CHAPTER 5 INTEGRATION

Size: px
Start display at page:

Download "CHAPTER 5 INTEGRATION"

Transcription

1 CHAPTER 5 INTEGRATION 5.1 AREA AND ESTIMATING WITH FINITE SUMS 1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.! )!! ( (!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 )! (a) x ad x x Ê a lower sum s!ˆ Š! ˆ () x ad x x Ê a lower sum s!! & ) 1!! &!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 ˆ (c) x ad x x Ê a upper sum s!ˆ Š ˆ +1 (d) x ad x x Ê a upper sum s +1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.!!! *!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 &! (a) x ad x x Ê a lower sum s!ˆ Š! ˆ () x ad x x Ê a lower sum s!! * * ) 1!!! &!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 & (c) x ad x x Ê a upper sum s!ˆ Š ˆ +1 (d) x ad x x Ê a upper sum s +1 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

2 58 Chapter 5 Itegrato 3. fax x Sce f s decreasg o Ò1ß 5 Ó, we use left edpots to ota upper sums ad rght edpots to ota lower sums. & x & & & ((! ˆ x &! & )! ˆ x! & &! ˆ x! (a) x ad x x Ê a lower sum s! ˆ () x 1 ad x x Ê a lower sum s (c) x ad x x Ê a upper sum s (d) x 1 ad x x Ê a upper sum s 4. fax x Sce f s creasg o Ò ß!Ó ad decreasg o Ò!ß Ó, we use left edpots o Ò ß!Ó ad rght edpots o Ò!ß Ó to ota lower sums ad use rght edpots o Ò ß!Ó ad left edpots o Ò!ß Ó to ota upper sums. a (a) x ad x x Ê a lower sum s ˆ a a! a () x ad x x Ê a lower sum s! ˆ ax! ˆ ax! ˆ ˆ a ˆ a a a a (c) x ad x x Ê a upper sum s ˆ a! a! a (d) x ad x x Ê a upper sum s! ˆ ax! ˆ ax ˆ ˆ a a! a! a 5. fax x! Usg rectagles Ê x Ê ˆ fˆ fˆ! & Š ˆ ˆ! Usg 4 rectagles Ê x Ê ˆ & ( fˆ fˆ fˆ fˆ ) ) ) ) & ( Š ˆ ˆ ˆ ˆ ) ) ) ) Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

3 Secto 5.1 Area ad Estmatg wth Fte Sums fax x! Usg rectagles Ê x Ê ˆ fˆ fˆ ) ( Š ˆ ˆ! Usg 4 rectagles Ê x Ê ˆ & ( fˆ fˆ fˆ fˆ ) ) ) ) & ( * ) ) ) ) Š 7. fax x & Usg rectagles Ê x Ê afa fa ˆ & Usg 4 rectagles Ê x Ê ˆ ˆ ˆ & ˆ ( f f f fˆ * ˆ )) * * & ( * & ( * & ( * & 8. fax x a Usg rectagles Ê x Ê afa fa a a Usg 4 rectagles Ê x Ê ˆ ˆ ˆ ˆ f f f fˆ ˆ ˆ ˆ ˆ *! Š Š Š Š Š ˆ 9. (a) D (0)(1) (1)(1) ()(1) (10)(1) (5)(1) (13)(1) (11)(1) (6)(1) ()(1) (6)(1) 87 ches () D (1)(1) ()(1) (10)(1) (5)(1) (13)(1) (11)(1) (6)(1) ()(1) (6)(1) (0)(1) 87 ches 10. (a) D (1)(300) (1.)(300) (1.7)(300) (.0)(300) (1.8)(300) (1.6)(300) (1.4)(300) (1.)(300) (1.0)(300) (1.8)(300) (1.5)(300) (1.)(300) 50 meters (NOTE: 5 mutes 300 secods) () D (1.)(300) (1.7)(300) (.0)(300) (1.8)(300) (1.6)(300) (1.4)(300) (1.)(300) (1.0)(300) (1.8)(300) (1.5)(300) (1.)(300) (0)(300) 490 meters (NOTE: 5 mutes 300 secods) 11. (a) D (0)(10) (44)(10) (15)(10) (35)(10) (30)(10) (44)(10) (35)(10) (15)(10) ()(10) (35)(10) (44)(10) (30)(10) 3490 feet 0.66 mles () D (44)(10) (15)(10) (35)(10) (30)(10) (44)(10) (35)(10) (15)(10) ()(10) (35)(10) (44)(10) (30)(10) (35)(10) 3840 feet 0.73 mles 1. (a) The dstace traveled wll e the area uder the curve. We wll use the approxmate veloctes at the mdpots of each tme terval to approxmate ths area usg rectagles. Thus, D (0)(0.001) (50)(0.001) (7)(0.001) (90)(0.001) (10)(0.001) (11)(0.001) (10)(0.001) (18)(0.001) (134)(0.001) (139)(0.001) mles () Roughly, after hours, the car would have goe mles, where hours.7 sec. At.7 sec, the velocty was approxmately 10 m/hr. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

4 60 Chapter 5 Itegrato 13. (a) Because the accelerato s decreasg, a upper estmate s otaed usg left ed-pots summg accelerato? t. Thus,? t 1 ad speed [ ](1) ft/sec () Usg rght ed-pots we ota a lower estmate: speed [ ](1) 45.8 ft/sec (c) Upper estmates for the speed at each secod are: t v Thus, the dstace falle whe t 3 secods s s [ ](1) ft. 14. (a) The speed s a decreasg fucto of tme Ê rght ed-pots gve a lower estmate for the heght (dstace) attaed. Also t v gves the tme-velocty tale y sutractg the costat g 3 from the speed at each tme cremet? t 1 sec. Thus, the speed 40 ft/sec after 5 secods. () A lower estmate for heght attaed s h [ ](1) 150 ft. 15. Partto [!ß ] to the four sutervals [0ß 0.5], [0.5ß 1], [1ß 1.5], ad [1.5ß ]. The mdpots of these sutervals are m 0.5, m 0.75, m 1.5, ad m The heghts of the four approxmatg rectagles are f(m ) (0.5), f(m ) (0.75), f(m ) (1.5), ad f(m ) (1.75) ˆ ˆ ˆ 3 ˆ ˆ 5 ˆ ˆ 7 ˆ Notce that the average value s approxmated y approxmate area uder legth of [!ß]. We use ths oservato solvg the ext several exercses. curve f(x) x 16. Partto [1ß 9] to the four sutervals [ß], [3 ß& ], [&ß(], ad [(ß*]. The mdpots of these sutervals are m, m 4, m 6, ad m 8. The heghts of the four approxmatg rectagles are f(m ), f(m ), f(m ), ad f(m ). The wdth of each rectagle s x. Thus, 4 6 8? ˆ legth of [ß*] 8 96 Area ˆ ˆ ˆ ˆ 5 area 1 5 Ê average value. 17. Partto [0ß] to the four sutervals [0ß0.5], [0.5ß1], [1ß1.5], ad [1.5ß]. The mdpots of the sutervals are m 0.5, m 0.75, m 1.5, ad m The heghts of the four approxmatg rectagles are È 71 4 Š È? ˆ area Ê legth of [0ß ] f(m ) s 1, f(m ) s 1, f(m ) s Š 1, ad f(m ) s 1. The wdth of each rectagle s x. Thus, Area ( ) average value Partto [0ß4] to the four sutervals [0ß1], [1ß ß], [ß3], ad [3ß4]. The mdpots of the sutervals are m, m, m, ad m. The heghts of the four approxmatg rectagles are 1 ˆ 1 Š 4 8 f(m ) 1 cos Š 1 ˆ cos ˆ (to 5 decmal places), f(m ) 1 Š cos Š 1 ˆ cos ˆ , f(m ) 1 Š cos Š 1 ˆ cos ˆ 51 1 ˆ 3 1 ˆ , ad f(m ) 1 Š cos Š 1 ˆ cos ˆ The wdth of each rectagle s 1 ˆ ? x. Thus, Area (0.7145)(1) ( )(1) ( )(1) (0.7145)(1).5 Ê average area.5 5 legth of [0ß4] 4 8 value. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

5 Secto 5.1 Area ad Estmatg wth Fte Sums Sce the leaage s creasg, a upper estmate uses rght edpots ad a lower estmate uses left edpots: (a) upper estmate (70)(1) (97)(1) (136)(1) (190)(1) (65)(1) 758 gal, lower estmate (50)(1) (70)(1) (97)(1) (136)(1) (190)(1) 543 gal. () upper estmate ( ) 363 gal, lower estmate ( ) 1693 gal. (c) worst case: t 5,000 Ê t 31.4 hrs; est case: t 5,000 Ê t 3.4 hrs 0. Sce the pollutat release creases over tme, a upper estmate uses rght edpots ad a lower estmate uses left edpots: (a) upper estmate (0.)(30) (0.5)(30) (0.7)(30) (0.34)(30) (0.45)(30) (0.5)(30) 60.9 tos lower estmate (0.05)(30) (0.)(30) (0.5)(30) (0.7)(30) (0.34)(30) (0.45)(30) 46.8 tos () Usg the lower (est case) estmate: 46.8 (0.5)(30) (0.63)(30) (0.70)(30) (0.81)(30) 16.6 tos, so ear the ed of Septemer 15 tos of pollutats wll have ee released. 1. (a) The dagoal of the square has legth, so the sde legth s È. Area Š È () Th of the octago as a collecto of 16 rght tragles wth a hypoteuse of legth 1 ad a acute agle measurg 1 1 ). Area ˆ ˆ 1 s ˆ 1 cos 1 s È Þ)) ) ) (c) Th of the 16-go as a collecto of 3 rght tragles wth a hypoteuse of legth 1 ad a acute agle measurg 1 1. Area ˆ ˆ 1 s ˆ 1 cos 1 ) s È Þ! ) (d) Each area s less tha the area of the crcle, 1. As creases, the area approaches 1.. (a) Each of the sosceles tragles s made up of two rght tragles havg hypoteuse 1 ad a acute agle measurg 1 1. The area of each sosceles tragle s A ˆ ˆ s 1 ˆ cos 1 s 1. T s P T 1 Ä_ Ä_ ˆ () The area of the polygo s A A s, so lm s lm 1 1 (c) Multply each area y r. A r s 1 T 1 AP r s lm AP 1r Ä_ 3-6. Example CAS commads: Maple: wth( Studet[Calculus1] ); f := x -> s(x); a := 0; := P; plot( f(x), x=a.., ttle=3(a) (Secto 5.1) ); N := [ 100, 00, 1000 ]; for N do Xlst := [ a+1.*(-a)/* =0.. ]; Ylst := map( f, Xlst ); ed do: for N do () (c) Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

6 6 Chapter 5 Itegrato Avg[] := evalf(add(y,y=ylst)/ops(ylst)); ed do; avg := FuctoAverage( f(x), x=a.., output=value ); evalf( avg ); FuctoAverage(f(x),x=a..,output=plot); (d) fsolve( f(x)=avg, x=0.5 ); fsolve( f(x)=avg, x=.5 ); fsolve( f(x)=avg[1000], x=0.5 ); fsolve( f(x)=avg[1000], x=.5 ); Mathematca: (assged fucto ad values for a ad may vary): Symols for 1, Ä, powers, roots, fractos, etc. are avalale Palettes (uder Fle). Never sert a space etwee the ame of a fucto ad ts argumet. Clear[x] f[x_]:=x S[1/x] {a,}={ 1/4, 1} Plot[f[x],{x, a, }] The followg code computes the value of the fucto for each terval mdpot ad the fds the average. Each sequece of commads for a dfferet value of (umer of sudvsos) should e placed a separate cell. =100; dx = ( a) /; values = Tale[N[f[x]], {x, a dx/,, dx}] average=sum[values[[]],{, 1, Legth[values]}] / =00; dx = ( a) /; values = Tale[N[f[x]],{x, a + dx/,, dx}] average=sum[values[[]],{, 1, Legth[values]}] / =1000; dx = ( a) /; values = Tale[N[f[x]],{x, a dx/,, dx}] average=sum[values[[]],{, 1, Legth[values]}] / FdRoot[f[x] == average,{x, a}] 5. SIGMA NOTATION AND LIMITS OF FINITE SUMS! 1 6 6(1) 6() ! ! cos 1 cos(1 1) cos( 1) cos(3 1) cos(4 1) ! s 1 s(1 1) s( 1) s(3 1) s(4 1) s(5 1) ! È3 È ( 1) s ( 1) s ( 1) s ( ) s 0 1! ( 1) cos 1 ( 1) cos (11) ( 1) cos (1) ( 1) cos (31) ( 1) cos (41) ( 1) 1 ( 1) 1 4 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

7 ! 6 1 Secto 5. Sgma Notato ad Lmts of Fte Sums (a) c 1 & () ! 5 0! 4! & (c) ! All of them represet ! (a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ! 5 & () ( 1) ( 1) Ð ) ( 1) ( 1) ( 1) ( 1) ! 3!! & &!! 1 (c) ( 1) Ð ) ( ) ( ) ( 1) ( ) ( 1) ; (a) ad () represet ; (c) s ot equvalet to the other two! 4 ( ) ( 1) ( ) ( ) c c c c 9. (a) 1!! ( ) ( 1) ( ) ( ) () 1! 1 c! (c) 1 c ( ) ( 1) ( ) ( ) (a) ad (c) are equvalet; () s ot equvalet to the other two.! (a) ( 1) (1 1) ( 1) (3 1) (4 1) ! 3 () ( 1) ( 1 1) (0 1) (1 1) ( 1) (3 1) ! (c) ( 3) ( ) ( 1) (a) ad (c) are equvalet to each other; () s ot equvalet to the other two ! 1.! 13.! ! 15.! ( 1) 16.!( 1) 17. (a)! 3a 3! a 3( 5) !! () (6) 1 (c)! (a )! a! (d)!(a )! a! (e)!( a )!! a 6 ( 5) Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

8 64 Chapter 5 Itegrato 18. (a)! 8a 8! a 8(0) 0 ()! 50 50! 50(1) (c)!(a 1)! a! 1 0 (d)!( 1)!! (a)! 10(10 1) 55 ()! 10(10 1)((10) 1) ! 10(10 1) 1 (c) (a)! 13(13 1) 91 ()! 13(13 1)((13) 1) ! 13(13 1) 1 (c) !! 7(7 ) Š 56.!! 5(5 1) Š ! 3! 3! 6(6 )((6) 1) a 3(6) ! 5!! 6(6 )((6) 1) a 5 5(6) ! (3 5)! a3 5 3! 5! 5(5 1)((5) 1) 3 Š 5(5 1) 5 Š ! ( 1)! a!! 7(7 1)((7) 1) Š 7(7 1) !!! Œ Œ! 5(5 1) 5(5 1) Š Š Œ!! Œ!! 7(7 1) 7(7 1) Š Š (a)! 3 3a 7 1 ()! 7 7a (c) Let j Ê j ; f 3 Ê j 1 ad f 64 Ê j 6 Ê! 10! 10 10a j (a) Let j 8 Ê j 8; f 9 Ê j 1 ad f 36 Ê j 8 Ê!! aj 8! j! 8 8a8 1 ) a j1 j1 j () Let j Ê j ; f 3 Ê j 1 ad f 17 Ê j 15 Ê!!aj j1! j 4j 4! j! 4j! 15a15 1aa a15 1 a 4 4 4a15 j1 j1 j1 j Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

9 Secto 5. Sgma Notato ad Lmts of Fte Sums (c) Let j 17 Ê j 17; f 18 Ê j 1 ad f 71 Ê j 54 Ê! a ! j 17 j 17 1! j 33j 7! a aa a j! 33j! 7 j1 j1 j1 j1 j1 54a54 1aa a a (a)! 4 4 ()! c c 1 1! a!! a (c) (a)! ˆ 1 ˆ 1 1 ()! c c c (c)! a (a) () (c) (a) () (c) 35. (a) () (c) Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

10 66 Chapter 5 Itegrato 36. (a) () (c) 37. x x! , x x , x x , x x , ad x x ; the largest s lpl 1.. & 38. x x! 1.6 ( ) 0.4, x x 0.5 ( 1.6) 1.1, x x 0 ( 0.5) 0.5, x x , ad x x ; the largest s lpl 1.1. & 39. fax x! Let x ad c x. The rght-had sum s! a c! Š ˆ! a a a! 1. Thus, lm!a c Ä_ 1 lm Œ Ä_ 40. fax x! Let x ad c x. The rght-had sum s! ˆ! )! ) a * * c lm! * * * lm lm Ä_ ˆ Ä_ * Ä_ * Thus,. 41. fax x!! c! ˆ! * (! ( a a Š Let x ad c x. The rght-had sum s a Š Š ( * * a ) ( * ) lm lm Ä_ Ä_ Þ Thus,!ac Œ *. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

11 Secto 5. Sgma Notato ad Lmts of Fte Sums fax x! Let x ad c x. The rght-had sum s!!! a a c. Thus, lm! c ˆ Ä_ ˆ ˆ ˆ Š lm Œ Ä_. 43. fax x x xa x!! a! Š ˆ!! c c Let x ad c x. The rght-had sum s a a a. Thus, lm!ac c Ä_ Š Š lm Š Œ Ä_ &. 44. fax x x! Let x ad c x. The rght-had sum s! a! Š ˆ!! c c a a a. Thus, lm!a c c Ä_ Š Š lm Š Œ Ä_. 45. fax x 3! Let x ad c x. The rght-had sum s! 3! ˆ 3! 3 a c 4 4 a Š Š a lm!a lm Ä_ Ä_ Thus, c. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

12 68 Chapter 5 Itegrato 46. fax x x 3! a Let x ad c x. The rght-! a! Š ˆ ˆ ! 5 Š! 5 3 Š ! 5!! 1! a a a 1 a a Š 3Š 4Š had sum s c c Ä_. Thus, lm!ac c lm. Ä_ THE DEFINITE INTEGRAL! & 0 ( 1. x dx. x dx 3. ax 3x dx 4. dx 5. dx 6. È 4 x x 1 x dx 0! 7. (sec x) dx 8. (ta x) dx c1î 9. (a) g(x) dx 0 () g(x) dx g(x) dx 8 & & & 1Î 0 & (c) 3f(x) dx 3 f(x) dx 3( 4) 1 (d) f(x) dx f(x) dx f(x) dx 6 ( 4) 10 & & & (e) [f(x) g(x)] dx f(x) dx g(x) dx 6 8 & & & (f) [4f(x) g(x)] dx 4 f(x) dx g(x) dx 4(6) (a) f(x) dx f(x) dx ( 1) * * * * * () [f(x) h(x)] dx f(x) dx h(x) dx ( ( ( * * * (c) [f(x) 3h(x)] dx f(x) dx 3 h(x) dx (5) 3(4) ( ( ( * (d) f(x) dx f(x) dx ( 1) 1 * ( * * (e) f(x) dx f(x) dx f(x) dx ( ( * * * (f) [h(x) f(x)] dx [f(x) h(x)] dx f(x) dx h(x) dx * ( ( ( 11. (a) f(u) du f(x) dx 5 () È3 f(z) dz È3 f(z) dz 5È3 (c) f(t) dt f(t) dt 5 (d) [ f(x)] dx f(x) dx 5 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

13 !!! 1. (a) g(t) dt g(t) dt È () g(u) du g(t) dt È Secto 5.3 The Defte Itegral 69!!!!! È g(r) È È È (c) [ g(x)] dx g(x) dx (d) dr g(t) dt Š Š È (a) f(z) dz f(z) dz f(z) dz 7 3 4!! () f(t) dt f(t) dt (a) h(r) dr h(r) dr h(r) dr () h(u) du Œ h(u) du h(u) du The area of the trapezod s A (B )h (5 )(6) 1 Ê ˆ x 3 dx 1 square uts 16. The area of the trapezod s A (B )h Î Î (3 1)(1) Ê ( x 4) dx square uts 17. The area of the semcrcle s A 1r 1(3) Ê È9 x dx 1 square uts Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

14 70 Chapter 5 Itegrato The graph of the quarter crcle s A 1r 1(4)! 41 Ê È16 x dx 41 square uts 19. The area of the tragle o the left s A h ()(). The area of the tragle o the rght s A h (1)(1). The, the total area s.5 Ê x dx.5 square uts 0. The area of the tragle s A h ()(1) 1 Ê a1 x dx 1 square ut 1. The area of the tragular pea s A h ()(1) 1. The area of the rectagular ase s S jw ()(1). The the total area s 3 Ê a x dx 3 square uts. y 1 È1 x Ê y 1 È1 x Ê (y 1) 1 x Ê x (y 1) 1, a crcle wth È ceter (!ß ) ad radus of 1 Ê y 1 1 x s the upper semcrcle. The area of ths semcrcle s 1 A 1r 1(1). The area of the rectagular ase s A jw ()(1). The the total area s 1 Ê Š 1 1 x dx square uts È 1 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

15 x! 4! 3. dx ()( ) 4. 4x dx (4) Secto 5.3 The Defte Itegral s ds () a(a) a 6. 3t dt (3) a(3a) a a a 3 a 7. (a) È4 x dx () 4 x 1a 1 È dx 1a (a) Š 3x È 1 x dx 3x dx È 1 x dx a1a3 a Š È È a a a a 1a () 3x 1 x dx 3x dx 3x dx 1 x dx È Š È Þ& (1) (.5) (0.5)!Þ& 9. x dx 30. x dx 3 1 & È (1) Š 5È Š È È 31. ) d ) 3. r dr 4 È3 7 Š È3 7!Þ 7 (0.3) 0 3 3! x dx 34. s ds Î ˆ 1Î ˆ 1 1! 3 4! t dt 36. ) d) a È a (a) Š È3a a 3a a a a 37. x dx 38. x dx a È Š È (3)! 3 3! x dx 40. x dx 9 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

16 7 Chapter 5 Itegrato dx 7(1 3) x dx 5 x dx 5 10!! 43. (t 3) dt t dt 3 dt 3( 0) 4 6!! 0 È È È Š È Š t È dt t dt È dt È È 0 1 1!!! z z dz 1 dz dz 1 dz z dz 1[1 ] ˆ ˆ!!!! 46. (z 3) dz z dz 3 dz z dz 3 dz 3[0 3] 9 9 0! u du 3 u du 3 u du u du 3 Š 3 3 ˆ 7 7!! Î Î Î!! u du 4 u du 4 u du u du ˆ ˆ a3x x 5 dx 3 x dx x dx 5 dx 3 5[ 0] (8 ) 10 0!!!! ! 50. a3x x 5 dx a3x x 5 dx 3 x dx x dx 5 dx!!!! Š Š 5(1 0) ˆ Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x 3(? x)? x 3(? x) f(c )? x f(? x)? x 3(? x)? x 3() (? x) f(c )? x f(3? x)? x 3(3? x)? x 3(3) (? x) ã f(c )? x f(? x)? x 3(? x)? x 3() (? x) The S! f(c )? x! 3 (? x) 1 1 3(? x)! ( 1)( 1) 3 Š Š 6 1 ˆ 3 ˆ 3! Ä_ Ê 3x dx lm. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

17 Secto 5.3 The Defte Itegral Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x 1 (? x)? x 1 (? x) f(c )? x f(? x)? x 1 (? x)? x 1 () (? x) f(c )? x f(3? x)? x 1 (3? x)? x 1 (3) (? x) ã f(c )? x f(? x)? x 1 (? x)? x 1 () (? x) The S! f(c )? x! 1 (? x) 1 1 1? ( x)! ( 1Š Š 1)( 1) ˆ ˆ 6! Ä_ 3 Ê x dx lm Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x (? x)(? x) (? x) f(c )? x f(? x)? x (? x)(? x) ()(? x) f(c )? x f(3? x)? x (3? x)(? x) (3)(? x) ã f(c )? x f(? x)? x (? x)(? x) ()(? x) The S! f(c )? x! (? x) 1 1?! ( Š Š 1) 1! Ä_ ( x) 1 Ê x dx lm Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x ˆ?x 1 (? x) (? x)? x f(c )? x f(? x)? x ˆ? x 1 (? x) ()(? x)? x f(c )? x f(3? x)? x ˆ 3? x 1 (? x) (3)(? x)? x ã x f(c )? x f(? x)? x ˆ? 1 (? x) ()(? x)? x!!!! ( 1)????? Š Š ˆ 1 1 ˆ x 1 4 dx lm ˆ ˆ 1.! Ä_ 4 4 The S f(c ) x ˆ ( x) x ( x) x 1 ˆ () Ê Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

18 74 Chapter 5 Itegrato È È3 0! È È È 3! È3! 55. av(f) Š ax 1 dx Š È3 x dx 1 dx È 3 È Š È av(f) ˆ x Š dx ˆ x dx 3 0! 3! 3 3 x Š ;. 57. av(f) ˆ a 3x 1 dx 1 0! 3 x dx 1 dx 3 Š (1 0).!! av(f) ˆ a3x 3 dx! x dx 3 dx 3 Š 3(1 0).!! av(f) ˆ (t 1) dt! 3! 3! 3! 3 0 t dt t dt 1 dt Š Š (3 0) 1. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5. AREA AND ESTIMATING WITH FINITE SUMS. fa Sice f is icreasig o Òß Ó, we use left edpoits to otai lower sums ad right edpoits to otai upper sums. i ) i i ( ( i ˆ i Š ˆ ˆ ˆ ) i i

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

' ' Š # # '  # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ  # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above). Sectio. The Defiite Itegral 7 ( ) t dt t dt t dt t dt 6. av(f) Š at t dt Š ( ) ( ) Š Š. ( ) ( ) d ( ) d 6. (a) av(g) Š akk d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ akk d ( ) d Š d d ( ). ( ) k k (c) av(g)

More information

Centroids Method of Composite Areas

Centroids Method of Composite Areas Cetrods Method of Composte reas small boy swallowed some cos ad was take to a hosptal. Whe hs gradmother telephoed to ask how he was a urse sad 'No chage yet'. Cetrods Prevously, we developed a geeral

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these Test Paer-II. If s θ + cos θ = m ad sec θ + cosec θ =, the = m ( ) m = (m ) = m (m ). If a ABC, cos A = s B, the t s C a osceles tragle a eulateral tragle a rght agled tragle. If cos B = cos ( A+ C), the

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Mechanics of Materials CIVL 3322 / MECH 3322

Mechanics of Materials CIVL 3322 / MECH 3322 Mechacs of Materals CVL / MECH Cetrods ad Momet of erta Calculatos Cetrods = A = = = A = = Cetrod ad Momet of erta Calculatos z= z A = = Parallel As Theorem f ou kow the momet of erta about a cetrodal

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Mathematics HL and Further mathematics HL Formula booklet

Mathematics HL and Further mathematics HL Formula booklet Dploma Programme Mathematcs HL ad Further mathematcs HL Formula booklet For use durg the course ad the eamatos Frst eamatos 04 Mathematcal Iteratoal Baccalaureate studes SL: Formula Orgazato booklet 0

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

k 1 in the worst case, and ( k 1) / 2 in the average case The O-notation was apparently The o-notation was apparently

k 1 in the worst case, and ( k 1) / 2 in the average case The O-notation was apparently The o-notation was apparently Errata for Algorthms Sequetal & Parallel, A Ufed Approach (Secod Edto) Russ Mller ad Laurece Boxer Charles Rver Meda, 005 Chapter 1 P. 3, l. 14- to 13- the worst case, ad / the average case 1 the worst

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

GENERALIZATIONS OF CEVA S THEOREM AND APPLICATIONS

GENERALIZATIONS OF CEVA S THEOREM AND APPLICATIONS GENERLIZTIONS OF CEV S THEOREM ND PPLICTIONS Floret Smaradache Uversty of New Mexco 200 College Road Gallup, NM 87301, US E-mal: smarad@um.edu I these paragraphs oe presets three geeralzatos of the famous

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150 St Joh s College Prelmar Eamatos Jul 04 Mathematcs Paper Eamer: G Evas Tme: 3 hrs Moderator: D Grgoratos Marks: 50 PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY. Ths questo paper cossts of pages, cludg

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers SECTION 8. SERIES 8. SERIES A Clck here for aswers. S Clck here for solutos. ; Fd at least 0 partal sums of the seres. Graph both the sequece of terms ad the sequece of partal sums o the same scree. Does

More information

Complex Numbers and Polynomials pages (d) If A = (6, 1), then A = (1, 6). (c) If A = (3, 5), then A = ( 5, 3).

Complex Numbers and Polynomials pages (d) If A = (6, 1), then A = (1, 6). (c) If A = (3, 5), then A = ( 5, 3). Chapter 6 Complex Numbers ad Polyomals pages 7 7... INVESTIGATION 6A 6. Gettg Started GRAPHING COMPLEX NUMBERS For You to Explore. a + + + + + + + b + + + + c + + + + + 6 + + + d + + + + + 9 + 6 8 + 6

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

L(θ X) s 0 (1 θ 0) m s. (s/m) s (1 s/m) m s

L(θ X) s 0 (1 θ 0) m s. (s/m) s (1 s/m) m s Hw 4 (due March ) 83 The LRT statstcs s λ(x) sup θ θ 0 L(θ X) The lkelhood s L(θ) θ P x ( sup Θ L(θ X) θ) m P x ad ad the log-lkelhood s (θ) x log θ +(m x ) log( θ) Let S X Note that the ucostraed MLE

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

16 Homework lecture 16

16 Homework lecture 16 Quees College, CUNY, Departmet of Computer Scece Numercal Methods CSCI 361 / 761 Fall 2018 Istructor: Dr. Sateesh Mae c Sateesh R. Mae 2018 16 Homework lecture 16 Please emal your soluto, as a fle attachmet,

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3 Adrew Powuk - http://www.powuk.com- Math 49 (Numercal Aalyss) Root fdg. Itroducto f ( ),?,? Solve[^-,] {{-},{}} Plot[^-,{,-,}] Cubc equato https://e.wkpeda.org/wk/cubc_fucto Quartc equato https://e.wkpeda.org/wk/quartc_fucto

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

AP Calculus AB Unit 3 Assessment

AP Calculus AB Unit 3 Assessment Class: Date: 2013-2014 AP Calculus AB Unit 3 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I MMJ FINITE EEMENT METHOD Cotut requremets Assume that the fuctos appearg uder the tegral the elemet equatos cota up to (r) th order To esure covergece N must satsf Compatblt requremet the fuctos must have

More information

Measures of Central Tendency

Measures of Central Tendency Chapter 6 Measures of Cetral Tedecy Defto of a Summary Measure (page 185) A summary measure s a sgle value that we compute from a collecto of measuremets order to descrbe oe of the collecto s partcular

More information

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific CIS 54 - Iterpolato Roger Crawfs Basc Scearo We are able to prod some fucto, but do ot kow what t really s. Ths gves us a lst of data pots: [x,f ] f(x) f f + x x + August 2, 25 OSU/CIS 54 3 Taylor s Seres

More information

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums) Math 176 Calculus Sec. 5.1: Areas ad Distaces (Usig Fiite Sums) I. Area A. Cosider the problem of fidig the area uder the curve o the f y=-x 2 +5 over the domai [0, 2]. We ca approximate this area by usig

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number.

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number. A umber of the form y, where & y are tegers ad s called a comple umber. Dfferet Forms )Cartesa Form y )Polar Form ( cos s ) r or r cs )Epoetal Form r e Demover s Theorem If s ay teger the cos s cos s If

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Computational Geometry

Computational Geometry Problem efto omputatoal eometry hapter 6 Pot Locato Preprocess a plaar map S. ve a query pot p, report the face of S cotag p. oal: O()-sze data structure that eables O(log ) query tme. pplcato: Whch state

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

is the score of the 1 st student, x

is the score of the 1 st student, x 8 Chapter Collectg, Dsplayg, ad Aalyzg your Data. Descrptve Statstcs Sectos explaed how to choose a sample, how to collect ad orgaze data from the sample, ad how to dsplay your data. I ths secto, you wll

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Centers of Gravity - Centroids

Centers of Gravity - Centroids RCH Note Set 9. S205ab Ceters of Gravt - Cetrods Notato: C Fz L O Q Q t tw = ame for area = desgato for chael secto = ame for cetrod = force compoet the z drecto = ame for legth = ame for referece org

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk Math Medley #45 of Gottschalk s Gestalts A Seres Illustratg Iovatve Forms of the Orgazato & Exposto of Mathematcs by Walter Gottschalk Ifte Vstas Press PVD RI 2001 GG45-1 (30) 2001 Walter Gottschalk 500

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan M E M O R A N D U M DATE: 1 September, 1999 TO: Jm Russell FROM: Peter Tkack RE: Aalyss of wde ply tube wdg as compared to Kova Kore CC: Larry McMlla The goal of ths report s to aalyze the spral tube wdg

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Elementary Algebra and Geometry

Elementary Algebra and Geometry 1 Elemetary Algera ad Geometry 1.1 Fudametal Properties (Real Numers) a + = + a Commutative Law for Additio (a + ) + c = a + ( + c) Associative Law for Additio a + 0 = 0 + a Idetity Law for Additio a +

More information

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0. LECTURE 8: Topcs Chaos Rcker Equato (t ) = (t ) ep( (t )) Perod doulg urcato Perod doulg cascade 9....... A Quadratc Equato Rcker Equato (t ) = (t ) ( (t ) ). (t ) = (t ) ep( (t )) 6. 9 9. The perod doulg

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information