the spectrum modified? ST P P=0 p = 0.53 kf =1/2 MFL 0.53 <p<1/ p 6 1/2 > kf > 0 <! = =! / (k k F ) 1/(2 k F ) NFL Fermi surface peak

130 How is the spectrum modified? ST P P=0 Fermi surface peak

131 How is the spectrum modified? ST P>4.2 P P=0 Fermi surface peak

132 How is the spectrum modified? ST P>4.2 P P=0 Fermi surface peak Edalati,Leigh, PP PRL, 106 (2011)

133 How is the spectrum modified? ST P>4.2 P P=0 Fermi surface peak Edalati,Leigh, PP PRL, 106 (2011) dynamical spectral weight transfer

134 Schwarzschild/AdS G. Vanacore, PRD 2014

135 chiral symmetry and Pauli term

136 chiral symmetry and Pauli term! e i 5

137 chiral symmetry and Pauli term! e i 5 X breaks chiral symmetry if { 5,X}6=0

138 chiral symmetry and Pauli term! e i 5 X breaks chiral symmetry if { 5,X}6=0 { 5, µ F µ }6=0 Pauli term breaks chiral symmetry

139 chiral symmetry and Pauli term! e i 5 X breaks chiral symmetry if { 5,X}6=0 { 5, µ F µ }6=0 Pauli term breaks chiral symmetry mass generation scenario

140 Reissner-Nordstrom/AdS hep-th: Alsup,Siopsis, Eletherios p! p poles! zeros

141 Reissner-Nordstrom/AdS hep-th: Alsup,Siopsis, Eletherios p! p poles! zeros

142 Flow equations u 2p f(u)@ u ± = 2(mL)u ± +[v (u) k]+[v + (u) ± k] 2 ±, v ± (u) = 1 p! + Qq(1 u 2 d ) ± Qpu 2 d. f(u)

143 Flow equations u 2p f(u)@ u ± = 2(mL)u ± +[v (u) k]+[v + (u) ± k] 2 ±, v ± (u) = 1 p! + Qq(1 u 2 d ) ± Qpu 2 d. f(u) ±! ± 1/ ± p! k! p k

144 Flow equations u 2p f(u)@ u ± = 2(mL)u ± +[v (u) k]+[v + (u) ± k] 2 ±, v ± (u) = 1 p! + Qq(1 u 2 d ) ± Qpu 2 d. f(u) ±! ± 1/ ± p! k! p k u 2p f(u)@ u ± = +2(mL)u ± [v (u) k] [v + (u) ± k] 2 ±,

145 Flow equations u 2p f(u)@ u ± = 2(mL)u ± +[v (u) k]+[v + (u) ± k] 2 ±, v ± (u) = 1 p! + Qq(1 u 2 d ) ± Qpu 2 d. f(u) ±! ± 1/ ± p! k! p k u 2p f(u)@ u ± = +2(mL)u ± [v (u) k] [v + (u) ± k] 2 ±, Green functions are -inverses of one another!!

146 Flow equations u 2p f(u)@ u ± = 2(mL)u ± +[v (u) k]+[v + (u) ± k] 2 ±, v ± (u) = 1 p! + Qq(1 u 2 d ) ± Qpu 2 d. f(u) ±! ± 1/ ± p! k! p k u 2p f(u)@ u ± = +2(mL)u ± [v (u) k] [v + (u) ± k] 2 ±, Green functions are -inverses of one another!! 1 DetG R (!, k; m, p) = DetG R (!, k; m, p)

147 Schwarzschild/AdS

148 Q q

149 why is this an insulator? Q q

150 why is this an insulator? Q q who stole the charge?

151 why is this an insulator? Q q who stole the charge? p F µ µ

152 why is this an insulator? Q q who stole the charge? p F µ µ fermion back reaction is important!!

153 Q q

154 Q q two forces

155 Q q two forces Coulomb repulsion between Q, q gravity

156

157

158

159

160 q b q c q d

161 Q q

162 if q<q c gravity wins Q q

163 if Q q<q c q<q c Q q gravity wins infall to black hole

164 Mott Insulator if Q q<q c q<q c Q q gravity wins infall to black hole

165 Mott Insulator if Fermi surfaces exist Q q<q c q<q c Q q gravity wins infall to black hole

166 Mott Insulator if Fermi surfaces exist Q q<q c q<q c Q q gravity wins infall to black hole n charge = n rh + n q

167 Mott Insulator if Fermi surfaces exist Q q<q c q<q c Q q gravity wins infall to black hole n charge = n rh + n q zeros: composite stuff

168 Mott Insulator if Fermi surfaces exist Q q<q c q<q c Q q gravity wins infall to black hole n charge = n rh + n q zeros: composite stuff poles

169 Mott Insulator if Fermi surfaces exist Q q<q c q<q c Q q gravity wins infall to black hole n charge = n rh + n q No Luttinger `Theorem zeros: composite stuff poles

170 disorder include random electric field perturbatively in metric

171 disorder include random electric field perturbatively in metric?

`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE)

`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE) `Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool Pippard s problem J s 6= c 4 2

More information

Do Cuprates Harbor Extra Dimensions?

Do Cuprates Harbor Extra Dimensions? Do Cuprates Harbor Extra Dimensions? Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool How would such dimensions be detected? Do they obey the standard electricity and magnetism? standard

More information

`Anomalous dimensions for conserved currents and Noether s Second Theorem

`Anomalous dimensions for conserved currents and Noether s Second Theorem `Anomalous dimensions for conserved currents and Noether s Second Theorem Thanks to: NSF, EFRC (DOE) Gabriele La Nave Kridsangaphong Limtragool 0 no order Mott insulator x strange metal: experimental facts

More information

Unparticles in High T_c Superconductors

Unparticles in High T_c Superconductors Unparticles in High T_c Superconductors Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance

Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Optical Conductivity in the Cuprates: from Mottness to Scale Invariance Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool N e ( ) = 2mV cell e 2 Z 0 (!)d! optical

More information

Detecting unparticles and anomalous dimensions in the Strange Metal

Detecting unparticles and anomalous dimensions in the Strange Metal Detecting unparticles and anomalous dimensions in the Strange Metal Thanks to: NSF, EFRC (DOE) Andreas Karch Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Gabriele La Nave Drude metal Drude

More information

Optical Conductivity in the Cuprates from holography and unparticles

Optical Conductivity in the Cuprates from holography and unparticles Optical Conductivity in the Cuprates from holography and unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Properties all particles share? charge fixed mass!

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Seungmin Hong Mott Problem Mott Problem + # + Mott Problem + # + σ(ω) Ω -1 cm -1 VO 2 T=360 K T=295

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) From Fermi Arcs to Holography Thanks to: NSF, EFRC (DOE) Seungmin Hong and S. Chakraborty T.-P. Choy M. Edalati R. G. Leigh Fermi Arcs P. Johnson, PRL 2011 Na-CCOC (Shen, Science 2006) La-Bi2201 (Meng,

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Mott Problem emergent gravity Mott Problem What interacting problems can we solve in quantum mechanics?

More information

Unparticles and Emergent Mottness

Unparticles and Emergent Mottness Unparticles and Emergent Mottness Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Autocorrelators in models with Lifshitz scaling

Autocorrelators in models with Lifshitz scaling Autocorrelators in models with Lifshitz scaling Lárus Thorlacius based on V. Keränen & L.T.: Class. Quantum Grav. 29 (202) 94009 arxiv:50.nnnn (to appear...) International workshop on holography and condensed

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Correlated Matter Correlated Matter What is carrying the current? current-carrying excitations? current-carrying

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-10 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Phase transitions in strongly disordered magnets and superconductors on Bethe lattice L. Ioffe Rutgers, the State University of

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley

Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley Is Strongly Correlated Electron Matter Full of Unparticles? Kiaran dave Charlie Kane Brandon Langley 2=3 goal 2 = 3 Properties all particles share? Properties all particles share? charge fixed mass! Properties

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) Mottness and Holography: A Discrete Marriage Thanks to: NSF, EFRC (DOE) Seungmin Hong M. Edalati R. G. Leigh emergent gravity spectral weight transfer 2-particle probe spectral weight transfer spectral

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Holographic Metals. Valentina Giangreco Marotta Puletti Chalmers Institute of Technology. XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012

Holographic Metals. Valentina Giangreco Marotta Puletti Chalmers Institute of Technology. XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012 Holographic Metals Valentina Giangreco Marotta Puletti Chalmers Institute of Technology XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012 in collaboration with S. Nowling, L. Thorlacius, and T. Zingg

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information

Optical Conductivity in the Cuprates from Holography and Unparticles

Optical Conductivity in the Cuprates from Holography and Unparticles Optical Conductivity in the Cuprates from Holography and Unparticles Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool Drude conductivity n e 2 1 m 1 i! (!) =C! 2 3

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Holographic vortex pair annihilation in superfluid turbulence

Holographic vortex pair annihilation in superfluid turbulence Holographic vortex pair annihilation in superfluid turbulence Vrije Universiteit Brussel and International Solvay Institutes Based mainly on arxiv:1412.8417 with: Yiqiang Du and Yu Tian(UCAS,CAS) Chao

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Testing Mottness/unparticles and anomalous dimensions in the Cuprates

Testing Mottness/unparticles and anomalous dimensions in the Cuprates Testing Mottness/unparticles and anomalous dimensions in the Cuprates Thanks to: NSF, EFRC (DOE) Brandon Langley Garrett Vanacore Kridsangaphong Limtragool / at what is strange about the strange metal?

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

Unaprticles: MEELS, ARPES and the Strange Metal

Unaprticles: MEELS, ARPES and the Strange Metal Unaprticles: MEELS, ARPES and the Strange Metal K. Limtragool Chandan Setty Chandan Setty Zhidong Leong Zhidong Leong Bikash Padhi strange metal: experimental facts T-linear resistivity (!) =C! 2 3 L xy

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality 2013 Arnold Sommerfeld School, Munich, August 5-9, 2013 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD " k Dirac semi-metal " k Insulating antiferromagnet

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Peter Young Talk at MPIPKS, September 12, 2013 Available on the web at http://physics.ucsc.edu/~peter/talks/mpipks.pdf

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Under The Dome. Doped holographic superconductors with broken translational symmetry

Under The Dome. Doped holographic superconductors with broken translational symmetry Prepared for submission to JHEP Under The Dome arxiv:1510.06363v1 [hep-th] 21 Oct 2015 Doped holographic superconductors with broken translational symmetry Matteo Baggioli, a,b Mikhail Goykhman c a Institut

More information

Boson Vortex duality. Abstract

Boson Vortex duality. Abstract Boson Vortex duality Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 0238, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Dated:

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

Elementary/Composite Mixing in Randall-Sundrum Models

Elementary/Composite Mixing in Randall-Sundrum Models Elementary/Composite Mixing in Randall-Sundrum Models Brian Batell University of Minnesota with Tony Gherghetta - arxiv:0706.0890 - arxiv:0710.1838 Cornell 1/30/08 5D Warped Dimension = 4D Strong Dynamics

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

Floquet Superconductor in Holography

Floquet Superconductor in Holography Floquet Superconductor in Holography Takaaki Ishii (Utrecht) arxiv:1804.06785 [hep-th] w/ Keiju Murata 11 June 2018, Nonperturbative QCD Paris Motivations Holography in time dependent systems To understand

More information

dynamics of broken symmetry

dynamics of broken symmetry dynamics of broken symmetry Julian Sonner, MIT Simons Symposium - Quantum Entanglement Caneel Bay, USVI a physics connection in paradise 1957: J. R. Oppenheimer purchases small plot of land in Hawksnest

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Metal-insulator Transition by Holographic Charge Density Waves

Metal-insulator Transition by Holographic Charge Density Waves Metal-insulator Transition by Holographic Charge Density Waves Chao Niu (IHEP, CAS) Based mainly on arxiv:1404.0777 with: Yi Ling, Jianpin Wu, Zhuoyu Xian and Hongbao Zhang (May 9, 2014) Outlines 1. Introduction

More information

Fermi liquid theory Can we apply the free fermion approximation to a real metal? Phys540.nb Strong interaction vs.

Fermi liquid theory Can we apply the free fermion approximation to a real metal? Phys540.nb Strong interaction vs. Phys540.nb 7 Fermi liquid theory.. Can we apply the free fermion approximation to a real metal? Can we ignore interactions in a real metal? Experiments says yes (free fermion models work very well), but

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Holographic Q-Lattices and Metal-Insulator Transitions

Holographic Q-Lattices and Metal-Insulator Transitions Holographic Q-Lattices and Metal-Insulator Transitions Jerome Gauntlett Aristomenis Donos Holographic tools provide a powerful framework for investigating strongly coupled systems using weakly coupled

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Holographic Wilsonian Renormalization Group

Holographic Wilsonian Renormalization Group Holographic Wilsonian Renormalization Group JiYoung Kim May 0, 207 Abstract Strongly coupled systems are difficult to study because the perturbation of the systems does not work with strong couplings.

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

Conductor Insulator Quantum

Conductor Insulator Quantum Conductor Insulator Quantum Phase Transitions Edited by Vladimir Dobrosavljevic, Nandini Trivedi, James M. Valles, Jr. OXPORD UNIVERSITY PRESS Contents List of abbreviations List of contributors xiv xvi

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Probing Holographic Superfluids with Solitons

Probing Holographic Superfluids with Solitons Probing Holographic Superfluids with Solitons Sean Nowling Nordita GGI Workshop on AdS4/CFT3 and the Holographic States of Matter work in collaboration with: V. Keränen, E. Keski-Vakkuri, and K.P. Yogendran

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

HIGHER SPIN DUALITY from THERMOFIELD DOUBLE QFT. AJ+Kenta Suzuki+Jung-Gi Yoon Workshop on Double Field Theory ITS, ETH Zurich, Jan 20-23,2016

HIGHER SPIN DUALITY from THERMOFIELD DOUBLE QFT. AJ+Kenta Suzuki+Jung-Gi Yoon Workshop on Double Field Theory ITS, ETH Zurich, Jan 20-23,2016 HIGHER SPIN DUALITY from THERMOFIELD DOUBLE QFT AJ+Kenta Suzuki+Jung-Gi Yoon Workshop on Double Field Theory ITS, ETH Zurich, Jan 20-23,2016 Overview } Construction of AdS HS Gravity from CFT } Simplest

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

On higher-spin gravity in three dimensions

On higher-spin gravity in three dimensions On higher-spin gravity in three dimensions Jena, 6 November 2015 Stefan Fredenhagen Humboldt-Universität zu Berlin und Max-Planck-Institut für Gravitationsphysik Higher spins Gauge theories are a success

More information

A Holographic Realization of Ferromagnets

A Holographic Realization of Ferromagnets A Holographic Realization of Ferromagnets Masafumi Ishihara ( AIMR, Tohoku University) Collaborators: Koji Sato ( AIMR, Tohoku University) Naoto Yokoi Eiji Saitoh ( IMR, Tohoku University) ( AIMR, IMR,

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Large N fermionic tensor models in d = 2

Large N fermionic tensor models in d = 2 Large N fermionic tensor models in d = 2 Sylvain Carrozza Quantum spacetime and the Renormalization roup 2018 Bad Honnef Sylvain Carrozza Large N fermionic tensor models Bad Honnef 20/6/2018 1 / 17 Context

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Dark energy and nonlocal gravity

Dark energy and nonlocal gravity Dark energy and nonlocal gravity Michele Maggiore Vacuum 2015, Barcelona based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou, PLB 2014, 1311.3421 Foffa, MM, Mitsou,

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information