Riemann Sums y = f (x)

Size: px
Start display at page:

Download "Riemann Sums y = f (x)"

Transcription

1 Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid the area bouded above by f (x), below by the x-axis, ad by the vertical lies x = a ad x = b See Figure 11 To solve this problem we will eed to use a A f Figure 11: Fid the area A f uder a oegative cotiuous curve o the iterval [a, b] b Basic Area Properties (Axioms) We assume the followig properties 1 The area of a regio A is a o-egative real umber: Area(A) 0 B A Property 2 2 If A is a subset of B, the Area(A) Area(B) 3 If A is subdivided ito two o-overlappig regios A 1 ad A 2, the The area of a rectagle is b h Area(A) = Area(A 1 ) + Area(A 2 ) Property 3 A 1 Figure 12: Properties 2 ad 3 A 2 YOU TRY IT 11 Usig the area properties above, prove that the area of ay triagle is 1 2 (b h) Figure 13: Show A = 1 2 (b h) See Figure 13 Which area properties do you use i your proof? YOU TRY IT 12 How could you use the area formula for a triagle to fid the area of ay polygo? (See Figure 1) What area properties are used to do this? What about curved figures like (semi)circles Why is the area of a circle πr 2 or, equivaletly, the area of a semi-circle 1 2 πr2? If we ca solve the geeral area problem, the we will be able to prove that the area of a semi-circle is 1 2 πr2 because we kow that the graph of the semi-circle of radius r is give by the cotiuous, o-egative fuctio f (x) = r 2 x 2 I other words, a semi-circular regio satisfies the coditios outlied i the geeral area problem (See Figure 15) Note: We ll solve the area problem two ways Sice the aswer must be the same, this equality will be the proof for the so-called Fudametal Theorem of Calculus To solve the area problem, we ll eed to use the oly area formula we kow we must use rectagle regios Figure 1: How you ca fid the area of this polygo? f (x) = r 2 x 2 r r Figure 15: This semi-circle satisfies the coditios of the area problem

2 math 131 riema sums, part Riema Sums (Theory) The presetatio here is slightly differet tha i your text Make sure that you uderstad what all of the otatio meas Agai, remember what we are tryig to solve: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid the area bouded above by f (x), below by the x-axis, ad by the vertical lies x = a ad x = b As we have just oted, sice the oly area formula we have have to work with is for rectagles, we must use rectagles to approximate the area uder the curve Here s how we go about this approximatio process Step 1 First subdivide or partitio [a, b] by choosig poits {x 0, x 1,, x } where a = x 0 < x 1 < x 2 < < x 1 < x = b Figure 16: A partitio of the iterval [a, b] a = x 0 x 1 x 2 x k 1 x k b = x Step 2 Determie the height of the kth rectagle by choosig a sample poit c k i the kth subiterval so that x k 1 c k x k Use f (c k ) as the height height = f (c k ) Figure 17: f (c k ) is the height of the kth rectagle (see the poit marked with a o the curve) a = x 0 x 1 x 2 x k 1 c k x k b = x Step 3 The width of the base of the kth rectagle is just x k x k 1 We usually call this umber x k (See Figure 18) height = f (c k ) Figure 18: x k = x k x k 1 is the width of the kth rectagle So the area of the kth rectagle is f (c k ) x k a = x 0 x 1 x 2 x k 1 c k x k b = x x k Step So usig the rectagle area assumptio, the area of the kth rectagle is h b = f (c k ) x k

3 math 131 riema sums, part 1 3 Step 5 If we carry out this same process for each subiterval determied by the partitio {x 0, x 1,, x }, we get rectagles The area uder f o [a, b] is approximately the sum of the areas of all rectagles, Area(A) f (c k ) x k Figure 19: A rectagular approximatio to the area uder f o the iterval [a, b] a = x 0 x 1 x 2 x k 1 x k b = x DEFINITION 111 (Riema Sum) Suppose f is defied o the iterval [a, b] with partitio a = x 0 < x 1 < x 2 < < x 1 < x = b Let x k = x k x k 1 ad let c k be ay poit chose so that x k 1 c k x k The is called a Riema sum for f o [a, b] f (c k ) x k Notice that i the geeral defiitio of a Riema sum we have ot assumed that f is o-egative or that it is cotiuous The defiitio makes sese as log as f is defied at every poit i [a, b] Let s work out a simple example EXAMPLE 112 Estimate the area uder f (x) = (x 1) o the iterval [0, 2] usig the partitio poits x 0 = 0 x 1 = 1 2 x 2 = 3 2 x 3 = 2 ad sample poits c 1 = 1 2 f (c 1 ) = f ( 1 2 ) = ( 1 2 1)3 + 1 = = 7 8 c 2 = 1 f (c 2 ) = f (1) = 1 c 3 = 7 f (c 3 ) = f ( 7 ) = 91 6 Solutio We use Defiitio 111 ad form the appropriate Riema sum First x 1 = x 1 x 0 = = 1 2 x 2 = x 2 x 1 = = 1 c 1 = 1/2 c 2 = 1 c 3 = 7/ x 3 = x 3 x 2 = = 1 2 x = 0 x 1 = 1/2 x 2 = 3/2 x 3 = 2 Figure 110: A Riema sum for f (x) = (x 1) o the iterval [0, 2] usig three rectagles The height for each rectagle is marked with a Does the approximatio seem to be a uder- or overestimate of the true area?

4 math 131 riema sums, part 1 So Area(A) 3 f (c k ) x k = f ( 1 2 ) x 1 + f (1) x 2 + f ( 7 ) x 3 = ( 7 8 )( ) + (1)(1) + ( 6 )( 1 2 ) = The Riema sum provides a estimate of as the area uder the curve Yet we do t kow how accurate that estimate is ad we still do t kow the true area uder the curve Further, otice that the use of summatio otatio was ot particularly helpful here If we use Riema sums i a more systematic way, Riema sum otatio ca be very helpful Ad, if we are careful about how we form such sums, we ca eve say whether the sum is a over- or uderestimate of the actual area uder the curve webwork: Click to try Problems 16 through 17 Use guest logi, if ot i my course 12 Regular Partitios, Upper ad Lower Sums Agai let us assume that is a o-egative, cotiuous fuctio o the iterval [a, b] We will ow take a more systematic approach to formig Riema sums for f o [a, b] that will allow us to make more accurate approximatios to the area uder the curve Agai we proceed i a series of steps Step 1 Divide the iterval [a, b] ito equal-width subitervals The width of each iterval will be x = b a We ca express the partitio poits i terms of a ad x x 0 = a = a + 0 x x 1 = a + x x 2 = a + 2 x x k = a + k x x = b = a + x Equal width partitios are called regular partitios The formula for the kth poit i a regular partitio is x k = a + k x (11) Step 2 Sice f is cotiuous, it achieves a maximum value ad a miimum value

5 math 131 riema sums, part 1 5 Figure 111: A regular partitio of the iterval [a, b] ito subitervals each of legth x = b a This meas that x k = a + k x x 0 = a x 1 x 2 x k 1 x k x 1 x = b x x x o each subiterval We use the followig otatio to represet these poits f (M k ) = maximum value of f o the kth subiterval f (m k ) = miimum value of f o the kth subiterval These poits are illustrated i Figure 112 f (M k ) f (m k ) Figure 112: O the kth subiterval the maximum height f (M k ) occurs betwee the two edpoits The miimum height f (m k ) happes to occur at the right edpoit of the iterval, m k = x k x k 1 M k x k x x k 1 x k = m k x Figure 112 shows that we get two differet rectagles for each subiterval depedig o whether we choose the maximum or the miimum value of f as the height These are called the circumscribed ad iscribed rectagles, respectively We see that area of the circumscribed rectagle = f (M k ) x area of the iscribed rectagle = f (m k ) x Step 3 To obtai a approximatio for the area uder the curve, we form a Riema sum usig either the circumscribed (upper) or iscribed (lower) rectagles If we add up all the circumscribed rectagles for a regular partitio with subitervals we get the upper sum for the partitio: Upper Riema Sum = Upper() = f (M k ) x (12) If we add up all the iscribed rectagles for a regular partitio we get the lower sum for the partitio: Lower Riema Sum = Lower() = f (m k ) x (13) Take a momet to review all of the otatio Ok? Let s see how these upper ad lower sums are computed i a simple case

6 math 131 riema sums, part 1 6 EXAMPLE 121 Let = x2 o [0, 2] Determie Upper() ad Lower(), the upper ad lower Riema sums for a regular partitio ito four subitervals Solutio We use the steps outlied above Step 1 Determie x Here [a, b] = [0, 2] ad = so x = b a = 2 0 = 1 2 Step 2 Determie the partitio poits, x k Usig (11) ( ) 1 x k = a + k x = 0 + k = k 2 2 (1) Step 3 Take a look at the graph of f (x) = x2 o [0, 2] i Figure 113 Sice f is a icreasig fuctio, the maximum value of f o each subiterval occurs at the right-had edpoit of the iterval The right-had edpoit of the i iterval is just x k So M k = x k = k 2 Cosequetly, the maximum value of f o the kth iterval is f (M k ) = f ( ) k = ( ) k 2 = 1 + k Figure 113: The upper sum Upper() for the fuctio f (x) = x2 o [0, 2] The maximum value of the fuctio occurs at the right-had edpoit, x k for each subiterval Step Puttig this all together, the upper Riema sum is Upper() = f (M k ) x = f ( ) k = ] [1 + k Now use the basic summatio rules ad formulæ to evaluate the sum ] Upper() = [1 + k = k 2 = 1 2 [(1)] + 1 ( ) (5)(9) 16 6 = 31 8 The lower sum Lower() ca be calculated i a similar way Agai, because the fuctio is icreasig, the miimum value of f o the kth subiterval occurs at the left-had edpoit x k 1 Usig the formula i (1) m k = x k 1 = k 1 2 Cosequetly, the miimum value of f o the kth iterval is ( ) k 1 f (m k ) = f = ( ) k 1 2 = 1 + k2 2i Puttig this all together, the lower Riema sum is = 9 8 k + k2 8 Lower() = [ 9 f (m k ) x = 8 k ] + k Figure 11: The lower sum Lower() for the fuctio f (x) = x2 o [0, 2] The miimum value of the fuctio occurs at the left-had edpoit, x k 1 for each subiterval

7 math 131 riema sums, part 1 7 Agai use the basic summatio rules ad formulæ to evaluate the sum Lower() = [ 9 8 k ] + k = 1 2 = 1 2 = 23 8 [ ( 9 8 k ( (5) )] k 2 ) ( ) (5)(9) The advatage of upper ad lower sums is that the true area uder the curve is trapped betwee their values Upper() is always a overestimate ad Lower() is a uderestimate More precisely, I this example, Lower() area uder f Upper() Lower() = 23 8 area uder f 31 8 = Upper() Here are two questios to thik about: How ca we improve the estimate? Which sum was easier to compute, the lower or the upper? Why? Now let s do the whole process agai This time, though we will use subitervals, without specifyig what the actual value of is This is where the summatio otatio that we have developed really comes to the rescue EXAMPLE 122 Let = x2 o [0, 2] Determie Upper() ad Lower(), the upper ad lower Riema sums for a regular partitio ito subitervals Solutio Step 1 Determie x Here [a, b] = [0, 2] so 6 x = b a = 2 0 = 2 Step 2 Determie the partitio poits, x k Usig (11) ( ) 2 x k = a + k x = 0 + k = 2k (15) Step 3 Sice f is a icreasig fuctio, the maximum value of f o each subiterval occurs at the right-had edpoit of the iterval So M k = x k So M k = x k = 2k Cosequetly, the maximum value of f o the kth iterval is f (M k ) = f ( ) 2k = ( ) 2k 2 = 1 + k2 2 2 = 1 + 2k Figure 115: The upper sum Upper() for the fuctio f (x) = x2 o [0, 2] As icreases, Upper() better approximates the area uder the curve (Compare to Figure 113)

8 math 131 riema sums, part 1 8 Puttig this all together, the upper Riema sum is ] Upper() = f (M k ) x = [1 + 2k2 2 2 = k 2 = 2 [(1)] + ( ) ( + 1)(2 + 1) 3 6 ( 2 2 ) = ( 2 = ) 3 2 = The lower sum Lower() ca be calculated i a similar way The miimum value of f o the kth subiterval occurs at the left-had edpoit: 2(k 1) m k = x k 1 = The miimum value of f o the kth iterval is ( ) 2(k 1) f (m k ) = f = ( ) 2(k 1) 2 = 1 + (k2 2k + 1) = 1 + 2(k2 2k + 1) 2 Puttig this all together, the lower Riema sum is Lower() = We kow that f (m k ) x = = 2 [ 1 + 2(k2 2k + 1) 2 ] (k 2 2k + 1) = 2 [(1)] + 3 k k = 2 + [ ] ( + 1)(2 + 1) 3 8 [ ( + 1) [ = ] [ ] = Lower() area uder f Upper() ] + 3 [()1] The formulæ for Upper() ad Lower() are valid for all positive itegers We expect that as icreases the approximatios improve I this case, takig limits Figure 116: The lower sum Lower() for the fuctio f (x) = x2 o [0, 2] The lower sum is a uderestimate of the area uder f lim Lower() area uder f lim Upper(), equivaletly, [ 10 lim ] [ area uder f lim ] 3 2, or area uder f 3 3 The oly way this ca happe is if 0 2 Figure 117: The differece betwee the upper sum Upper() for the fuctio f (x) = x2 o [0, 2] ad the lower sum Lower() (shaded) The true area lies betwee the two area uder f = 10 3

9 math 131 riema sums, part 1 9 Take-home Message This is great! We have maaged to determie the area uder a actual curve by usig approximatios by lower ad upper Riema sums The approximatios improve as icreases By takig limits we hoe i o the precise area This is more carefully described i Theorem 131 at the begiig of the ext sectio Fially, agai ask yourself which of the two sums was easier to calculate? Why was it easier? Shortly we will take advatage of this situatio

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Chapter 5.4 Practice Problems

Chapter 5.4 Practice Problems EXPECTED SKILLS: Chapter 5.4 Practice Problems Uderstad ad kow how to evaluate the summatio (sigma) otatio. Be able to use the summatio operatio s basic properties ad formulas. (You do ot eed to memorize

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

4.1 SIGMA NOTATION AND RIEMANN SUMS

4.1 SIGMA NOTATION AND RIEMANN SUMS .1 Sigma Notatio ad Riema Sums Cotemporary Calculus 1.1 SIGMA NOTATION AND RIEMANN SUMS Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each

More information

Sigma notation. 2.1 Introduction

Sigma notation. 2.1 Introduction Sigma otatio. Itroductio We use sigma otatio to idicate the summatio process whe we have several (or ifiitely may) terms to add up. You may have see sigma otatio i earlier courses. It is used to idicate

More information

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas:

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas: Areas ad Distaces We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate the area of the regio

More information

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals Math 1314 Lesso 16 Area ad Riema Sums ad Lesso 17 Riema Sums Usig GeoGebra; Defiite Itegrals The secod questio studied i calculus is the area questio. If a regio coforms to a kow formula from geometry,

More information

SYDE 112, LECTURE 2: Riemann Sums

SYDE 112, LECTURE 2: Riemann Sums SYDE, LECTURE : Riema Sums Riema Sums Cosider the problem of determiig the area below the curve f(x) boud betwee two poits a ad b. For simple geometrical fuctios, we ca easily determie this based o ituitio.

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio f(x) = x 3 lx o the iterval [/e, e ]. (a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 18. October 5, 005 Homework. Problem Set 5 Part I: (c). Practice Problems. Course Reader: 3G 1, 3G, 3G 4, 3G 5. 1. Approximatig Riema itegrals. Ofte, there is o simpler expressio for the atiderivative

More information

Area under a Curve-Using a Limit

Area under a Curve-Using a Limit Area uder a Curve-Usig a it Sice lettig be a very large umber will result i a huge amout of work, the process ca be simplified by usig sigma otatio ad summatio formulas to create a Riema Sum The ext example

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums) Math 176 Calculus Sec. 5.1: Areas ad Distaces (Usig Fiite Sums) I. Area A. Cosider the problem of fidig the area uder the curve o the f y=-x 2 +5 over the domai [0, 2]. We ca approximate this area by usig

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

AP CALCULUS - AB LECTURE NOTES MS. RUSSELL

AP CALCULUS - AB LECTURE NOTES MS. RUSSELL AP CALCULUS - AB LECTURE NOTES MS. RUSSELL Sectio Number: 4. Topics: Area -Sigma Notatio Part: of Sigma Notatio Upper boud Recall ai = a+ a + a3 + L + a idex i= Lower boud Example : Evaluate each summatio.

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 120c Calculus Sec 1: Estimatig with Fiite Sums I Area A Cosider the problem of fidig the area uder the curve o the fuctio y!x 2 + over the domai [0,2] We ca approximate this area by usig a familiar

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Math PracTest Be sure to review Lab (ad all labs) There are lots of good questios o it a) State the Mea Value Theorem ad draw a graph that illustrates b) Name a importat theorem where the Mea Value Theorem

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

16 Riemann Sums and Integrals

16 Riemann Sums and Integrals 16 Riema Sums ad Itegrals Defiitio: A partitio P of a closed iterval [a, b], (b >a)isasetof 1 distict poits x i (a, b) togetherwitha = x 0 ad b = x, together with the covetio that i>j x i >x j. Defiitio:

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Lecture 6: Integration and the Mean Value Theorem. slope =

Lecture 6: Integration and the Mean Value Theorem. slope = Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech 202 The Mea Value Theorem The Mea Value Theorem abbreviated MVT is the followig result: Theorem. Suppose

More information

Section 13.3 Area and the Definite Integral

Section 13.3 Area and the Definite Integral Sectio 3.3 Area ad the Defiite Itegral We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

Additional Notes on Power Series

Additional Notes on Power Series Additioal Notes o Power Series Mauela Girotti MATH 37-0 Advaced Calculus of oe variable Cotets Quick recall 2 Abel s Theorem 2 3 Differetiatio ad Itegratio of Power series 4 Quick recall We recall here

More information

10.6 ALTERNATING SERIES

10.6 ALTERNATING SERIES 0.6 Alteratig Series Cotemporary Calculus 0.6 ALTERNATING SERIES I the last two sectios we cosidered tests for the covergece of series whose terms were all positive. I this sectio we examie series whose

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Coffee Hour Problems of the Week (solutions)

Coffee Hour Problems of the Week (solutions) Coffee Hour Problems of the Week (solutios) Edited by Matthew McMulle Otterbei Uiversity Fall 0 Week. Proposed by Matthew McMulle. A regular hexago with area 3 is iscribed i a circle. Fid the area of a

More information

7 Sequences of real numbers

7 Sequences of real numbers 40 7 Sequeces of real umbers 7. Defiitios ad examples Defiitio 7... A sequece of real umbers is a real fuctio whose domai is the set N of atural umbers. Let s : N R be a sequece. The the values of s are

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck!

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck! MAT36HF - Calculus I (B) Log Quiz. T (M3) Time: 2 miutes Last Name: Studet ID: First Name: Please mark your tutorial sectio: T (M3) T2 (R4) T3 (T4) T5 (T5) T52 (R5) The quiz cosists of four questios. Each

More information

Please do NOT write in this box. Multiple Choice. Total

Please do NOT write in this box. Multiple Choice. Total Istructor: Math 0560, Worksheet Alteratig Series Jauary, 3000 For realistic exam practice solve these problems without lookig at your book ad without usig a calculator. Multiple choice questios should

More information

Introductory Analysis I Fall 2014 Homework #7 Solutions

Introductory Analysis I Fall 2014 Homework #7 Solutions Itroductory Aalysis I Fall 214 Homework #7 Solutios Note: There were a couple of typos/omissios i the formulatio of this homework. Some of them were, I believe, quite obvious. The fact that the statemet

More information

Math 10A final exam, December 16, 2016

Math 10A final exam, December 16, 2016 Please put away all books, calculators, cell phoes ad other devices. You may cosult a sigle two-sided sheet of otes. Please write carefully ad clearly, USING WORDS (ot just symbols). Remember that the

More information

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n.

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n. 0_0905.qxd //0 :7 PM Page SECTION 9.5 Alteratig Series Sectio 9.5 Alteratig Series Use the Alteratig Series Test to determie whether a ifiite series coverges. Use the Alteratig Series Remaider to approximate

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

5 3B Numerical Methods for estimating the area of an enclosed region. The Trapezoidal Rule for Approximating the Area Under a Closed Curve

5 3B Numerical Methods for estimating the area of an enclosed region. The Trapezoidal Rule for Approximating the Area Under a Closed Curve 5 3B Numerical Methods for estimatig the area of a eclosed regio The Trapezoidal Rule for Approximatig the Area Uder a Closed Curve The trapezoidal rule requires a closed o a iterval from x = a to x =

More information

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew Problem ( poits) Evaluate the itegrals Z p x 9 x We ca draw a right triagle labeled this way x p x 9 From this we ca read off x = sec, so = sec ta, ad p x 9 = R ta. Puttig those pieces ito the itegralrwe

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

How to Maximize a Function without Really Trying

How to Maximize a Function without Really Trying How to Maximize a Fuctio without Really Tryig MARK FLANAGAN School of Electrical, Electroic ad Commuicatios Egieerig Uiversity College Dubli We will prove a famous elemetary iequality called The Rearragemet

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) Math 0560, Exam 3 November 6, 07 The Hoor Code is i effect for this examiatio. All work is to be your ow. No calculators. The exam lasts for hour ad 5 mi. Be sure that your ame is o every page i case pages

More information

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing Physics 6A Solutios to Homework Set # Witer 0. Boas, problem. 8 Use equatio.8 to fid a fractio describig 0.694444444... Start with the formula S = a, ad otice that we ca remove ay umber of r fiite decimals

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

Roberto s Notes on Series Chapter 2: Convergence tests Section 7. Alternating series

Roberto s Notes on Series Chapter 2: Convergence tests Section 7. Alternating series Roberto s Notes o Series Chapter 2: Covergece tests Sectio 7 Alteratig series What you eed to kow already: All basic covergece tests for evetually positive series. What you ca lear here: A test for series

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions Math 451: Euclidea ad No-Euclidea Geometry MWF 3pm, Gasso 204 Homework 3 Solutios Exercises from 1.4 ad 1.5 of the otes: 4.3, 4.10, 4.12, 4.14, 4.15, 5.3, 5.4, 5.5 Exercise 4.3. Explai why Hp, q) = {x

More information

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9 Calculus I Practice Test Problems for Chapter 5 Page of 9 This is a set of practice test problems for Chapter 5. This is i o way a iclusive set of problems there ca be other types of problems o the actual

More information

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent. 06 微甲 0-04 06-0 班期中考解答和評分標準. ( poits) Determie whether the series is absolutely coverget, coditioally coverget, or diverget. Please state the tests which you use. (a) ( poits) (b) ( poits) (c) ( poits)

More information

Integrals, areas, Riemann sums

Integrals, areas, Riemann sums Itegrals, areas, Riema sums October 5, 2017 Itegrals, areas, Riema sums We had the ith breakfast yesterday morig: There are still lots of slots available Breakfast #10, ext Moday (October 9) at 9AM. Itegrals,

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

If we want to add up the area of four rectangles, we could find the area of each rectangle and then write this sum symbolically as:

If we want to add up the area of four rectangles, we could find the area of each rectangle and then write this sum symbolically as: Sigma Notatio: If we wat to add up the area of four rectagles, we could fid the area of each rectagle ad the write this sum symbolically as: Sum A A A A Liewise, the sum of the areas of te triagles could

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

The Definite Integral. Day 3 Riemann Sums

The Definite Integral. Day 3 Riemann Sums The Defiite Itegral Day 3 Riema Sums 2 2 1. If x xy y 9, the a vertical taget exists at ( A) 2 3, 3 ( B) 3,2 3 ( C) 2 3, 3 ( D) 3,2 3 ( E) 2 3, 3 2. Use a local lieariazatio for f x 9 ta x about x 0, the

More information

THE INTEGRAL TEST AND ESTIMATES OF SUMS

THE INTEGRAL TEST AND ESTIMATES OF SUMS THE INTEGRAL TEST AND ESTIMATES OF SUMS. Itroductio Determiig the exact sum of a series is i geeral ot a easy task. I the case of the geometric series ad the telescoig series it was ossible to fid a simle

More information

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

Testing for Convergence

Testing for Convergence 9.5 Testig for Covergece Remember: The Ratio Test: lim + If a is a series with positive terms ad the: The series coverges if L . The test is icoclusive if L =. a a = L This

More information

( 1) n (4x + 1) n. n=0

( 1) n (4x + 1) n. n=0 Problem 1 (10.6, #). Fid the radius of covergece for the series: ( 1) (4x + 1). For what values of x does the series coverge absolutely, ad for what values of x does the series coverge coditioally? Solutio.

More information

Intermediate Math Circles November 4, 2009 Counting II

Intermediate Math Circles November 4, 2009 Counting II Uiversity of Waterloo Faculty of Mathematics Cetre for Educatio i Mathematics ad Computig Itermediate Math Circles November 4, 009 Coutig II Last time, after lookig at the product rule ad sum rule, we

More information

Math 25 Solutions to practice problems

Math 25 Solutions to practice problems Math 5: Advaced Calculus UC Davis, Sprig 0 Math 5 Solutios to practice problems Questio For = 0,,, 3,... ad 0 k defie umbers C k C k =! k!( k)! (for k = 0 ad k = we defie C 0 = C = ). by = ( )... ( k +

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkasas Tech Uiversity MATH 94: Calculus II Dr Marcel B Fia 85 Power Series Let {a } =0 be a sequece of umbers The a power series about x = a is a series of the form a (x a) = a 0 + a (x a) + a (x a) +

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

Power Series: A power series about the center, x = 0, is a function of x of the form

Power Series: A power series about the center, x = 0, is a function of x of the form You are familiar with polyomial fuctios, polyomial that has ifiitely may terms. 2 p ( ) a0 a a 2 a. A power series is just a Power Series: A power series about the ceter, = 0, is a fuctio of of the form

More information

Lecture 6: Integration and the Mean Value Theorem

Lecture 6: Integration and the Mean Value Theorem Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech - Fall, 2011 1 Radom Questios Questio 1.1. Show that ay positive ratioal umber ca be writte as the sum of

More information

( a) ( ) 1 ( ) 2 ( ) ( ) 3 3 ( ) =!

( a) ( ) 1 ( ) 2 ( ) ( ) 3 3 ( ) =! .8,.9: Taylor ad Maclauri Series.8. Although we were able to fid power series represetatios for a limited group of fuctios i the previous sectio, it is ot immediately obvious whether ay give fuctio has

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information