Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Size: px
Start display at page:

Download "Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy"

Transcription

1 Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy

2 Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot sources Stadard Soluto ethods 2-D Galerk ethod Collocato ethod Issues 3-D Pael Itegrato

3 Iteror Versus Exteror Problems Iteror Exteror 2 T = sde 2 T = 0 outsde 0 Temperature kow o surface Temperature a Tak What s the heat flow? T Heat Flow = Thermal coductvty Temperature kow o surface Ice Cube a Bath surface

4 Exteror Problem Electrostatcs potetal + v 2 Ψ=0 Outsde - Ψ s gve o Surface What s the capactace? Ψ Capactace = Delectrc Permtvty surface

5 Drag Force a croresoator Courtesy of Werer Hemmert, Ph.D. Used wth permsso. Resoator Dscretzed Structure Computed Forces Bottom Vew Computed Forces Top Vew

6 What s commo about these problems. Exteror Problems Drag Force ES devce - flud (ar) creates drag. Couplg a Package - Felds exteror create couplg Capactace of a Sgal Le - Felds exteror. Quattes of Iterest are o the surface ES devce - Just wat surface tracto force Package - Just wat couplg betwee coductors Sgal Le - Just wat surface charge. Exteror Problem s lear ad space-varat ES - Exteror Stokes Flow equato (lear). Package - axwell s equatos free space (lear). Sgal Le - Laplace s equato free space (lear). But problems are geometrcally very complex!

7 Exteror Problems Why ot use Fte-Dfferece or FE methods Surface 2-D Heat Flow Example T = 0 at But, must trucate the mesh T Oly eed o the surface, but T s computed everywhere ust trucate the mesh, T( ) = 0 becomes T( R) = 0

8 Laplace s Equato Gree s Fucto If 2 2 u u the + = 0 for all xy, x, y 2 2 x y If u = u u u the + + = 0 for all xyz,, x, y, z x y z I 2-D ( ( ) 2 ) ( ) u = log x x + y y I 3-D ( x x ) + ( y y ) + ( z z ) ( ) ( ) 0 0 ( ) ( ) Proof: Just dfferetate ad see! 0 0 0

9 Laplace s Equato 2-D Smple Idea u s gve o surface x Surface, y ( ) 0 0 u x u + = 0 outsde y Let ( ( ) 2 ) ( ) u = log x x + y y 2 2 u u + = 0 outsde 2 2 x y Problem Solved Does ot match boudary codtos!

10 Laplace s Equato 2-D u s gve o surface ( x, y ) 2 2 ( x, y ) ( x, y ) u x Smple Idea ore Pots u + = 0 outsde y ( ( ) 2 ( ) 2 ) ω ( ) = + = Let u ω log x x y y G x x, y y = = Pck the ω ' s to match the boudary codtos!

11 Laplace s Equato 2-D ( x, ) t yt ( x, y ) 2 2 ( x, y ) ( x, y ) Smple Idea ore Pots Equatos Source Stregths selected to gve correct potetal at test pots. ( ) ( ) L L ( ) G xt x, y t y G x t x,, yt y ω Ψ xt y t O = O G( x ) ( ) ( ) t x, y,, t y G x t x yt y ω Ψ xt y L L t

12 Computatoal results usg pots approach Crcle wth Charges r=9.5 r Potetals o the Crcle R=0 =20 =40

13 Laplace s Equato 2-D Itegral Formulato Lmtg Argumet Wat to smear pot charges oto surface Results a Itegral Equato Ψ ( x) = G( x, x ) σ ( x ) ds How do we solve the tegral equato? surface

14 Laplace s Equato 2-D Bass Fucto Approach Basc Idea Represet σ ( x) = ω ( ) ϕ x { = Bass Fuctos Example Bass Represet crcle wth straght les Assume σ s costat alog each le The bass fuctos are o the surface Ca be used to approxmate the desty ay also approxmate the geometry

15 Laplace s Equato 2-D Bass Fucto Approach Geometrc Approxmato s ot ew. Pecewse Straght surface bass Fuctos approxmate the crcle ( ) ( ) ( ) Tragles for 2-D FE approxmate the crcle too! x G x, x ωϕ x ds Ψ = approx surface =

16 Laplace s Equato 2-D x Bass Fucto Approach Pecewse Costat Straght Sectos Example. x l l l 2 x 2 ) Pck a set of Pots o the surface 2) Defe a ew surface by coectg pots wth les. 3) Defe ϕ ( ) x = f x s o le l otherwse, ϕ x = 0 ( ) approx surface Ψ ( x) = G( xx, ) ωϕ ( x ) ds = ω G( xx, ) ds = = le l How do we determe the ω ' s?

17 Laplace s Equato 2-D Bass Fucto Approach Resdual Defto ad mmzato R x x G x, x ωϕ x ds Ψ ( ) ( ) ( ) ( ) We wll pck the approx surface = ω ' s to make R( x) small. Geeral Approach: Pck a set of test fuctos φ K φ R x,,, ad force ( ) to be orthogoal to the set φ ( ) ( ) xr x ds = 0 for all.

18 Laplace s Equato 2-D Bass Fucto Approach Resdual mmzato usg test fuctos ( ) ( ) ( ) ( ) ( ) ( ) ( ) φ x R x ds= φ x Ψ x ds φ x G x, x ω ϕ x dsds = 0 approx = surface We wll geerate dfferet methods by chosg the,,, φ K φ C ollocato: φ (pot-matchg) ( x) = δ ( x x ) t Galerk ethod: φ ( x) = ϕ ( x) (bass = test)

19 Laplace s Equato 2-D Bass Fucto Approach Collocato δ Collocat o: φ ( ) ( ) x = δ x (pot-matchg) ( ) ( ) ( ) ( ) ( ) t t t t ω ϕ ( ) x x R x ds= R x =Ψ x G x, x x ds = 0 approx surface ( ) ( ) t ω t, ϕ ( ) Ψ = x G x x x ds = approx surface A, = ( x ) t A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x t

20 Laplace s Equato 2-D x l l l 2 x 2 x t Bass Fucto Approach Cetrod Collocato for Pecewse Costat Bases ( ) ( ) t ω t, ϕ ( ) Ψ = x G x x x ds = approx surface Collocato pot le ceter ( x ) t A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x t ( ) (, ) t ω t Ψ = x G x x ds = le A,

21 Laplace s Equato 2-D Bass Fucto Approach Cetrod Collocato Geerates a osymmetrc A ( ) (, ) t ω t Ψ = x G x x ds = le A, x t l 2 l x t2 (, ) (, ) t t A G x x ds G x x ds A = = 2,2 2, le2 le

22 Laplace s Equato 2-D Bass Fucto Approach Galerk Galerk: φ ( x) = ϕ ( x) (test=bass) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ϕ x R x ds= ϕ x Ψ x ds ϕ x G x, x ω ϕ x dsds = 0 approx = surface approx surface If Gxx (, ) Gx (, x) the A = A = A s symmetrc,, ( ) ( ) (, ) ( ) ( ) Ψ = ϕ x x ds ω G x x ϕ x ϕ x dsds = approx approx surface surface b A, A, L L A, ω b O = O A, L L A, ω b

23 Laplace s Equato 2-D Bass Fucto Approach Galerk for Pecewse Costat Bases l l x x 2 l 2 ( ) ω (, ) = le le le b x ds G x x ds ds Ψ = A, A, L L A, ω b O = O A, L L A, ω b

24 3-D Laplace s Equato Itegral Equato: Ψ x = Bass Fucto Approach Pecewse Costat Bass ( ) ( ) surface x x σ x ds Dscretze Surface to Paels Represet σ ( x) ω ( ) ϕ x { = Bass Fuctos Pael ϕ x = x ϕ = ( ) f s o pael ( x) 0 otherwse

25 3-D Laplace s Equato Bass Fucto Approach Cetrod Collocato Put collocato pots at pael cetrods ( ) (, ) c ω c Ψ = c x Collocato pot x G x x ds = pael A, ( x ) c A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x c

26 3-D Laplace s Equato Bass Fucto Approach Calculatg atrx Elemets z y x x Collocato c pot Pael A, = pael x x c ds Oe pot quadrature Approxmato A, Pael Area x c x cetrod Four pot quadrature Approxmato A, * Area x = c x pot

27 3-D Laplace s Equato Bass Fucto Approach Calculatg Self-Term z y x x Collocato c pot Pael A, = pael x x c ds Oe pot quadrature Approxmato A, Pael Area x c 4243 A, = ds s a tegrable sgularty x x pael c 0 x c

28 3-D Laplace s Equato z y Itegrate two peces x Pael Bass Fucto Approach x Collocato c pot Dsk of radus R surroudg collocato pot Calculatg Self-Term Trcks of the trade A, = pael x x c ds A, = ds + ds x x x x dsk c rest of pael c Dsk Itegral has sgularty but has aalytc formula dsk x c x R 2π ds = rdrdθ = 2π R r 0 0

29 3-D Laplace s Equato z y x Pael Bass Fucto Approach x Collocato c pot Calculatg Self-Term Other Trcks of the trade A, = pael x c x 4243 Itegrad s sgular ds ) If pael s a flat polygo, aalytcal formulas exst 2) Curve paels ca be hadled wth proecto

30 3-D Laplace s Equato Bass Fucto Approach Galerk (test=bass) ( ) ( ) ( ) (, ) ( ) ϕ x Ψ x ds = ω ϕ x G x x ϕ x dsds = b A For pecewse costat Bass Ψ ( x) ds = ω dsds 4243 pael pael = x x b A,, A, L L A, ω b O = O A, L L A, ω b

31 3-D Laplace s Equato Bass Fucto Approach Problem wth dese matrx Itegral Equato ethod Geerate Huge Dese atrces ( x ) c A, L L A, ω Ψ O = O A ( ), L L A, ω Ψ x c Gaussa Elmato uch Too Slow!

32 Summary Itegral Equato ethods Exteror versus teror problems Start wth usg pot sources Stadard Soluto ethods Collocato ethod Galerk ethod Next Tme Fast Solvers Use a Krylov-Subspace Iteratve ethod Compute V products Approxmately

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013 ECE 595, Secto 0 Numercal Smulatos Lecture 9: FEM for Electroc Trasport Prof. Peter Bermel February, 03 Outle Recap from Wedesday Physcs-based devce modelg Electroc trasport theory FEM electroc trasport

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

Fast Methods for Integral Equations. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Fast Methods for Integral Equations. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simulation - Lecture 23 Fast Methods for Integral Equations Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Solving Discretized Integral Equations Using

More information

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler Mathematcal ad Computatoal Applcatos, Vol. 8, No. 3, pp. 293-300, 203 BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS Aysegul Ayuz Dascoglu ad Nese Isler Departmet of Mathematcs,

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations Lecture 7 3. Parametrc ad No-Parametrc Ucertates, Radal Bass Fuctos ad Neural Network Approxmatos he parameter estmato algorthms descrbed prevous sectos were based o the assumpto that the system ucertates

More information

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES Jose Javer Garca Moreta Graduate Studet of Physcs ( Sold State ) at UPV/EHU Address: P.O 6 890 Portugalete, Vzcaya (Spa) Phoe: (00) 3 685 77 16

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

6. Nonparametric techniques

6. Nonparametric techniques 6. Noparametrc techques Motvato Problem: how to decde o a sutable model (e.g. whch type of Gaussa) Idea: just use the orgal data (lazy learg) 2 Idea 1: each data pot represets a pece of probablty P(x)

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical ECE66: Sold State Devces Lecture 13 Solutos of the Cotuty Eqs. Aalytcal & Numercal Gerhard Klmeck gekco@purdue.edu Outle Aalytcal Solutos to the Cotuty Equatos 1) Example problems ) Summary Numercal Solutos

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

CS475 Parallel Programming

CS475 Parallel Programming CS475 Parallel Programmg Deretato ad Itegrato Wm Bohm Colorado State Uversty Ecept as otherwse oted, the cotet o ths presetato s lcesed uder the Creatve Commos Attrbuto.5 lcese. Pheomea Physcs: heat, low,

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Computer Graphics. Geometric Modeling. Geometric Modeling. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion

Computer Graphics. Geometric Modeling. Geometric Modeling. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion Computer Graphcs Geometrc Modelg Geometrc Modelg A Example 4 Outle Objectve: Develop methods ad algorthms to mathematcally model shape of real world objects Categores: Wre-Frame Represetato Object s represeted

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract Numercal Smulatos of the Complex Moded Korteweg-de Vres Equato Thab R. Taha Computer Scece Departmet The Uversty of Georga Athes, GA 002 USA Tel 0-542-2911 e-mal thab@cs.uga.edu Abstract I ths paper mplemetatos

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

15. Nanoparticle Optics in the Electrostatic Limit

15. Nanoparticle Optics in the Electrostatic Limit 5 aopartcle Optcs the lectrostatc Lmt I the prevous chapter, we were restrcted to aospheres because a full soluto of Maxwell s equato was eeded Such a aalytc calculato s oly possble for very smple geometres

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific CIS 54 - Iterpolato Roger Crawfs Basc Scearo We are able to prod some fucto, but do ot kow what t really s. Ths gves us a lst of data pots: [x,f ] f(x) f f + x x + August 2, 25 OSU/CIS 54 3 Taylor s Seres

More information

Centroids Method of Composite Areas

Centroids Method of Composite Areas Cetrods Method of Composte reas small boy swallowed some cos ad was take to a hosptal. Whe hs gradmother telephoed to ask how he was a urse sad 'No chage yet'. Cetrods Prevously, we developed a geeral

More information

Generalization of the Dissimilarity Measure of Fuzzy Sets

Generalization of the Dissimilarity Measure of Fuzzy Sets Iteratoal Mathematcal Forum 2 2007 o. 68 3395-3400 Geeralzato of the Dssmlarty Measure of Fuzzy Sets Faramarz Faghh Boformatcs Laboratory Naobotechology Research Ceter vesa Research Isttute CECR Tehra

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 01 Sgals & Systems Prof. Mark Fowler Note Set #9 Computg D-T Covoluto Readg Assgmet: Secto. of Kame ad Heck 1/ Course Flow Dagram The arrows here show coceptual flow betwee deas. Note the parallel

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

1 Convergence of the Arnoldi method for eigenvalue problems

1 Convergence of the Arnoldi method for eigenvalue problems Lecture otes umercal lear algebra Arold method covergece Covergece of the Arold method for egevalue problems Recall that, uless t breaks dow, k steps of the Arold method geerates a orthogoal bass of a

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction Computer Aded Geometrc Desg 9 79 78 www.elsever.com/locate/cagd Applcato of Legedre Berste bass trasformatos to degree elevato ad degree reducto Byug-Gook Lee a Yubeom Park b Jaechl Yoo c a Dvso of Iteret

More information

A Collocation Method for Solving Abel s Integral Equations of First and Second Kinds

A Collocation Method for Solving Abel s Integral Equations of First and Second Kinds A Collocato Method for Solvg Abel s Itegral Equatos of Frst ad Secod Kds Abbas Saadatmad a ad Mehd Dehgha b a Departmet of Mathematcs, Uversty of Kasha, Kasha, Ira b Departmet of Appled Mathematcs, Faculty

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

G S Power Flow Solution

G S Power Flow Solution G S Power Flow Soluto P Q I y y * 0 1, Y y Y 0 y Y Y 1, P Q ( k) ( k) * ( k 1) 1, Y Y PQ buses * 1 P Q Y ( k1) *( k) ( k) Q Im[ Y ] 1 P buses & Slack bus ( k 1) *( k) ( k) Y 1 P Re[ ] Slack bus 17 Calculato

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Spreadsheet Problem Solving

Spreadsheet Problem Solving 1550 1500 CO Emmssos for the US, 1989 000 Class meetg #6 Moday, Sept 14 th CO Emssos (MMT Carbo) y = 1.3x 41090.17 1450 1400 1350 1300 1989 1990 1991 199 1993 1994 1995 1996 1997 1998 1999 000 Year GEEN

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px (

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px ( Iterpolato 1 Iterpolato Gve a table of data pos of a ukow or complcated fucto f : y 0 1 2 y y y y 0 1 2 we wat to fd a (smpler) fucto p s.t. p ( ) = y for = 0... p s sad to terpolate the table or terpolate

More information

x y exp λ'. x exp λ 2. x exp 1.

x y exp λ'. x exp λ 2. x exp 1. egecosmcd Egevalue-egevector of the secod dervatve operator d /d hs leads to Fourer seres (se, cose, Legedre, Bessel, Chebyshev, etc hs s a eample of a systematc way of geeratg a set of mutually orthogoal

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

The conformations of linear polymers

The conformations of linear polymers The coformatos of lear polymers Marc R. Roussel Departmet of Chemstry ad Bochemstry Uversty of Lethbrdge February 19, 9 Polymer scece s a rch source of problems appled statstcs ad statstcal mechacs. I

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5.1 AREA AND ESTIMATING WITH FINITE SUMS 1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.! )!! ( (!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 )! (a)

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department Mapulator Dyamcs mrkabr Uversty of echology omputer Egeerg formato echology Departmet troducto obot arm dyamcs deals wth the mathematcal formulatos of the equatos of robot arm moto. hey are useful as:

More information