CHAPTER 5 INTEGRATION

Size: px
Start display at page:

Download "CHAPTER 5 INTEGRATION"

Transcription

1 CHAPTER 5 INTEGRATION 5. AREA AND ESTIMATING WITH FINITE SUMS. fa Sice f is icreasig o Òß Ó, we use left edpoits to otai lower sums ad right edpoits to otai upper sums. i ) i i ( ( i ˆ i Š ˆ ˆ ˆ ) i i (a) ad i Ê a lower sum is ˆ i Š ˆ () ad i Ê a lower sum is & i ) i i & i ˆ i Š ˆ ˆ ˆ ˆ i i (c) ad i Ê a upper sum is ˆ i Š ˆ + (d) ad i Ê a upper sum is +. fa Sice f is decreasig o Òß 5 Ó, we use left edpoits to otai upper sums ad right edpoits to otai lower sums. & i i & & i & (( i ˆ i & i & ) i ˆ i i & & i ˆ i i (a) ad i i Ê a lower sum is ˆ () ad i i Ê a lower sum is (c) ad i i Ê a upper sum is (d) ad i i Ê a upper sum is Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

2 Chapter 5 Itegratio 5. fa Usig rectagles Ê Ê ˆ fˆ fˆ & Š ˆ ˆ Usig rectagles Ê Ê ˆ & ( fˆ fˆ fˆ fˆ ) ) ) ) & ( Š ˆ ˆ ˆ ˆ ) ) ) ) 7. fa & Usig rectagles Ê Ê afa fa ˆ & Usig rectagles Ê Ê ˆ ˆ ˆ & ˆ ( f f f fˆ * ˆ )) * * & ( * & ( * & ( * & 9. (a) D ()() ()() ()() ()() (5)() ()() ()() (6)() ()() (6)() 87 iches () D ()() ()() ()() (5)() ()() ()() (6)() ()() (6)() ()() 87 iches. (a) D ()() ()() (5)() (5)() ()() ()() (5)() (5)() ()() (5)() ()() ()() 9 feet.66 miles () D ()() (5)() (5)() ()() ()() (5)() (5)() ()() (5)() ()() ()() (5)() 8 feet.7 miles. (a) Because the acceleratio is decreasig, a upper estimate is otaied usig left ed-poits i summig acceleratio? t. Thus,? t ad speed [ ]() 7.65 ft/sec () Usig right ed-poits we otai a lower estimate: speed [ ]() 5.8 ft/sec (c) Upper estimates for the speed at each secod are: t 5 v Thus, the distace falle whe t secods is s [ ]() 6.59 ft. 5. Partitio [ß ] ito the four suitervals [ß.5], [.5ß ], [ß.5], ad [.5ß ]. The midpoits of these suitervals are m.5, m.75, m.5, ad m.75. The heights of the four approimatig rectagles are f(m ) (.5), f(m ) (.75), f(m ) (.5), ad f(m ) (.75) ˆ ˆ ˆ ˆ ˆ 5 ˆ ˆ 7 ˆ Notice that the average value is approimated y approimate area uder legth of [ß]. We use this oservatio i solvig the et several eercises. curve f() 7. Partitio [ß] ito the four suitervals [ß.5], [.5ß], [ß.5], ad [.5ß]. The midpoits of the suitervals are m.5, m.75, m.5, ad m.75. The heights of the four approimatig rectagles are 5 È f(m ) si, f(m ) si, f(m ) si Š Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

3 Sectio 5. Sigma Notatio ad Limits of Fiite Sums 7 È? ˆ area Ê legth of [ß ], ad f(m ) si Š. The width of each rectagle is. Thus, Area ( ) average value. 9. Sice the leaage is icreasig, a upper estimate uses right edpoits ad a lower estimate uses left edpoits: (a) upper estimate (7)() (97)() (6)() (9)() (65)() 758 gal, lower estimate (5)() (7)() (97)() (6)() (9)() 5 gal. () upper estimate ( ) 6 gal, lower estimate ( ) 69 gal. (c) worst case: 6 7t 5, Ê t. hrs; est case: 69 7t 5, Ê t. hrs. (a) The diagoal of the square has legth, so the side legth is È. Area Š È () Thi of the octago as a collectio of 6 right triagles with a hypoteuse of legth ad a acute agle measurig ). Area ˆ ˆ si ˆ cos si È Þ)) ) ) (c) Thi of the 6-go as a collectio of right triagles with a hypoteuse of legth ad a acute agle measurig. Area ˆ ˆ si ˆ cos ) si È Þ ) (d) Each area is less tha the area of the circle,. As icreases, the area approaches. 5. SIGMA NOTATION AND LIMITS OF FINITE SUMS 6 6() 6() cos cos( ) cos( ) cos( ) cos( ) È È 5. ( ) si ( ) si ( ) si ( ) si 6 7. (a) & 86 () 86 5 & (c) 86 All of them represet 86 c c c c 9. (a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) () c (c) c ( ) ( ) ( ) ( ) (a) ad (c) are equivalet; () is ot equivalet to the other two. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

4 Chapter 5 Itegratio ( ) 7. (a) a a ( 5) () (6) (c) (a ) a 5 6 (d) (a ) a 5 6 (e) ( a ) a 6 ( 5) 6 ( ) 9. (a) 55 ( )(() ) 6 () 85 (c) ( ) (7 ) Š (6 )((6) ) a (6) ( 5) a 5 5 5(5 )((5) ) Š 5(5 ) 5 Š Œ Œ 5(5 ) 5(5 ) Š Š (a) a 7 5 () 7 7a (c) Let j Ê j ; if Ê j ad if 6 Ê j 6 Ê a6 6 j. (a) () c c (c) a a Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

5 Sectio 5. Sigma Notatio ad Limits of Fiite Sums. (a) () (c) 5. (a) () (c) 7...,.5..,..5.8,.6.., ad.6.; the largest is lpl.. & 9. fa i Let ad c i. The right-had sum is i a c Š ˆ i i a i i i i a a i i. Thus, lim a c Ä_ i i lim Œ Ä_. fa i i c ˆ i * i i i i i ( ( a a i Š i Let ad c i. The right-had sum is a Š Š ( * * a ) ) lim lim Ä_ i i Ä_ Þ Thus, ( * ac Œ *. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

6 Chapter 5 Itegratio. fa a i i a i Š ˆ i i c ci i i i i i i Let ad c i. The right-had sum is a a a. Thus, lim aci c Ä_ i i Š Š lim Š Œ Ä_ &. 5. fa i Let ad c i. The right-had sum is i ˆ i a ci i i i i a Š Š a. lim a lim Ä_ i i Ä_ Thus, c. 5. THE DEFINITE INTEGRAL & (. d. a d cî 5. d 7. (sec ) d 9. (a) g() d () g() d g() d 8 & & & & (c) f() d f() d ( ) (d) f() d f() d f() d 6 ( ) & & & (e) [f() g()] d f() d g() d 6 8 & & & (f) [f() g()] d f() d g() d (6) 8 6. (a) f(u) du f() d 5 () È f(z) dz È f(z) dz 5È (c) f(t) dt f(t) dt 5 (d) [ f()] d f() d 5. (a) f(z) dz f(z) dz f(z) dz 7 () f(t) dt f(t) dt Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

7 Sectio 5. The Defiite Itegral 5 5. The area of the trapezoid is A (B )h (5 )(6) Ê ˆ d square uits 7. The area of the semicircle is A r () 9 9 Ê È9 d square uits 9. The area of the triagle o the left is A h ()(). The area of the triagle o the right is A h ()(). The, the total area is.5 Ê d.5 square uits. The area of the triagular pea is A h ()(). The area of the rectagular ase is S jw ()(). The the total area is Ê a d square uits a. d ()( ) 5. s ds () a(a) a Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

8 6 Chapter 5 Itegratio 7. (a) È d () a È d a È Š È () () 9. d. ) d) È 7 Š È 7 Î 7 ˆ. d 5. t dt a 7. d 9. d a. 7 d 7( ) È (a) Š È a a. (t ) dt t dt dt ( ) 6 z z 7 5. dz dz dz dz z dz [ ] ˆ ˆ 7. u du u du u du u du Š ˆ a 5 d d d 5 d 5[ ] (8 ) 5. Let? ad let,?,? ßá ß c ( )?,?. Let the c s e the right ed-poits of the suitervals Ê c, c, ad so o. The rectagles defied have areas: f(c )? f(? )? (? )? (? ) f(c )? f(? )? (? )? () (? ) f(c )? f(? )? (? )? () (? ) ã f(c )? f(? )? (? )? () (? ) The S f(c )? (? ) (? ) ()() Š Š 6 ˆ ˆ Ä_ Ê d lim. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

9 Sectio 5. The Defiite Itegral 7 5. Let? ad let,?,? ßá ß c ( )?,?. Let the c s e the right ed-poits of the suitervals Ê c, c, ad so o. The rectagles defied have areas: f(c )? f(? )? (? )(? ) (? ) f(c )? f(? )? (? )(? ) ()(? ) f(c )? f(? )? (? )(? ) ()(? ) ã f(c )? f(? )? (? )(? ) ()(? ) The S f(c )? (? )? ( Š Š ) Ä_ ( ) Ê d lim. È È È È È È 55. av(f) Š a d d d Š È È È Š È. 57. av(f) ˆ a d d d Š ( ). 59. av(f) ˆ (t ) dt t dt t dt dt Š Š ( ). Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

10 8 Chapter 5 Itegratio ( ) ( ) d ( ) d 6. (a) av(g) Š a d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ a d ( ) d Š d d ( ). ( ) (c) av(g) Š a d a d a d ( ) (see parts (a) ad () aove). 6. Cosider the partitio P that sudivides the iterval Òa, Ó ito suitervals of width a ad let c e the right Ö a aa aa aa a a c a a c a a a Ä_ m mä edpoit of each suiterval. So the partitio is P a, a, a,..., a ad c a. We get the Riema sum f c c c a. As ad P this epressio remais ca a. Thus, c d ca a. a 65. Cosider the partitio P that sudivides the iterval Òa, Ó ito suitervals of width a ad let c e the right a aa aa aa Ö a ˆ Š a a a a a a a a aa Š a a a a a a a a a Œ a a a a a a a a edpoit of each suiterval. So the partitio is P a, a, a,..., a ad c a. We get the Riema sum f c c a a aa a a aa aa Ä_ m mä a a a a a a aaa aa a aaa aa a As ad P this epressio has value a a a a a a a a a a a a. Thus, d. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

11 Sectio 5. The Defiite Itegral 9 a a a a Š 6a 7a a 8. As Ä_ ad mp mä this epressio has value Thus, a d Cosider the partitio P that sudivides the iterval Ò, Ó ito suitervals of width ad let c e the right edpoit of each suiterval. So the partitio is P Ö,,,..., ad c. We get the Riema sum fac Š ˆ ˆ a aa aa a a a a a a a ˆ Š a a a a a a a a a a a a a a a a a a a a a a a a a aa a a a a a a a Š aaa a aa aaa a a aa a a a a a aa a a a Ä_ m mä a a a aa a a a aa aa a. Thus, d. a 69. Cosider the partitio P that sudivides the iterval Òa, Ó ito suitervals of width a ad let c e the right edpoit of each suiterval. So the partitio is P Öa, a, a,..., a ad c a. We get the Riema sum f c c a Š Œ a a. As ad P this epressio has value 7. To fid where, let Ê ( ) Ê or. If, the Ê a ad maimize the itegral. 7. f() is decreasig o [ß] Ê maimum value of f occurs at Ê ma f f() ; miimum value of f occurs at Ê mi f f(). Therefore, ( ) mi f Ÿ d Ÿ ( ) ma f Ê Ÿ d Ÿ. That is, a upper oud ad a lower oud. 75. Ÿ si a Ÿ for all Ê ( )( ) Ÿ si a d Ÿ ( )() or si d Ÿ Ê si d caot equal. 77. If f() o [aß ], the mi f ad ma f o [aß]. Now, ( a) mi f Ÿ f() d Ÿ ( a) ma f. The a Ê a Ê ( a) mi f Ê f() d. a 79. si Ÿ for Ê si Ÿ for Ê (si ) d Ÿ (see Eercise 78) Ê si d d Ÿ si d d si d Š si d. Thus a upper oud is. Ê Ÿ Ê Ÿ Ê Ÿ a a a a av(f) d ( a)k ( a) f() d f() d. a a a a 8. Yes, for the followig reasos: av(f) f() d is a costat K. Thus av(f) d K d K( a) Ê a Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

12 Chapter 5 Itegratio 8. (a) U ma? ma? á ma? where ma f( ), ma f( ), á, ma f( ) sice f is icreasig o [aß]; L mi? mi? á mi? where mi f( ), mi f( ), á, mi f( c) sice f is icreasig o [aß]. Therefore U L (ma mi )? (ma mi )? á (ma mi )? (f() f( ))? (f( ) f( ))? á (f( ) f( c))? (f( ) f( ))? (f() f(a))?. () U ma? ma? á ma? where ma f( ), ma f( ), á, ma f( ) sice f is icreasig o[aß]; L mi? mi? á mi? where mi f( ), mi f( ), á, mi f( c) sice f is icreasig o [aß]. Therefore U L (ma mi )? (ma mi )? á (ma mi )? (f() f( ))? (f( ) f( ))? á (f( ) f( c))? Ÿ (f() f( ))? ma (f( ) f( ))? ma á (f( ) f( c))? ma. The U L Ÿ (f( ) f( ))? ma (f() f(a))? ma f() f(a)? ma sice f() f(a). Thus lim (U L) lim (f() f(a))? ma, sice? ma lp l. lpl Ä lpl Ä 85. (a) Partitio ß ito suitervals, each of legth? with poits,?,?, á,?. Sice si is icreasig o ß, the upper sum U is the sum of the areas of the circumscried rectagles of areas f( )? (si? )?, f( )? (si? )?, á, f( )? cos? cosˆ ˆ? si (si? )?. The U (si? si? á si? )??? cos cos ˆ ˆ ˆ cos cos ˆ cos cos ˆ si si si Š ˆ () The area is si d lim. Ä_ Î cos cos ˆ cos si Š 87. By Eercise 86, U L M m where M maö fa o the ith suiterval ad i i i i i i i m miö fa o the ith suiterval. Thus U L am m provided for each i i i i i i i i i ßÞÞÞ,. Sice a a the result, U L a a follows. i i i 5. THE FUNDAMENTAL THEOREM OF CALCULUS. ( 5) d c 5d a 5() a( ) 5( ) 6 c i. a d a d Š Š a a a a 5. Š d Š Š 8 () () () ˆ È d ˆ Î Î 9. sec d [ ta ] ˆ ta ˆ ( ta ) È È Î Î Î. csc ) cot ) d ) [ csc )] ˆ csc ˆ ˆ csc ˆ È Š È Î Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

13 Sectio 5. The Fudametal Theorem of Calculus Î Î Î cos t. dt ˆ cos t dt t si t ˆ () si () ˆ ˆ si ˆ Î Î Î 5. ta d asec d [ta ] ˆ ta ˆ ata a 7. si d cos ˆ cos ˆ ˆ cos a Î8 Î8 È 8 r ( ) 8 9. (r ) dr ar r dr r r Š ( ) ( ) Š ) Š È u u & u u 6 È 6 6 Š È ( ( ) ). È Š & du È Š u du u Š () È È È. s Ès ds s ˆ Î s Î ds s È È Š È È ÈÈ 8 s ÉÈ si sicos 5. d d cos d si asi a ˆ si ˆ Î si Î si Î Î 7. d d d d d Š Š 6 c c c ( ) È È È 9. (a) cos t dt [si t] si È si si È d d Î Ê Œ cos t dt ˆ si È cos È ˆ cos È È È d d () Œ cos t dt ˆ cos È ˆ ˆ È ˆ cos È ˆ Î d d Î d cos È È t t t Î Î & dt dt t. (a) Èu du u du u d t t È d a Ê Œ u du ˆ t t t d d () Œ Èu du Èt ˆ at t at t dt dy. y t dt Ê È È d & dt È 5. y si t dt dy d Î È si t dt Ê si (si ) d Š ˆ È ˆ ˆ È ˆ d t t dy ct t d 7. y dt dt Ê si Èt d Èsi d Ècos cos cos dt dy d cos cos 9. y, Ê ˆ (si ) (cos ) sice d si È Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

14 Chapter 5 Itegratio. Ê ( ) Ê or ; Area a d a d a d ( ) ( ) Š Š ( ) Š ( ) ( ) Š Š Š ( ) 8 Š Š Š. Ê a Ê ( )( ) Ê,, or ; Area a d a d Š Š Š Š 5. The area of the rectagle ouded y the lies y, y,, ad is. The area uder the curve y cos o [ ß] is ( cos ) d [ si ] ( si ) ( si ). Therefore the area of the shaded regio is. 7. O ß : The area of the rectagle ouded y the lies y È, y, ), ad ) is È ˆ È. The area etwee the curve y sec ) ta ) ad y is sec ) ta ) d ) [ sec )] cî Î ˆ È È Î ) ) Î ) ) ) ) È È ( sec ) sec ˆ È. Therefore the area of the shaded regio o ß is Š È. O ß : The area of the rectagle ouded y,, y È, ad y is È ˆ ) ). The area uder the curve y sec ta is sec ta d [sec ] sec sec. Therefore the area of the shaded regio o ß is Š È. Thus, the area of the total shaded regio is È È È Š È Š È. dy t d t 9. y dt Ê ad y( ) dt Ê (d) is a solutio to this prolem. dy d 5. y sec t dt Ê sec ad y() sec t dt Ê () is a solutio to this prolem. 5. y sec t dt Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

15 Î Î 55. Area ˆ h ˆ h h d h cî h ˆ h ˆ Œhˆ Œhˆ ˆ ˆ h h h h h h 6 6 Sectio 5.5 Idefiite Itegrals ad the Sustitutio Rule cî h dc 57. Î Ê c Î t dt Î t È; c() c() È È 9. d È 59. (a) t Ê T 85 È 5 7 F; t 6 Ê T 85 È F; È t 5 Ê T F 5 Î () average temperatuve Š 85 È5 t dt 85t a5 t 5 5 Î Î 5 5 Š 85a5a5 5 Š 85aa5 75 F d d 6. f(t) dt Ê f() d f(t) dt d a 5 9 w 9 9 w 9 t () t 6. f() dt Ê f () Ê f () ; f() dt ; L() ( ) f() ( ) (a) True: sice f is cotiuous, g is differetiale y Part of the Fudametal Theorem of Calculus. () True: g is cotiuous ecause it is differetiale. w (c) True, sice g () f(). ww w (d) False, sice g () f (). w ww w (e) True, sice g () ad g () f (). ww w ww (f) False: g () f (), so g ever chages sig. w w w (g) True, sice g () f() ad g () f() is a icreasig fuctio of (ecause f () ). 5.5 INDEFINTE INTEGRALS AND THE SUBSTITUTION RULE Let u Ê du d Ê du d a a d u du u du u C C. Let u 5 Ê du d Ê du d a a 5 d u du u du u C 5 C 5. Let u Ê du a6 d a d Ê du a d 5 a a a d u du u du u C C 7. Let u Ê du d Ê du d si d si u du cos u C cos C 5 Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

16 Chapter 5 Itegratio 9. Let u t Ê du dt Ê du dt sec t ta t dt sec u ta u du sec u C sec t C. Let u r Ê du r dr Ê du 9r dr 9r dr Î Î Î È r u du ()u C 6 a r C Î Î. Let u Ê du d Ê du È d È si ˆ Î d si u du ˆ u si u C ˆ Î si ˆ Î C 6 u u Š 5. (a) Let u cot ) Ê du csc ) d ) Ê du csc ) d) csc ) cot ) d) u du C C cot ) C u u Š () Let u csc ) Ê du csc ) cot ) d ) Ê du csc ) cot ) d) csc ) cot ) d) u du C C csc ) C 7. Let u s Ê du ds Ê du ds È s ds Èu ˆ du Î u du ˆ ˆ Î u Î C ( s) C 9. Let u ) Ê du ) d ) Ê du ) d) ) È ) d) È u ˆ du Î u du ˆ ˆ &Î u C a ) &Î C È È È du Ȉ È u u È. Let u Ê du d Ê du d d C C 5 5. Let u Ê du d Ê du d sec ( ) d asec u ˆ du sec u du ta u C ta ( ) C 5. Let u si ˆ Ê du cos ˆ d Ê du cos ˆ d & si ˆ cos ˆ & d u ( du) ˆ u C si ˆ C 6 r r 8 6 r & & & u r Let u Ê du dr Ê 6 du r dr r Š dr u (6 du) 6 u du 6 Š C Š C Î Î Î 9. Let u Ê du d Ê du d Î si ˆ Î d (si u) ˆ du Î si u du ( cos u) C cos ˆ C. Let u cos (t ) Ê du si (t ) dt Ê du si (t ) dt si (t ) du cos (t ) u u cos (t ) dt C C t t. Let u t Ê du t dt Ê du dt cos ˆ dt (cos u)( du) cos u du si u C si ˆ C t t t Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

17 5. Let u si Ê du ˆ cos ˆ d ) Ê du cos d) ) ) ) ) ) ) ) ) ) si cos d) u du u C si C a ˆ ˆ 6 a 7. Let u t Ê du t dt Ê du t dt t t dt u du u C t C 9. Let u Ê du d Î Î Î É d Èu du u du u C ˆ C Sectio 5.5 Idefiite Itegrals ad the Sustitutio Rule Let u Ê du d Ê du d É d É d É d È u du u du u C ˆ C Î Î Î Let u. The du d ad u. Thus a d au u du au u du u u C a a C 5 5. Let u. The du d ad adu d ad u. Thus a a d a 7a a C au u adu au u u du u u u C 7. Let u. The du d ad du d ad u. Thus È d au Èu du a a a Î Î &Î Î &Î Î &Î & & & u u du u u C u u C C a u C a C 9. Let u Ê du d ad du d. Thus d d u du u du a 5. (a) Let u ta Ê du sec d; v u Ê dv u du Ê 6 dv 8u du; w v Ê dw dv 8 ta sec 8u 6 dv 6 dw 6 ata au ( v) w v C u ta C d du 6 w dw 6w C C () Let u ta Ê du ta sec d Ê 6 du 8 ta sec d; v u Ê dv du 8 ta sec 6 du 6 dv ta a ( u) v v u ta d C C C (c) Let u ta Ê du ta sec d Ê 6 du 8 ta sec d 8 ta sec 6 du 6 6 ta a u u ta d C C 5. Let u (r ) 6 Ê du 6(r )() dr Ê du (r ) dr; v È u Ê dv du Ê dv du (r ) cos È(r ) 6 È(r ) 6 Èu 6 Èu cos Èu Èu dr Š ˆ du (cos v) ˆ dv si v C si Èu C si È(r ) 6 C 6 Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

18 6 Chapter 5 Itegratio 55. Let u t Ê du 6t dt Ê du t dt a s t at dt u ( du) ˆ u C u C at C; s whe t Ê ( ) C Ê 8 C Ê C 5 Ê s t Let u t Ê du dt s 8 si ˆ t dt 8 si u du 8 ˆ u si u C ˆ t si ˆ t C; 6 ˆ ˆ s 8 whe t Ê 8 si C Ê C 8 9 Ê s ˆ t si ˆ t 9 t si ˆ t Let u t Ê du dt Ê du dt ds dt si ˆ t dt (si u)( du) cos u C cos ˆ t C ; ds at t ad we have cos ˆ ds C Ê C Ê cos ˆ t dt dt Ê s ˆ cos ˆ t dt (cos u 5) du si u 5u C si ˆ t 5 ˆ t C ; ˆ ˆ at t ad s we have si 5 C Ê C 5 Ê s si ˆ t t 5 ( 5 ) Ê s si ˆ t t 6. Let u t Ê du dt Ê du 6 dt s 6 si t dt (si u)( du) cos u C cos t C; at t ad s we have cos C Ê C Ê s cos t Ê s ˆ cos ( ) 6 m 6. All three itegratios are correct. I each case, the derivative of the fuctio o the right is the itegrad o the left, ad each formula has a aritrary costat for geeratig the remaiig atiderivatives. Moreover, cos si C cos C Ê C C ; also cos C C Ê C C C. 5.6 SUBSTITUTION AND AREA BETWEEN CURVES. (a) Let u y Ê du dy; y Ê u, y Ê u È Î y dy u du Î u ˆ Î () ˆ Î () ˆ (8) ˆ () () Use the same sustitutio for u as i part (a); y Ê u, y Ê u È Î y dy u du Î u ˆ Î () c Î ta sec d u u du ta sec d u u du cî c. (a) Let u ta Ê du sec d; Ê u, Ê u () Use the same sustitutio as i part (a); Ê u, Ê u t t dt u 5 a u du (a) u t Ê du t dt Ê du t dt; t Ê u, t Ê u () Use the same sustitutio as i part (a); t Ê u, t Ê u t a t dt u du c Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

19 5 5r dr 5 u du a r 5 Sectio 5.6 Sustitutio ad Area Betwee Curves 7 7. (a) Let u r Ê du r dr Ê du r dr; r Ê u 5, r Ê u 5 () Use the same sustitutio as i part (a); r Ê u, r Ê u 5 5 5r & dr 5 u du 5 u 5 (5) 5 () a r ˆ ˆ 8 È 9. (a) Let u Ê du d Ê du d; Ê u, Ê u È Î Î Î Î d du u du u () () È Èu () Use the same sustitutio as i part (a); È Ê u, È Ê u È d du cè È È u 6 Î6 ( cos t) si t dt u du () () Š u Ê Ê Î ( cos t) si t dt u du () () Î6 Š u 6 6. (a) Let u cos t Ê du si t dt Ê du si t dt; t Ê u, t Ê u cos () Use the same sustitutio as i part (a); t u, t u cos. (a) Let u si z Ê du cos z dz Ê du cos z dz; z Ê u, z Ê u cos z dz du È ˆ si z Èu () Use the same sustitutio as i part (a); z Ê u si ( ), z Ê u c cos z È si z Èu dz ˆ du & 5. Let u t t Ê du a5t dt; t Ê u, t Ê u Èt& t a5t dt Î u du Î u Î Î () () È 7. Let u cos ) Ê du si ) d ) Ê du si ) d ); ) Ê u, ) Ê u cos ˆ 6 6 Î6 Î Î Î cos ) si ) d) u ˆ du u du Š c ˆ () 9. Let u 5 cos t Ê du si t dt Ê du si t dt; t Ê u 5 cos, t Ê u 5 cos * 5 Î Î 5 (5 cos t) si t dt 5u ˆ du 5 Î u du 5 ˆ &Î &Î &Î u 9. Let u y y y Ê du a y y dy; y Ê u, y Ê u () () () 8 8 Î y y y y y dy Î a a u du Î ) u Î Î (8) () Î Î. Let u ) Ê du ) d ) Ê du È) d ); ) Ê u, ) È Ê u È Î È cos ˆ d cos u ˆ du ˆ u si u ) ) ) ˆ si () Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

20 8 Chapter 5 Itegratio È È Î Î Î Î c Î Î Î 6 u () () 5. Let u Ê du d Ê du d; Ê u, Ê u, Ê u A d d u du u du u du u du 7. Let u cos Ê du si d Ê du si d; Ê u cos ( ), Ê u cos Î Î Î Î Î &Î c A (si ) È cos d u ( du) u du u () () cos 9. For the setch give, a, ; f() g() cos si ; (cos ) A d ( cos ) d si [( ) ( )]. For the setch give, a, ; f() g() a ; & A a d ˆ ˆ c For the setch give, c, d ; f(y) g(y) ay y ay y y y y; A ay y y dy y dy y dy y dy y y y ˆ () () 5. We wat the area etwee the lie y, Ÿ Ÿ, ad the curve y, 78?= the area of a triagle (formed y y ad y ) with ase ad height. Thus, A Š d ()() ˆ AREA A A A: For the setch give, a ad we fid y solvig the equatios y ad y simultaeously for : Ê Ê ( )( ) Ê or so c c : f() g() a a Ê A a d ˆ ( 8 9 ) 9 ; A: For the setch give, a ad : f() g() a a Ê A a d ˆ ˆ 6 8 c 6 8 9; Therefore, AREA A A AREA A A A A: For the setch give, a ad : f() g() ( ) a c Ê A a d ˆ ˆ 8 7 ; c 6 6 A: For the setch give, a ad : f() g() a ( ) a Ê A a d ˆ 8 ˆ 9 8 ; c A: For the setch give, a ad : f() g() ( ) a Ê A a d ˆ ˆ ; 9 ˆ Therefore, AREA A A A 9 9 Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

21 . a, ; f() g() a Ê A a d ˆ 8 8 ˆ 8 8 c 8 ˆ Sectio 5.6 Sustitutio ad Area Betwee Curves 9. a, ; f() g() 8 Ê A a8 d & 5. Limits of itegratio: Ê Ê ( ) Ê a ad ; f() g() a Ê A a d 7. Limits of itegratio: Ê 5 Ê a a Ê ( )( )( )( ) Ê,,, ; f() g() a 5 ad g() f() a 5 c c c Ê A a 5 d a 5 d a 5 d & & & ˆ ˆ 8 ˆ ˆ ˆ 8 ˆ 8 È, Ÿ 9. Limits of itegratio: y È ad È, 6 5y 6 or y ; for Ÿ : È Ê 5È 6 Ê 5( ) 6 Ê 7 6 Ê ( )( 6) Ê, 6 (ut 6 is ot a solutio); for : 5È 6 Ê 5 6 Ê 6 Ê ( )( 9) Ê, 9; there are three itersectio poits ad 9 A ˆ 6 È d ˆ 6 È d ˆ È 6 d c Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

22 5 Chapter 5 Itegratio ( 6) Î ( 6) Î Î ( 6) * 6 5 Î 6 Î 5 Î ( ) ˆ ˆ ˆ 5. Limits of itegratio: c ad d ; f(y) g(y) y y Ê A y dy 9 8 y 5. Limits of itegratio: y ad 6 y Ê y 6 y Ê y y Ê (y 5)(y ) Ê c ad d 5; f(y) g(y) ˆ Š 6y y y y 5 c y y & ˆ Ê A ay y dy y ˆ ˆ Limits of itegratio: y y ad y y 6 Ê y y y y 6 Ê y y 6 Ê ay ay Ê c ad d ; f(y) g(y) ay yay y 6 y y 6 y c Ê A ay y 6 dy y 6y ˆ 9 8 ˆ 57. Limits of itegratio: y ad yè y Ê y yèy Ê y y y ay Ê y y y y Ê y y Ê ay ay Ê y or y È Ê y or y Ê y or y. È Sustitutio shows that are ot solutios Ê y ; for Ÿ y Ÿ, f() g() yè y ay Î y y a y, ad y symmetry of the graph, A y yay dy c Î Î y a y c c Î a y dy y a y dy y ˆ () ˆ ˆ Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

23 59. Limits of itegratio: y ad y Ê Ê 5 Ê a 5 ( )( ) Ê a ad ; f() g() 5 c & Ê A a 5 d 5 ˆ ˆ ˆ 6. Limits of itegratio: y ad y Ê y y Ê y y Ê Š y È Š y È (y )(y ) Ê c ad d sice ; f(y) g(y) a y a y y y Ê A a y y dy y y y ˆ c & 6. a, ; f() g() si si Ê A ( si si ) d cos cos ( ) ˆ Sectio 5.6 Sustitutio ad Area Betwee Curves a, ; f() g() a cos ˆ Ê A cos ˆ d si ˆ c ˆ ˆ ˆ Î 67. a, ; f() g() sec ta Ê A asec ta d Î cî csec asec d d cî Î d [] ˆ cî Î Î 69. c, d ; f(y) g(y) si yècos y si yè cos y Ê A si yècos y dy (cos y) Î ( ) Î Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

24 5 Chapter 5 Itegratio 7. A A A Limits of itegratio: y ad y Ê y y Ê y y Ê y(y )(y ) Ê c, d ad c, d ; f (y) g (y) y y ad f (y) g (y) y y Ê y symmetry aout the origi, A A A Ê A ay y dy ˆ y y 7. A A A Limits of itegratio: y ad y Ê, Á Ê Ê, f () g () Ê A d ; f () g () Ê A d ; A A A 75. (a) The coordiates of the poits of itersectio of the lie ad paraola are c Ê Èc ad y c () f(y) g(y) Èy ˆ Èy Èy Ê the area of the lower sectio is, A [f(y) g(y)] dy c L c c Èy dy Î y Î c. The area of the etire shaded regio ca e foud y settig c : A ˆ Î 8. Sice we wat c to divide the regio ito susectios of equal area we have A A Ê ˆ Î L c Î Ê c Èc Èc Èc Î (c) f() g() c Ê A [f() g()] d Î c L È c d c c c È a c È c c c c Î L Î Ê Î c. Agai, the area of the whole shaded regio ca e foud y settig c Ê A. From the coditio A A, we get c c as i part (). 77. Limits of itegratio: y È ad y È Ê È, Á Ê È Ê ( ) È Ê Ê 5 Ê ( )( ) Ê, (ut does ot satisfy the equatio); y ad y Ê È È Ê 8 È Ê 6 Ê. Therefore, AREA A A : f () g () ˆ Î Ê A ˆ Î Î d ˆ 7 Î ; f () g () Ê A ˆ Î Î d ˆ ˆ ; Therefore, AREA A A 79. Area etwee paraola ad y a : A aa d a Š a ; a a a a a a Ä a Š Area of triagle AOC: (a) aa a ; limit of ratio lim which is idepedet of a. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

25 Chapter 5 Practice Eercises 5 8. The lower oudary of the regio is the lie through the poits azß z ad Š z ß az. The equatio of this ˆ z ˆ a z zz z lie is yaz a aza Ê y azaz z. The area of theregio is give y aa aaz az z dy z z a az z zdy az az z z Š az az az az zaz ˆ z az z az zz. No matter where we 6 choose z, the area of the regio ouded y y ad the lie through the poits azß z ad Š z ß az is always 6. z z 6 6 si si u si u ˆ u u 8. Let u Ê du d Ê du d; Ê u, Ê u 6 d ˆ du du cf(u) d F(6) F() 85. (a) Let u Ê du d; Ê u, Ê u f odd Ê f( ) f(). The f() d f( u) ( du) f(u) ( du) f(u) du f(u) du () Let u Ê du d; Ê u, Ê u c f eve Ê f( ) f(). The f() d f( u) ( du) f(u) du f(u) du c 87. Let u a Ê du d; Ê u a, a Ê u a a a a f() d f(a) d f() f(a) f() d f(au) f(au) du f(a) d f() f(a) f(au) f(u) f(u) f(au) f() f(a) a a a a I ( du) a Ê I I d d [] a a. f() f(a) f() f(a) f() f(a) Therefore, I a Ê I a. 89. Let u c Ê du d; a c Ê u a, c Ê u c c f( c) d f(u) du f() d acc a a CHAPTER 5 PRACTICE EXERCISES. (a) Each time suiterval is of legth? t. sec. The distace traveled over each suiterval, usig the midpoit rule, is? h a v v i i? t, where v i is the velocity at the left edpoit ad v i the velocity at the right edpoit of the suiterval. We the add? h to the height attaied so far at the left edpoit v i to arrive at the height associated with velocity v i at the right edpoit. Usig this methodology we uild the followig tale ased o the figure i the tet: t (sec) v (fps) h (ft) t (sec) v (fps) h (ft) Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

26 5 Chapter 5 Itegratio NOTE: Your tale values may vary slightly from ours depedig o the v-values you read from the graph. Rememer that some shiftig of the graph occurs i the pritig process. The total height attaied is aout 68 ft. () The graph is ased o the tale i part (a).. (a) a a ( ) () ( a ) a 5 ( ) (c) (a ) a 5 ()() (d) ˆ () 5 5. Let u Ê du d Ê du d; Ê u, 5 Ê u Î Î ( ) d u ˆ du Î u 7. Let u Ê du d; Ê u, Ê u cos ˆ d (cos u)( du) [ si u] si si ˆ ( ( )) c cî Î * c c c c f() g() (a) f() d f() d () () f() d f() d f() d 6 c c c c (c) g() d g() d (d) ( g()) d g() d () (e) Š d f() d g() d (6) () c 5 5 c 5 c Ê ( )( ) Ê or ; Area a d a d Š () () 8 Š () () Š () () ˆ ˆ Î Î. 5 5 Ê Ê ; Area ˆ Î 55 d ˆ Î 55 d 8 c &Î &Î ) &Î 5 5 ˆ 5() () ˆ &Î 5( ) ( ) ˆ &Î 5(8) (8) ˆ &Î 5() () [ ( )] [( 96) ] 6 Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

27 Chapter 5 Practice Eercises f(), g(), a, Ê A [f() g()] d a ˆ d ˆ ˆ 7. f() ˆ È, g(), a, Ê A [f() g()] d ˆ È d ˆ È d ˆ Î Î d (68) 9. f(y) y, g(y), c, d Ê A [f(y) g(y)] dy ay dy d c y dy c y d 8 a 6 6. Let us fid the itersectio poits: y y Ê y y Ê (y )(y ) Ê y y y d A [f(y) g(y)] dy Š y y dy c c y y dy y y a y c ˆ 8 ˆ 9 8 or y Ê c, d ; f(y), g(y) Ê. f(), g() si, a, Ê A [f() g()] d ( si ) d Î a Î È cos Š 5. a,, f() g() si si Ê A ( si si ) d cos cos ( ) ˆ Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

28 56 Chapter 5 Itegratio 7. f(y) Èy, g(y) y, c, d d Ê A [f(y) g(y)] dy È y ( y) dy c ˆ È y y dy Î y y y 8È7 6 6 Š È ˆ È 7 w w 9. f() ( ) Ê f () 6 ( ) Ê f ± ± Ê f() is a maimum ad f() is a miimum. A a d ˆ 7 Î. The area aove the -ais is A ˆ y y dy &Î y y 5 ; the area elow the -ais is A Î y y dy &Î ˆ y y c Ê the total area is A A dy d y w t d d t. y dt Ê Ê ; y() dt ad y () 5 si t dy si si t 5 t d 5 t 5. y dt Ê ; 5 Ê y dt 7. Let u cos Ê du si d Ê du si d Î Î Î Î Î (cos ) si d u ( du) u du Š C u C (cos ) C 9. Let u ) Ê du d ) Ê du d) [) cos () )] d ) (u cos u) ˆ du u () ) si u C si () ) C ) ) si () ) C, where C C is still a aritrary costat u Î c. ˆ t ˆ t dt ˆ t t t t dt at t dt Š C C t t t t Î. Let u t Ê du È t dt Ê du Èt dt Èt si ˆ Î t dt si u du cos u C cosˆ Î t C 5. a 7 d c 7d c () 7() dc( ) ( ) 7( ) d 6 ( ) 6 c v 7. dv v dv cv d ˆ ˆ Î Î tèt tî È È dt dt ( ) 9. t dt t Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

29 5. Let u Ê du d Ê 8 du 6 d; Ê u, Ê u 6 d 8u () u c 8u du ˆ ˆ 8 Chapter 5 Practice Eercises 57 Î Î Î 5. Let u Ê du d Ê du d; Ê u ˆ Î, Ê u Î 8 8 Î Î Î &Î d Î &Î &Î &Î ˆ u ˆ du ˆ u u () ˆ ˆ Î8 Î Š 5 Î 5 Î È Let u 5r Ê du 5 dr Ê 5 du dr; r Ê u, r Ê u 5 5 si 5r dr & asi u ˆ du u si u ˆ si ˆ si 5 5 Î 57. sec ) d ) [ta )] ta ta È Î Î Î Î cot d 6 cot u du 6 csc u du [6( cot u u)] 6 cot 6 cot Î 6 6 Î Î 59. Let u Ê du d Ê 6 du d; Ê u, Ê u 6È 6. sec ta d [sec ] sec sec ˆ cî Î a ˆ ˆ 6. Let u si Ê du cos d; Ê u, Ê u Î Î Î &Î &Î &Î &Î 5(si ) cos d 5u du 5 ˆ u u () () Let u si Ê du cos d Ê du cos d; Ê u si ˆ, Ê u si ˆ Î c c & & & 5 si cos d 5u ˆ du 5u du u ( ) () c d c Î Î Î si cos Î u Î Î Î d du u du u È ˆ si Èu Š 67. Let u si Ê du 6 si cos d Ê du si cos d; Ê u, Ê u si 69. Let u sec ) Ê du sec ) ta ) d ); ) Ê u sec, ) Ê u sec Î Î Î ta ) sec ) ta ) sec ) ta ) Î È ) sec ) sec ) È ) sec ) È ) (sec )) È Î uî È u È cî ˆ È u È Š () È È () d d d du u du m m() m( ) ( ) c m m() m( ) ( ) c c Š Š 7. (a) av(f) (m ) d Š () Š ( ) () () av(f) (m ) d () ( ) () w w f() f(a) w av a a a a a a 7. f f () d [f()] [f() f(a)] so the average value of f over [aß] is the slope of the secat lie joiig the poits (aßf(a)) ad (ßf()), which is the average rate of chage of f over [aß]. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

30 58 Chapter 5 Itegratio 75. We wat to evaluate & & & & ( & & & & & & & f() d Œ( si a & d si a d d & Notice that the period of y si a is & ad that we are itegratig this fuctio over a iterval of & ( & ( & legth 65. Thus the value of si a d d is & &. & & & & & & & dy d È 77. cos dy d d d t 79. Œ dt 8. Yes. The fuctio f, eig differetiale o [aß], is the cotiuous o [aß]. The Fudametal Theorem of Calculus says that every cotiuous fuctio o [aß] is the derivative of a fuctio o [aß]. d d d 8. y È t dt È dy d d t dt Ê È t dt È t dt È 85. We estimate the area A usig midpoits of the vertical itervals, ad we will estimate the width of the parig lot o each iterval y averagig the widths at top ad ottom. This gives the estimate A & ˆ & && &*Þ& *Þ&& &Þ Þ(Þ& (Þ& A &* ft. The cost is Area (./ft ) a596 ft a./ft,58. Ê the jo caot e doe for,. CHAPTER 5 ADDITIONAL AND ADVANCED EXERCISES. (a) Yes, ecause f() d 7f() d (7) 7 7 Î c d È È È Š ˆ Î Î È () No. For eample, 8 d, ut 8 d Á È a a a si a cos a dy a a d Œ. y f(t) si a( t) dt f(t) si a cos at dt f(t) cos a si at dt f(t) cos at dt f(t) si at dt Ê cos a f(t) cos at dt si a d cos a d a d a d Œ f(t) cos at dtsi a f(t) si at dt Œ f(t) si at dt si a a cos a f(t) cos at dt (f() cos a) si a f(t) si at dt (f() si a) Ê cos a f(t) cos at dt si a f(t) si at dt. Net, dy d cos a a dy d d a si a f(t) cos at dt (cos a) Œ f(t) cos at dta cos a f(t) si at dt d d d (si a) Œ f(t) si at dt a si a f(t) cos at dt (cos a)f() cos a ww a cos a f(t) si at dt (si a)f() si a a si a f(t) cos at dt a cos a f(t) si at dt f(). Therefore, y a y a cos a f(t) si at dt a si a f(t) cos at dt f() si a cos a w Œ a a a f(t) cos at dt f(t) si at dt f(). Note also that y () y(). Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

31 d Chapter 5 Additioal ad Advaced Eercises (a) f(t) dt cos Ê d f(t) dt cos si Ê f a () cos si cos si cos si f a. Thus, f() f() f() t Ê Ê () t dt (f()) Ê (f()) cos Ê (f()) cos Ê f() È cos Ê f() È () cos È d d È È 7. f() d È È Î Ê f() f() d a () Ê f() dy 9. d Ê y a d C. The (ß) o the curve Ê () C Ê C Ê y Î. f() d d d c8 c8 &Î 5 [ ] ) ˆ &Î ( 8) ( () ). g(t) dt t dt si t dt t cos t ˆ cos ˆ cos c 5. f() d d a d d c c c [] [] ( ) a ( ) Š Š () () ˆ a a 7. Ave. value f() d f() d d ( ) d Š Š Š &? _ & ß j Š ˆ j 9. Let f() o [ß]. Partitio [ß] ito suitervals with. The,, á, are the right-had edpoits of the suitervals. Sice f is icreasig o [ ], U is the upper sum for _ & & & & & f() o [ß] Ê lim j á Š ˆ lim ˆ ˆ á ˆ lim & & & Ä_ Ä_ Ä_ & 6 6 d j Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

32 6 Chapter 5 Itegratio? _ ß j Š ˆ j j ˆ ˆ ˆ Ä_. Let y f() o [ß]. Partitio [ß] ito suitervals with. The,, á, are the right-had edpoits of the suitervals. Sice f is cotiuous o [ ], f is a Riema sum of _ y f() o [ß] Ê lim f Š ˆ lim f f á f f() d Ä_ j. (a) Let the polygo e iscried i a circle of radius r. If we draw a radius from the ceter of the circle (ad the polygo) to each verte of the polygo, we have isosceles triagles formed (the equal sides are equal to r, the radius of the circle) ad a verte agle of ) where ). The area of each triagle is r r A r si ) Ê the area of the polygo is A A si ) si. Ä_ Ä_ r r Ä_ si Ä_ si a ˆ a ˆ ˆ ˆ Î Ä () lim A lim si lim si lim r r lim r 5. (a) ga fat dt () ga fat dt a a (c) ga fa t dt fa t dt a w w (d) g a fa Ê,, ad the sig chart for g a fa is ± ± ±. So g has a relative maimum at. w (e) g a f a is the slope ad ga fat dt, y (c). Thus the equatio is y a y. (f) g ww a f w a at ad g ww a f w a is egative o aß ad positive o aß so there is a ww w ww w iflectio poit for g at. We otice that g a f a for o aß ad g a f a for o ww aß, eve though g a does ot eist, g has a taget lie at, so there is a iflectio poit at. (g) g is cotiuous o Òß Ó ad so it attais its asolute maimum ad miimum values o this iterval. We saw i (d) that g w a Ê,,. We have that ga fa t dt fa t dt ga fat dt ga fat dt ga fat dt Thus, the asolute miimum is ad the asolute maimum is. Thus, the rage is Ò ß Ó. d d / t d d 7. f() dt Ê f w () ˆ Š ˆ ˆ ˆ Èy 9. g(y) w È si t dt Ê g (y) Š si ˆ y d Š ˆ y Š si ˆ y d Š ˆ y si y È È È È y si y dy dy Èy Èy Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

' ' Š # # '  # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ  # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above). Sectio. The Defiite Itegral 7 ( ) t dt t dt t dt t dt 6. av(f) Š at t dt Š ( ) ( ) Š Š. ( ) ( ) d ( ) d 6. (a) av(g) Š akk d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ akk d ( ) d Š d d ( ). ( ) k k (c) av(g)

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Math PracTest Be sure to review Lab (ad all labs) There are lots of good questios o it a) State the Mea Value Theorem ad draw a graph that illustrates b) Name a importat theorem where the Mea Value Theorem

More information

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f, AP alculus B Review Applicatios of Derivatives (hapter ) Thigs to Kow ad Be Able to Do Defiitios of the followig i terms of derivatives, ad how to fid them: critical poit, global miima/maima, local (relative)

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... 77 Sectio. Area............................. 8 Sectio. Riema Sums a Defiite Itegrals........... 88 Sectio. The Fuametal Theorem of Calculus..........

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5.1 AREA AND ESTIMATING WITH FINITE SUMS 1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.! )!! ( (!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 )! (a)

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

INTRODUCTORY MATHEMATICAL ANALYSIS

INTRODUCTORY MATHEMATICAL ANALYSIS INTRODUCTORY MATHEMATICAL ANALYSIS For Busiess, Ecoomics, ad the Life ad Social Scieces Chapter 4 Itegratio 0 Pearso Educatio, Ic. Chapter 4: Itegratio Chapter Objectives To defie the differetial. To defie

More information

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck!

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck! MAT36HF - Calculus I (B) Log Quiz. T (M3) Time: 2 miutes Last Name: Studet ID: First Name: Please mark your tutorial sectio: T (M3) T2 (R4) T3 (T4) T5 (T5) T52 (R5) The quiz cosists of four questios. Each

More information

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9 Calculus I Practice Test Problems for Chapter 5 Page of 9 This is a set of practice test problems for Chapter 5. This is i o way a iclusive set of problems there ca be other types of problems o the actual

More information

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums) Math 176 Calculus Sec. 5.1: Areas ad Distaces (Usig Fiite Sums) I. Area A. Cosider the problem of fidig the area uder the curve o the f y=-x 2 +5 over the domai [0, 2]. We ca approximate this area by usig

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

Section Volumes by Slicing and Rotation About an Axis

Section Volumes by Slicing and Rotation About an Axis Sectio 6.1 - Volumes y Slicig ad Rotatio Aout a Axis Itroductio Recall that we approximated the area uder a curve y = f HxL y first usig the Riema sum f Ix * k M D x k=1 We otaied the exact value y takig

More information

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.) MATH A FINAL (7: PM VERSION) SOLUTION (Last edited December 5, 3 at 9:4pm.) Problem. (i) Give the precise defiitio of the defiite itegral usig Riema sums. (ii) Write a epressio for the defiite itegral

More information

TECHNIQUES OF INTEGRATION

TECHNIQUES OF INTEGRATION 7 TECHNIQUES OF INTEGRATION Simpso s Rule estimates itegrals b approimatig graphs with parabolas. Because of the Fudametal Theorem of Calculus, we ca itegrate a fuctio if we kow a atiderivative, that is,

More information

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4 . If f = e ta -, the f = e e p e e p e p+ 4 f = e ta -, so f = e ta - + e, so + f = e p + e = e p + e or f = e p + 4. The slope of the lie taget to the curve - + = at the poit, - is - 5 Differetiate -

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio f(x) = x 3 lx o the iterval [/e, e ]. (a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum

More information

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b) Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... Sectio. Area............................. Sectio. Riema Sums a Defiite Itegrals........... Sectio. The Fuametal Theorem of Calculus..........

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas:

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas: Areas ad Distaces We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate the area of the regio

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Questio 5 Let f be a fuctio defied o the closed iterval [,7]. The graph of f, cosistig of four lie segmets, is show above. Let g be the fuctio give by g ftdt. (a) Fid g (, )

More information

274 Chapter 4 Applications of Derivatives

274 Chapter 4 Applications of Derivatives 274 Chapter 4 Applicatios of Derivatives Ê % a%) Ê * %) Ê %) Ê. We discard as a etraeous solutio, leavig. Sice D a for % ad D a for %, the critical poit correspods to the miimum distace. The miimum distace

More information

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew Problem ( poits) Evaluate the itegrals Z p x 9 x We ca draw a right triagle labeled this way x p x 9 From this we ca read off x = sec, so = sec ta, ad p x 9 = R ta. Puttig those pieces ito the itegralrwe

More information

MATH Exam 1 Solutions February 24, 2016

MATH Exam 1 Solutions February 24, 2016 MATH 7.57 Exam Solutios February, 6. Evaluate (A) l(6) (B) l(7) (C) l(8) (D) l(9) (E) l() 6x x 3 + dx. Solutio: D We perform a substitutio. Let u = x 3 +, so du = 3x dx. Therefore, 6x u() x 3 + dx = [

More information

Calculus. Ramanasri. Previous year Questions from 2016 to

Calculus. Ramanasri. Previous year Questions from 2016 to ++++++++++ Calculus Previous ear Questios from 6 to 99 Ramaasri 7 S H O P NO- 4, S T F L O O R, N E A R R A P I D F L O U R M I L L S, O L D R A J E N D E R N A G A R, N E W D E L H I. W E B S I T E :

More information

AP Calculus BC 2007 Scoring Guidelines Form B

AP Calculus BC 2007 Scoring Guidelines Form B AP Calculus BC 7 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

4.1 SIGMA NOTATION AND RIEMANN SUMS

4.1 SIGMA NOTATION AND RIEMANN SUMS .1 Sigma Notatio ad Riema Sums Cotemporary Calculus 1.1 SIGMA NOTATION AND RIEMANN SUMS Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each

More information

2 ) 5. (a) (1)(3) + (1)(2) = 5 (b) {area of shaded region in Fig. 24b} < 5

2 ) 5. (a) (1)(3) + (1)(2) = 5 (b) {area of shaded region in Fig. 24b} < 5 Odd Aswers: Chapter Four Cotemporary Calculus PROBLEM ANSWERS Chapter Four Sectio 4.. (a) ()() + (8)(4) = 5 (b) ()() ()(8) = 76. bh + b(h h) = bh + bh bh = b ( h + H ) 5. (a) ()() + ()() = 5 (b) {area

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2.

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2. Calculus Test File Sprig 06 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = +. Produce a solid by revolvig the regio aroud

More information

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + +

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + + 8 MΘ Natioal ovetio Mu Idividual Solutios b a f + f + + f + + + ) (... ) ( l ( ) l ( ) l ( 7) l ( ) ) l ( 8) ) a( ) cos + si ( ) a' ( ) cos ( ) a" ( ) si ( ) ) For a fuctio to be differetiable at c, it

More information

The Definite Integral. Day 3 Riemann Sums

The Definite Integral. Day 3 Riemann Sums The Defiite Itegral Day 3 Riema Sums 2 2 1. If x xy y 9, the a vertical taget exists at ( A) 2 3, 3 ( B) 3,2 3 ( C) 2 3, 3 ( D) 3,2 3 ( E) 2 3, 3 2. Use a local lieariazatio for f x 9 ta x about x 0, the

More information

+ {JEE Advace 03} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks: 00. If A (α, β) = (a) A( α, β) = A( α, β) (c) Adj (A ( α, β)) = Sol : We

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Fial Math - 3 7 These problems are provided to help you study The presece of a problem o this hadout does ot imply that there will be a similar problem o the test Ad the absece

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 18. October 5, 005 Homework. Problem Set 5 Part I: (c). Practice Problems. Course Reader: 3G 1, 3G, 3G 4, 3G 5. 1. Approximatig Riema itegrals. Ofte, there is o simpler expressio for the atiderivative

More information

Student s Printed Name:

Student s Printed Name: Studet s Prited Name: Istructor: XID: C Sectio: No questios will be aswered durig this eam. If you cosider a questio to be ambiguous, state your assumptios i the margi ad do the best you ca to provide

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3. Calculus Eam File Fall 07 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = 3 + 4. Produce a solid by revolvig the regio aroud

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

1988 AP Calculus BC: Section I

1988 AP Calculus BC: Section I 988 AP Calculus BC: Sectio I 9 Miutes No Calculator Notes: () I this eamiatio, l deotes the atural logarithm of (that is, logarithm to the base e). () Uless otherwise specified, the domai of a fuctio f

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not. Quiz. Use either the RATIO or ROOT TEST to determie whether the series is coverget or ot. e .6 POWER SERIES Defiitio. A power series i about is a series of the form c 0 c a c a... c a... a 0 c a where

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. AP Calculus AB Portfolio Project Multiple Choice Practice Name: CALCULUS AB SECTION I, Part A Time 60 miutes Number of questios 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directios: Solve

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Section 13.3 Area and the Definite Integral

Section 13.3 Area and the Definite Integral Sectio 3.3 Area ad the Defiite Itegral We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate

More information

MEI Conference 2009 Stretching students: A2 Core

MEI Conference 2009 Stretching students: A2 Core MEI Coferece 009 Stretchig studets: A Core Preseter: Berard Murph berard.murph@mei.org.uk Workshop G How ca ou prove that these si right-agled triagles fit together eactl to make a 3-4-5 triagle? What

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

AP CALCULUS - AB LECTURE NOTES MS. RUSSELL

AP CALCULUS - AB LECTURE NOTES MS. RUSSELL AP CALCULUS - AB LECTURE NOTES MS. RUSSELL Sectio Number: 4. Topics: Area -Sigma Notatio Part: of Sigma Notatio Upper boud Recall ai = a+ a + a3 + L + a idex i= Lower boud Example : Evaluate each summatio.

More information

AP Calculus BC 2011 Scoring Guidelines Form B

AP Calculus BC 2011 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The College Board The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad opportuity. Fouded i 9, the College

More information

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2 TEMASEK JUNIOR COLLEGE, SINGAPORE JC Oe Promotio Eamiatio 04 Higher MATHEMATICS 9740 9 Septemer 04 Additioal Materials: Aswer paper 3 hours List of Formulae (MF5) READ THESE INSTRUCTIONS FIRST Write your

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 120c Calculus Sec 1: Estimatig with Fiite Sums I Area A Cosider the problem of fidig the area uder the curve o the fuctio y!x 2 + over the domai [0,2] We ca approximate this area by usig a familiar

More information

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals Math 1314 Lesso 16 Area ad Riema Sums ad Lesso 17 Riema Sums Usig GeoGebra; Defiite Itegrals The secod questio studied i calculus is the area questio. If a regio coforms to a kow formula from geometry,

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

AP Calculus BC 2005 Scoring Guidelines

AP Calculus BC 2005 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

668 Chapter 11 Parametric Equatins and Polar Coordinates

668 Chapter 11 Parametric Equatins and Polar Coordinates 668 Chapter Parametric Equatins and Polar Coordinates 5. sin ( sin Á r and sin ( sin Á r Ê not symmetric about the x-axis; sin ( sin r Ê symmetric about the y-axis; therefore not symmetric about the origin

More information

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart. MATH 1080: Calculus of Oe Variable II Fall 2017 Textbook: Sigle Variable Calculus: Early Trascedetals, 7e, by James Stewart Uit 3 Skill Set Importat: Studets should expect test questios that require a

More information

Objective Mathematics

Objective Mathematics 6. If si () + cos () =, the is equal to :. If <

More information

(A) 0 (B) (C) (D) (E) 2.703

(A) 0 (B) (C) (D) (E) 2.703 Class Questios 007 BC Calculus Istitute Questios for 007 BC Calculus Istitutes CALCULATOR. How may zeros does the fuctio f ( x) si ( l ( x) ) Explai how you kow. = have i the iterval (0,]? LIMITS. 00 Released

More information

Coffee Hour Problems of the Week (solutions)

Coffee Hour Problems of the Week (solutions) Coffee Hour Problems of the Week (solutios) Edited by Matthew McMulle Otterbei Uiversity Fall 0 Week. Proposed by Matthew McMulle. A regular hexago with area 3 is iscribed i a circle. Fid the area of a

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

JEE ADVANCED 2013 PAPER 1 MATHEMATICS

JEE ADVANCED 2013 PAPER 1 MATHEMATICS Oly Oe Optio Correct Type JEE ADVANCED 0 PAPER MATHEMATICS This sectio cotais TEN questios. Each has FOUR optios (A), (B), (C) ad (D) out of which ONLY ONE is correct.. The value of (A) 5 (C) 4 cot cot

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

Math III-Formula Sheet

Math III-Formula Sheet Math III-Formula Sheet Statistics Z-score: Margi of Error: To fid the MEAN, MAXIMUM, MINIMUM, Q 3, Q 1, ad STANDARD DEVIATION of a set of data: 1) Press STAT, ENTER (to eter our data) Put it i L 1 ) Press

More information

Chapter 5.4 Practice Problems

Chapter 5.4 Practice Problems EXPECTED SKILLS: Chapter 5.4 Practice Problems Uderstad ad kow how to evaluate the summatio (sigma) otatio. Be able to use the summatio operatio s basic properties ad formulas. (You do ot eed to memorize

More information

Substitute these values into the first equation to get ( z + 6) + ( z + 3) + z = 27. Then solve to get

Substitute these values into the first equation to get ( z + 6) + ( z + 3) + z = 27. Then solve to get Problem ) The sum of three umbers is 7. The largest mius the smallest is 6. The secod largest mius the smallest is. What are the three umbers? [Problem submitted by Vi Lee, LCC Professor of Mathematics.

More information

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII GULF MATHEMATICS OLYMPIAD 04 CLASS : XII Date of Eamiatio: Maimum Marks : 50 Time : 0:30 a.m. to :30 p.m. Duratio: Hours Istructios to cadidates. This questio paper cosists of 50 questios. All questios

More information

Chapter 5: Take Home Test

Chapter 5: Take Home Test Chapter : Take Home Test AB Calulus - Hardtke Name Date: Tuesday, / MAY USE YOUR CALCULATOR FOR THIS PAGE. Roud aswers to three plaes. Sore: / Show diagrams ad work to justify eah aswer.. Approimate the

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.) Calculus - D Yue Fial Eam Review (Versio //7 Please report ay possible typos) NOTE: The review otes are oly o topics ot covered o previous eams See previous review sheets for summary of previous topics

More information

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist. Topic 5 [44 marks] 1a (i) Fid the rage of values of for which eists 1 Write dow the value of i terms of 1, whe it does eist Fid the solutio to the differetial equatio 1b give that y = 1 whe = π (cos si

More information

COMPUTING SUMS AND THE AVERAGE VALUE OF THE DIVISOR FUNCTION (x 1) + x = n = n.

COMPUTING SUMS AND THE AVERAGE VALUE OF THE DIVISOR FUNCTION (x 1) + x = n = n. COMPUTING SUMS AND THE AVERAGE VALUE OF THE DIVISOR FUNCTION Abstract. We itroduce a method for computig sums of the form f( where f( is ice. We apply this method to study the average value of d(, where

More information

Math ~ Final Exam Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying

Math ~ Final Exam Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying Math 1210 9 ~ Fial Exam Review Guide* *This is oly a guide, for your eefit, ad it i o way replaces class otes, homework, or studyig Geeral Tips for Studyig: 1. Review this guide, class otes, ad the text

More information

Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK) Undergraduate Entrance Test(UGET) Maths-2012

Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK) Undergraduate Entrance Test(UGET) Maths-2012 Cosortium of Medical Egieerig ad Detal Colleges of Karataka (COMEDK) Udergraduate Etrace Test(UGET) Maths-0. If the area of the circle 7 7 7 k 0 is sq. uits, the the value of k is As: (b) b) 0 7 K 0 c)

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

Example 2. Find the upper bound for the remainder for the approximation from Example 1. Lesso 8- Error Approimatios 0 Alteratig Series Remaider: For a coverget alteratig series whe approimatig the sum of a series by usig oly the first terms, the error will be less tha or equal to the absolute

More information

Now we are looking to find a volume of solid S that lies below a surface z = f(x,y) and R= ab, cd,,[a,b] is the interval over

Now we are looking to find a volume of solid S that lies below a surface z = f(x,y) and R= ab, cd,,[a,b] is the interval over Multiple Itegratio Double Itegrals, Volume, ad Iterated Itegrals I sigle variable calculus we looked to fid the area uder a curve f(x) bouded by the x- axis over some iterval usig summatios the that led

More information

Fooling Newton s Method

Fooling Newton s Method Foolig Newto s Method You might thik that if the Newto sequece of a fuctio coverges to a umber, that the umber must be a zero of the fuctio. Let s look at the Newto iteratio ad see what might go wrog:

More information

The volume V of the solid of revolution obtained by revolving the region of Fig about the x axis is given by. (disk formula)

The volume V of the solid of revolution obtained by revolving the region of Fig about the x axis is given by. (disk formula) CHAPTER Applicatios of Itegratio II: Volume A solid of revolutio is obtaied by revolvig a regio i a plae about a lie that does ot itersect the regio. The lie about which the rotatio takes place is called

More information

B U Department of Mathematics Math 101 Calculus I

B U Department of Mathematics Math 101 Calculus I B U Departmet of Mathematics Math Calculus I Sprig 5 Fial Exam Calculus archive is a property of Boğaziçi Uiversity Mathematics Departmet. The purpose of this archive is to orgaise ad cetralise the distributio

More information

Diploma Programme. Mathematics HL guide. First examinations 2014

Diploma Programme. Mathematics HL guide. First examinations 2014 Diploma Programme First eamiatios 014 33 Topic 6 Core: Calculus The aim of this topic is to itroduce studets to the basic cocepts ad techiques of differetial ad itegral calculus ad their applicatio. 6.1

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

n n 2 + 4i = lim 2 n lim 1 + 4x 2 dx = 1 2 tan ( 2i 2 x x dx = 1 2 tan 1 2 = 2 n, x i = a + i x = 2i

n n 2 + 4i = lim 2 n lim 1 + 4x 2 dx = 1 2 tan ( 2i 2 x x dx = 1 2 tan 1 2 = 2 n, x i = a + i x = 2i . ( poits) Fid the limits. (a) (6 poits) lim ( + + + 3 (6 poits) lim h h h 6 微甲 - 班期末考解答和評分標準 +h + + + t3 dt. + 3 +... + 5 ) = lim + i= + i. Solutio: (a) lim i= + i = lim i= + ( i ) = lim x i= + x i =

More information

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE. NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Iitial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to fid TANGENTS ad VELOCITIES

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Chapter 4 Practice Exercises 303

Chapter 4 Practice Exercises 303 Chapter Practice Eercises 303 0 3 3 5 5 53. y 5. y 55. y 56. y 30 Chapter Applicatios of Derivatives % 57. y 58. y 3 3 59. y 60. y 6. lim lim Ä Ä a ac a a b bc b 6. lim b lim Ä Ä & 63. lim Ä ta ta! ta

More information