Balanced Canavati type Fractional Opial Inequalities

Size: px
Start display at page:

Download "Balanced Canavati type Fractional Opial Inequalities"

Transcription

1 Blnced Cnvti type Frctionl Opil Ineulities George A. Anstssiou eprtment of Mthemticl Sciences University of Memphis Memphis, T 385, U.S.A. gnstss@memphis.edu edicted to the 65th irthdy of Professor Heiner Gonsk Astrct Here we present L p, p >, frctionl Opil type ineulities suject to high order oundry conditions. They involve the right nd left Cnvti type generlised frctionl derivtives. These derivtives re mied together into the lnced Cnvti type generlised frctionl derivtive. This lnced frctionl derivtive is introduced nd ctivted here for the rst time. AMS Suject Clssi ction : 6A33, 6, 65. Key Words nd Phrses: Opil ineulity, frctionl ineulity, Cnvti frctionl derivtive, oundry conditions. Introduction This rticle is inspired y the fmous theorem of. Opil [], 96, which follows Theorem Let (t) C ([; h]) e such tht () (h), nd (t) > in (; h) : Then h In (), the constnt h 4 the optiml function j (t) (t)j dt h 4 h ( (t)) dt: () is the est possile. Ineulity () holds s eulity for ct; t h (t) ; h c (h t) ; t h;

2 where c > is n ritrry constnt. To prove esier Theorem, Beesck [4] proved the following well-known Opil type ineulity which is used very commonly. This is nother insirtion to our work. Theorem Let (t) e solutely continuous in [; ], nd (). Then j (t) (t)j dt ( (t)) dt: () Ineulity () is shrp, it is ttined y (t) ct, c > is n ritrry constnt. Opil type ineulities re used lot in proving uniueness of solutions to di erentil eutions, lso to give upper ounds to their solutions. By themselves hve mde gret suject of intensive reserch nd there eists gret literture out them. Typicl nd gret sources on them re the monogrphs [], []. We de ne here the lnced Cnvti type frctionl derivtive nd we prove relted Opil type ineulities suject to oundry conditions. These hve smller constnts thn in other Opil ineulities when using trditionl frctionl derivtives. Bckground Let >, n : [] (integrl prt of ), nd : n ( < < ). The gmm function is given y () R e t t dt. Here [; ] R, ; [; ] such tht, where is ed. Let f C ([; ]) nd de ne the left Riemnn- Liouville integrl (J f) () : () ( t) f (t) dt; (3). We de ne the suspce C ([:]) of C n ([; ]): n o C ([; ]) : f C n ([; ]) : J f (n) C ([ ; ]) : (4) For f C ([; ]), we de ne the left generlized -frctionl derivtive of f over [ ; ] s f : J f (n) ; (5) see [], p. 4, nd Cnvti derivtive in [5]. otice tht f C ([ ; ]) : We need the following generliztion of Tylor s formul t the frctionl level, see [], pp. 8-, nd [5].

3 Theorem 3 Let f C ([; ]), [; ] ed. (i) If then f () f ( )+f ( ) ( )+f ( ) ( ) +:::+f (n ) ( ) ( ) n (n ) (6) + J f () ; ll [; ] : : (ii) If < < we get f () J f () ; ll [; ] : (7) We will use (6) nd (7). Furthermore we need: Let >, m [], m, < <, f C ([; ]), cll the right Riemnn-Liouville frctionl integrl opertor y J f () : () (J ) f (J) dj; (8) [; ], see lso [3], [6], [7], [8], []. e ne the suspce of functions C ([; ]) : n f C m ([; ]) : J o f (m) C ([; ]) : (9) e ne the right generlized -frctionl derivtive of f over [; ] s f : ( ) m J f (m), () see [3]. We set f f. otice tht f C ([; ]) : From [3], we need the following Tylor frctionl formul. Theorem 4 Let f C ) If, we get f () mx k f (k) ( ) k ) If < <, we get We will use () nd (). We introduce new concept ([; ]), >, m : []. Then ( ) k + J f () ; 8 [; ] : () f () J f () ; 8 [; ] : () e nition 5 Let f C ([; ]), [; ], >, m : []. Assume tht f C + ; nd f C ; +. We de ne the lnced Cnvti type frctionl derivtive y f () : f (), for + ; f (), for < + : (3) 3 3

4 3 Min Result We give our min result Theorem 6 Let f C ([; ]), >, m : []. Assume tht f C nd f C ; +. Assume further tht + ; f (k) () f (k) (), k ; ; :::; m ; (4) p; > : p +, nd > : (i) Cse of <. Then jf ()j j f ()j d (5) (+ p) p( )+ ( ) ( p ) () [(p ( ) + ) (p ( ) + )] p (ii) Cse of >. Then j f ()j d : jf ()j j f ()j d (6) (+ p( )+ ) ( ) ( p ) () [(p ( ) + ) (p ( ) + )] p (iii) When p, >, then j f ()j d : (+ ) ( ) h p i () ( ) jf ()j j f ()j d (7) j f ()j d Remrk 7 Let us sy tht, then y (7) we otin jf ()j jf ()j d ( ) 4 : (f ()) d ; (8) tht is reproving nd recovering Opil s ineulity (), see [], see lso Olech s result [9]. 4 4

5 Proof. of Theorem 6. Let ; +, we hve y ssumption f (k) (), k ; ; :::; m nd Theorem 3 tht f () () ( ) f () d: (9) Let + ; ; we hve y ssumption f (k) (), k ; ; :::; m nd Theorem 4 tht f () () ( ) f () d: () Using Hölder s ineulity on (9) we get jf ()j () ( ) j f ()j d Set Then nd () ( ) p d p j f ()j d p( )+ p ( ) j () (p ( ) + ) f ()j d : () p z () : Therefore y () we hve j f ()j d; (z () ). z () j f ()j ; j f ()j (z ()), ll + : jf ()j j f ()j p( )+ p ( ) () (p ( ) + ) p (z () z ()) ; () ll + : et working similrly with () we otin jf ()j () ( ) f () d () ( ) p p d f () d 5 5

6 Set Then () : p( )+ p ( ) () (p ( ) + ) p f () d () f () f () d : (3) f () d; ( () ). nd f () (), ll + : Therefore y (3) we hve jf ()j f () p( )+ p ( ) () (p ( ) + ) p () () ; (4) ll + : et we integrte () over [; ] to otin jf ()j j f ()j d () (p ( ) + ) p ( ) p( )+ d () (p ( ) + ) p So we hve proved for ll + : By (6) we get () (p ( p( )+ ( ) p p( )+ p ( ) (z () z ()) d p p( )+ p ( ) ) + ) p (p ( ) + ) p () [(p ( ) + ) (p ( ) + )] p p( )+ ( ) p jf ()j j f ()j d () [(p ( ) + ) (p ( ) + )] p + jf ()j j f ()j d z () z () z () d j f ()j d : (5) j f ()j d ; (6) 6 6

7 (p( )+) p ( ) [ p( )+ p + ] () [(p ( ) + ) (p ( ) + )] p Similrly we integrte (4) over [; ] to otin + j f ()j d : (7) jf ()j f () d () (p ( () (p ( ) + ) p We hve proved tht ) + ) p () (p ( p( )+ ( ) p p( )+ p ( ) ( ) p( )+ d p p( )+ p ( ) ) + ) p (p ( ) + ) p jf ()j () [(p ( ) + ) (p ( ) + )] p for ll + : By (9) we get (p( )+) p ( ) + jf ()j [ p( )+ p + ] () [(p ( ) + ) (p ( ) + )] p Adding (7) nd (3) we get 4 jf ()j j f ()j d + j f ()j d Assume <, then. Therefore we get + + f () d f () d + () () d () () d ( ()) : (8) f () d ; (9) f () d : (3) (+ p) p( )+ ( ) ( p ) () [(p ( ) + ) (p ( ) + )] p f () 3 d 5 : (:) (3) () (+ p) p( )+ ( ) ( p ) () [(p ( ) + ) (p ( ) + )] p 7 7

8 " + j f ()j d + f () # d (3) + (+ p) p( )+ ( ) ( p ) () [(p ( ) + ) (p ( ) + )] p So for < we hve proved (5). Assume now >, then < <. Therefore we get j f ()j d : (33) () (+ p) p( )+ ( ) ( p ) () [(p ( ) + ) (p ( ) + )] p " + j f ()j d + f () # d + (+ p( )+ ) ( ) ( p ) () [(p ( ) + ) (p ( ) + )] p j f ()j d : (34) So when > we hve estlished (6). (iii) The cse of p, see (7), is ovious, it derives from (5) immeditely. References [] R.P. Agrwl nd P.Y.H. Png, Opil Ineulities with Applictions in i erentil nd i erence Eutions, Kluwer, ordrecht, London, 995. [] G.A. Anstssiou, Frctionl i erentition Ineulities, Reserch Monogrph, Springer, ew York, 9. [3] G.A. Anstssiou, On Right Frctionl Clculus, Chos, Solitons nd Frctls, 4 (9), [4] P.R. Beesck, On n integrl ineulity of. Opil, Trns. Amer. Mth. Soc. 4 (96), [5] J.A. Cnvti, The Riemnn-Liouville Integrl, ieuw Archief Voor Wiskunde, 5 () (987), [6] A.M.A. El-Syed, M. Ger, On the nite Cputo nd nite Riesz derivtives, Electronic Journl of Theoreticl Physics, Vol. 3, o. (6),

9 [7] G.S. Frederico,.F.M. Torres, Frctionl Optiml Control in the sense of Cputo nd the frctionl oether s theorem, Interntionl Mthemticl Forum, Vol. 3, o. (8), [8] R. Goren o, F. Minrdi, Essentils of Frctionl Clculus,, Mphysto Center, Minrdiotes/fmk.ps. [9] C. Olech, A simple proof of certin result of. Opil, Ann. Polon. Mth. 8 (96), []. Opil, Sur une ineglite, Ann. Polon. Mth. 8 (96), 9-3. [] S.G. Smko, A.A. Kils, O.I. Mrichev, Frctionl Integrls nd erivtives, Theory nd Applictions, (Gordon nd Brech, Amsterdm, 993) [English trnsltion from the Russin, Integrls nd erivtives of Frctionl Order nd Some of Their Applictions (uk i Tekhnik, Minsk, 987)]. 9 9

10 Cnvti frctionl Ostrowski type ineulities George A. Anstssiou eprtment of Mthemticl Sciences University of Memphis Memphis, T 385, U.S.A. gnstss@memphis.edu Astrct Here we present Ostrowski type ineulities involving left nd right Cnvti type generlised frctionl derivtives. Comining these we otin frctionl Ostrowski type ineulities of mied form. Then we estlish Ostrowski type ineulities for ordinry nd frctionl derivtives involving comple vlued functions de ned on the unit circle. AMS Suject Clssi ction : 6A33, 67, 6, 65. Keywords nd Phrses: devition of function, frctionl derivtive, Ostrowski ineulity, function verge. Introduction In 938, A. Ostrowski [] proved the following importnt ineulity: Theorem Let f : [; ] R e continuous on [; ] nd di erentile on (; ) whose derivtive f : (; ) R is ounded on (; ), i.e., kf k : jf (t)j < +. Then sup t(;) f (t) dt f () " ( ) # ( ) kf k ; () for ny [; ]. The constnt 4 is the est possile. Since then there hs een lot of ctivity round these ineulities with importnt pplictions to numericl nlysis nd proility. In this rticle we present vrious generl Ostrowski type ineulities involving frctionl derivtives of Cnvti type. At the end we give pplictions to comple vlued functions de ned on the unit circle.

11 Bckground Let >, n : [] (integrl prt of ), nd : n ( < < ). The gmm function is given y () R e t t dt. Here [; ] R, ; [; ] such tht, where is ed. Let f C ([; ]) nd de ne the left Riemnn- Liouville integrl (J f) () : () ( t) f (t) dt; (). We de ne the suspce C ([:]) of C n ([; ]): n o C ([; ]) : f C n ([; ]) : J f (n) C ([ ; ]) : (3) For f C ([; ]), we de ne the left generlized -frctionl derivtive of f over [ ; ] s f : J f (n) ; (4) see [4], p. 4, nd Cnvti derivtive in [6]. otice tht f C ([ ; ]) : We need the following generliztion of Tylor s formul t the frctionl level, see [4], pp. 8-, nd [6]. Theorem Let f C ([; ]), [; ] ed. (i) If then f () f ( )+f ( ) ( )+f ( ) ( ) +:::+f (n ) ( ) ( ) n (n ) (5) + J f () ; ll [; ] : : (ii) If < < we get f () J f () ; ll [; ] : (6) We will use (5). Furthermore we need: Let >, m [], m, < <, f C ([; ]), cll the right Riemnn-Liouville frctionl integrl opertor y J f () : () (J ) f (J) dj; (7) [; ], see lso [5], [9], [], [], [3]. e ne the suspce of functions C ([; ]) : n f C m ([; ]) : J o f (m) C ([; ]) : (8)

12 e ne the right generlized -frctionl derivtive of f over [; ] s f : ( ) m J f (m), (9) see [5]. We set f f. otice tht f C ([; ]) : From [5], we need the following Tylor frctionl formul. Theorem 3 Let f C ) If, we get ([; ]), >, m : []. Then f () mx k f (k) ( ) k ) If < <, we get ( ) k + J f () ; 8 [; ] : () f () J f () ; 8 [; ] : () We will use (). In [4], pp , nd [3], we proved the rst frctionl Ostrowski ineulity. Theorem 4 Let <, is ed. Let f C ([; ]),, n : []. Assume f (i) ( ), i ; :::; n. Then f (y) dy f ( ) f ;[;] ( ) : () ( + ) Ineulity () is shrp, nmely it is ttined y f () : ( ),, [; ] : (3) When < the ssumption f (i) ( ), i ; :::; n is void. 3 Min Results We give Theorem 5 Sme ssumptions s in Theorem 4. Then f (y) dy f ( ) f ( L([ ;]) ) : (4) ( + ) 3

13 Proof. By (5) we get Hence I.e. f (y) f ( ) () (y ) () y jf (y) f ( )j () y (y w) f (w) dw; 8 y : (5) y f (w) (y ) dw () (y ) () jf (y) f ( )j (y ) () (y w) f (w) dw f L([ ;]) : Therefore we get f (y) dy f ( ) (f (y) (y ) dy proving the clim. We continue with f (w) dw f L([ ;]) ; 8 y [ ; ] : (6) jf (y) f ( )j dy (6) f L([ ;]) ( ) ( + ) () ( ) f L([ ;]) ; f ( )) dy f L([ ;]) Theorem 6 Sme ssumptions s in Theorem 4. Let p; > : p +. Then f (y) dy f ( ) f L([ ;]) ( () (p ( ) + ) p + p ) + p : (7) Proof. We notice tht jf (y) f ( )j () y (y w) f (w) dw () 4 3

14 Tht is jf (y) () () y f ( )j (y w) p( ) dw p( )+ (y ) p ( ) + p (y ) ( )+ p () (p ( ) + ) p f L([ ;]) () p y f (w) dw f (w) dw f L([ ;]) : (y ) ( )+ p ; 8 y [ (p ( ) + ) ; ] : (8) p Conseuently we otin f (y) dy f ( ) proving the clim. Comining Theorems 4-6 we derive jf (y) f ( )j dy (8) f L([ ;]) (y () (p ( ) + ) ) ( )+ p dy p f L([ ;]) ( ) + p ; (9) () (p ( ) + ) p + p Proposition 7 Let ll s in Theorem 6. Then ( f (y) dy f ( ) min f ;[;] ( ( + ) ) ; () f L([ ;]) ( ) ( + ) f L([ ; ( ;]) ) + p () (p ( ) + ) p + p We continue with right Cnvti frctionl Ostrowski ineulities. Theorem 8 Let, m [], f C ([; ]). Assume f (k) ( ), k ; :::; m ; which is void when <. Then f () d f () f ;[;] ( ) : () ( + ) 9 ; : 5 4

15 Proof. Let [; ]. By () we get Then, s efore, we get Hence it holds f () f () () jf () f ()j f () d f ;[;] ( + ) ( ) proving the clim. We continue with (J ) f (J) dj: () ( ) ( + ) f ;[;] ; 8 [; ] : (3) f () jf () f ()j d (3) ( ) d f ;[;] ( ) ( ( + )) ( + ) f ;[;] ( ) ; (4) ( + ) Theorem 9 Sme ssumptions s in Theorem 8. Then f () d f () f L([;]) ( ) : (5) ( + ) Hence Proof. We hve gin jf () f ()j () (J ) f (J) dj (6) ( ) () f L([;]), 8 [; ] : f L([;]) ( ()) ( ) proving the clim. We lso hve f () d f () ( ) d jf () f ()j d (6) f L([;]) ( + ) ( ) ; (7) 6 5

16 Theorem Sme ssumptions s in Theorem 8. Let p; > : p + Then f () d f () f L([;]) ( () (p ( ) + ) p + p ) + p : (8) Proof. As efore we otin f L([;]) jf () f ()j () (p ( ) + ) p ( ) + p ; 8 [; ] : (9) Hence f () d f () jf () f ()j d (9) f L([;]) ( ) + p d () (p ( ) + ) p ( ) f L([;]) ( ) + p ; (3) (p ( ) + ) p () + p proving the clim. Comining Theorems 8- we derive Proposition Here ll s in Theorem. Then ( f () d f () min f ;[;] ( ) ; (3) ( + ) f L([;]) ( ) f 9 ( ) + p L([;]) ; ( + ) () (p ( ) + ) p + ; : p We lso give optimlity of (). Proposition Ineulity () is shrp, nmely it is ttined y m : [] : f (J) ( J),, J [; ], (3) 7 6

17 Proof. We hve tht f (m) (J) ( ) m ( ) ( ) ::: ( m + ) ( m + ) ( J) m : (33) We lso notice J ( m) ( + m) f (m) () (7) ( + m) (J ) +m f (m) (J) dj (J ) m ( ) m ( ) ( ) ::: ( m + ) ( m + ) ( J) m dj ( )m ( ) ( ) ::: ( m + ) ( m + ) ( + m) ( J) ( m+) (J ) (+m ) dj ( )m ( ) ( ) ::: ( m + ) ( m + ) ( + m) ( m + ) ( + m ) () ( ) ( ) m ( ) ( ) ::: ( m + ) ( m + ) ( m + ) ( ) Tht is ( ) m ( ) ( ) ::: ( m + ) ( m + ) ( ) Therefore it holds ::: ( ) m ( + ) ( ) : (34) J +m f (m) () ( ) m ( + ) ( ) : (35) f () (9) ( ) m ( ) m ( + ) ( ) ( + ) : (36) So tht f ;[;] ( + ) : (37) We lso notice tht f (k) ( ), k ; :::; m, nd f (). We oserve further tht nd R:H:S: () L:H:S: () ( ) + ; (38) ( + ) ( + ) ( ( ) ) + ; (39) proving the clim. et we present mied Cnvti frctionl Ostrowski type ineulities. 8 7

18 Theorem 3 Let, m [], [; ] ed, f C ([; ]) with f C ([; ]) nd f C ([; ]). Assume tht f (k) (), k ; :::; m, which is void when <. Then f (y) dy f () (4) n ( ) ( + ) f ( )+ ;[;] + k fk ( )+o ;[;] Hence ( ) + + ( ) + ( ) ( + ) Proof. Let [; ]. By () we get f (y) f () () jf (y) f ()j () 8 y [; ] : Similrly, y (5) we get Hence f (y) f () () jf (y) f ()j () 8 y [; ] : We oserve tht y y y m n f ;[;] ; k fk ;[;] o : (4) (J y) f (J) dj; 8 y [; ] : (4) (J y) f (J) dj ( y) y f (y) dy ( + ) f ;[;] ; (43) (y w) ( f) (w) dw; 8 y [; ] : (44) (y w) j f (w)j dw k fk ;[;] (y ) ( + ) ; f () (45) jf (y) f ()j dy (46) ( ) y ((43), (45)) jf (y) f ()j dy + jf (y) f ()j dy ( f ;[;] ( y) dy + k fk ) ;[;] (y ) dy ( + ) ( + ) (47) 9 8

19 n ( ) ( + ) f ( ;[;] )+ + k fk ( ;[;] )+o ; (48) proving the clim. We continue with the optimlity of Theorem 3. Proposition 4 Ineulities (4), (4) re shrp, nmely re ttined y f (J) ( J), J [; ] ; (J ), J [; ] ; (49) where, [; ] is ed. See tht f (k) ( ) f (k) ( + ), k ; ; :::; m : We hve tht f ;[;] f ;[;] ( + ) : (5) Furthermore we notice L:H:S: (4) n ( ) + + ( ) +o ; (5) ( + ) ( ) nd ( ) + + ( ) + R:H:S: (4) ( ) ( + ) ( ) + + ( ) + ( + ) proving the clim. We continue with ( + ) ( ) ; (5) Theorem 5 All s in Theorem 3. Then ( [; ]) f (y) dy f () (53) n f ( ) ( + ) ( ) L([;]) + k fk ( )o L([;]) ( ) + ( ) n m ( ) ( + ) f o ; k L([;]) fk L([;]) : (54) Proof. Let [; ]. From (4) we get (y [; ]) jf (y) f ()j () y (J y) f (J) dj (55) 9

20 Tht is ( y) () y f (J) ( y) dj () f (J) dj: (56) jf (y) f ()j ( y) f L([;]) ; 8 y [; ] : (57) () Similrly from (44) we get jf (y) f ()j () (y ) () y (y w) j( f) (w)j dw (58) k fk L([;]) ; 8 y [; ] : (59) From (46) we otin f (y) dy f () (6) ( f L([;]) ( y) dy + k fk ) L([;]) (y ) dy () () (6) n ( ) ( + ) f ( ) L([;]) + k fk ( )o L([;]) ( ) + ( ) n m ( ) ( + ) f o ; k L([;]) fk L([;]) ; (6) proving the clim. We lso give Theorem 6 All s in Theorem 3. Let p; > : p +. Then ( [; ]) f (y) dy f () (63) ( ) () (p ( ) + ) p + p n ( ) + p f o + ( )+ p L([;]) k fk ( ) + p + ( ) + p A ( ) () (p ( ) + ) p + p n m f o ; k L([;]) fk L([;]) : (64)

21 Proof. By (55) we get jf (y) f ()j () y (J y) p( ) p dj f L([;]) ( y) + p () (p ( ) + ) p Similrly from (58) we derive jf (y) f ()j () By (46) we derive y (y ) + p () (p ( ) + ) p f (y) dy f L([;]) ; 8 y [; ] : (65) (y w) p( ) dw p k fk L([;]) k fk L([;]) ; 8 y [; ] : (66) f () () ( ) (p ( ) + ) p ( y) + p dy f + L([;]) (y ) + p dy k fk L([;]) ( ) () (p ( ) + ) p + p n ( ) + p f o + ( )+ p L([;]) k fk ( ) + p + ( ) + p ( ) () (p ( ) + ) p proving the clim. + p A m Corollry 7 All s in Theorem 3. Then f (y) dy ( ) + + ( ) + ( ) () p + ) (67) (68) n f L([;]) ; k fk L([;])o ; (69) f () (7) m n f L([;]) ; k fk L([;]) o :

22 Proof. By Theorem 6. Comining Theorems 3, 5, 6 we derive Theorem 8 Here ll s in Theorem 3. Let ny p; > : p +. Then f (y) dy f () min ( ) ( + ) ( ) ( + ) n f ;[;] ( )+ + k fk ;[;] ( )+o ; n f L([;]) ( ) + k fk L([;]) ( )o ; (7) ( ) () (p ( ) + ) p + p n ( ) + p f oo + ( )+ p L([;]) k fk L([;]) ( ( ) + + ( ) + n min m f o ( ) ( + ) ; k ;[;] fk ;[;] ; ( ) + ( ) n m ( ) ( + ) f o ; k L([;]) fk L([;]) ; ( ) + p + ( ) + p A ( ) () (p ( ) + ) p + p n m f oo ; k L([;]) fk L([;]) : 4 Applictions Ineulities for comple vlued functions de ned on the unit circle were studied etensively y S. rgomir, see [7], [8]. We give here our version for these functions involved in Ostrowski type ineulities, y pplying results of this rticle. Let t [; ] [; ), the unit circle rc A z C : z e it ; t [; ], nd f : A C e continuous function. Clerly here there eist functions u; v : A R continuous, the rel nd the comple prt of f, respectively, such tht f e it u e it + iv e it : (73) So tht f is continuous, i u; v re continuous. Cll g (t) f e it, l (t) u e it, l (t) v e it, t [; ]; so tht g : [; ] C nd l ; l : [; ] R re continuous functions in t. 3

23 If g hs derivtive with respect to t, then l, l hve lso derivtives with respect to t. In tht cse (i.e. g (t) l (t) + il (t)), which mens f t e it u t e it + iv t e it ; (74) f t (cos t + i sin t) u t (cos t + i sin t) + iv t (cos t + i sin t) : (75) Let us cll cos t, y sin t. Then Similrly we nd tht u t e it u t (cos t + i sin t) u t ( + iy) u t eit ( sin t) + cos So tht ut v t e ( sin t) cos t: (77) e e e it ;[;] + ;[;] ;[;] nd vt e e e it ;[;] + ;[;] ;[;] Conseuently it holds f t e it e e e e it ;[;] ;[;] ;[;] ;[;] Since g is continuous on [; ], then R f eit dt eists. Furthermore it holds f e it dt u e it dt + i Let now t [; ]. We oserve tht f e it dt f e it u e it dt + i v e it dt: (8) v e it dt u e it iv e it (8) 4 3

24 u e it dt u e it + v e it dt v e it (y ()) " 4 + t + # h ( ) ( ) u t e it + ;[;] v t e it i ;[;] : (83) We hve proved the following version of Ostrowski ineulity for comple functions. Theorem 9 Let f C (A; C) with its rel nd comple prt u e it ; v e it C ([; ]) s functions of t, where t [; ] [; ): Then f e it dt f e it " 4 + t + # h ut ( ) ( ) e it + vt ;[;] e it i ;[;] (84) " 4 + t + # ( ) ( ) (85) e e e e it ;[;] ;[;] ;[;] Ineulity (84) is shrp. ;[;] An eplntion follows net. For z C fg we cll principl vlue of log (z) the comple vlued function where Arg (z) < : For t [; ) we hve tht Log (z) : ln jzj + iarg (z) ; (86) Log e it it: (87) Let here < <, nd t. Here l (t) nd l (t) t, with l (t) : otice in generl tht 4 + t + ( ) ( ) ( t ) + (t ) ; (88) ( ) for ny t [; ], see [9], p. 498 nd []. 5 4

25 Hence we hve L:H:S: (84) Log e it dt itdt tdt : (89) Furthermore it holds R:H:S: (84) : (9) By (89) nd (9) we conclude tht ineulity (84) is ttined y Log t t on [; ], tht is shrp ineulity. We now move t the frctionl level. Let t [; ], we rewrite (8) s follows f e it dt f e it l (t) dt l (t ) + l (t) dt l (t ) : (9) By pplying Theorem 8 to ech of the lst two summnds we derive the following comple frctionl Ostrowski ineulity. Theorem Let f C (A; C), t; t [; ] [; ); ny p; > : p +. Let, m [], with l ; l Ct ([; t ]) nd l ; l Ct ([t ; ]). Assume tht l (k) (t ) l (k) (t ), k ; :::; m, which is void when <. Then f e it dt f e it min ( ) ( + ) ( ) ( + ) min n t l ;[;t] (t ) + + t l ;[t;] ( t ) +o ; n t l L([;t]) (t ) + t l L([t ;]) ( t ) o ; + p ( ) () (p ( ) + ) p n (t ) + p t l L([;t + ( t ]) ) + p t l L([t ;]) ( ) ( + ) ( ) ( + ) oo + n t l ;[;t] (t ) + + t l ;[t;] ( t ) +o ; n t l L([;t]) (t ) + t l L([t ;]) ( t ) o ; ( ) () (p ( ) + ) p + p 6 5

26 n (t ) + p ( ( t ) + + (t ) + min ( ) ( + ) ( t ) + (t ) t l L([;t + ( t ]) ) + oo p t l L([t ;]) ( ) ( + ( t ) + p + (t ) + p ( ) () (p ( ) + ) p (9) n m t l ;[;t] ; l o t ;[t;] ; n m t l L([;t ; ]) t l o L([t ; ;]) + p n m t l L([;t ; ]) t l L([t ;]) ( ( t ) + + (t ) + min ( ) ( + ) ( t ) + (t ) ( ) ( + ( t ) + p + (t ) + p ( ) () (p ( ) + ) p A oo + n m t l ;[;t] ; l o t ;[t;] ; n m t l L([;t ; ]) t l o L([t ; ;]) + p n m t l L([;t ; ]) t l L([t ;]) A oo : (93) References [] G.A. Anstssiou, Ostrowski type ineulities, Proc. AMS 3 (995), [] G. Anstssiou, Quntittive Approimtion, Chpmn & Hll / CRC, Boc Rton, ew York,. [3] G. Anstssiou, Frctionl Ostrowski type ineulities, Communictions in Applied Anlysis, 7 (3), o., 3-8. [4] G.A. Anstssiou, Frctionl i erentition Ineulities, Reserch Monogrph, Springer, ew York, 9. [5] G.A. Anstssiou, On Right Frctionl Clculus, Chos, Solitons nd Frctls, 4 (9), [6] J.A. Cnvti, The Riemnn-Liouville Integrl, ieuw Archief Voor Wiskunde, 5 () (987),

27 [7] S.S. rgomir, Ostrowski s Type Ineulities for Comple Functions e ned on unit Circle with Applictions for Unitry Opertors in Hilert Spces, rticle no. 6, 6 th vol. 3, RGMIA, Res. Rep. Coll., [8] S.S. rgomir, Generlized Trpezoidl Type Ineulities for Comple Functions e ned on Unit Circle with Applictions for Unitry Opertors in Hilert Spces, rticle no. 9, 6th vol. 3, RGMIA, Res. Rep. Coll., [9] A.M.A. El-Syed, M. Ger, On the nite Cputo nd nite Riesz derivtives, Electronic Journl of Theoreticl Physics, Vol. 3, o. (6), [] G.S. Frederico,.F.M. Torres, Frctionl Optiml Control in the sense of Cputo nd the frctionl oether s theorem, Interntionl Mthemticl Forum, Vol. 3, o. (8), [] R. Goren o, F. Minrdi, Essentils of Frctionl Clculus,, Mphysto Center, Minrdiotes/fmk.ps. [] A. Ostrowski, Üer die Asolutweichung einer di erentiren Funcktion von ihrem Integrlmittelwert, Comment. Mth. Helv., (938), 6-7. [3] S.G. Smko, A.A. Kils, O.I. Mrichev, Frctionl Integrls nd erivtives, Theory nd Applictions, (Gordon nd Brech, Amsterdm, 993) [English trnsltion from the Russin, Integrls nd erivtives of Frctionl Order nd Some of Their Applictions (uk i Tekhnik, Minsk, 987)]. 8 7

28 Frctionl Poly type integrl ineulity George A. Anstssiou eprtment of Mthemticl Sciences University of Memphis Memphis, T 385, U.S.A. gnstss@memphis.edu Astrct Here we estlish frctionl Poly type integrl ineulity with the help of generlised right nd left frctionl derivtives. The mzing fct here is tht we do not need ny oundry conditions s the clssicl Poly integrl ineulity reuires. AMS Suject Clssi ction : 6A33, 6, 65. Keywords nd Phrses: Poly integrl ineulity, frctionl derivtive. Introduction We mention the following fmous Poly s integrl ineulity, see [7], [8, p, 6], [9] nd [, p. 83]. Theorem Let f () e di erentile nd not identiclly constnt on [; ] with f () f (). Then the eists t lest one point [; ] such tht jf ()j > 4 ( ) f () d: () In [], Feng Qi presents the following very interesting Poly type integrl ineulity (), which generlizes (). Theorem Let f () e di erentile nd not identiclly constnt on [; ] with f () f () nd M jf ()j. Then sup [;] f () d ( ) M; () 4 where ( ) 4 in () is the est constnt. 8

29 In this short note we present frctionl Poly type integrl ineulity, similr to (), without the oundry conditions f () f (). For the lst we need the following frctionl clculus ckground. Let >, m [] ; m; < < ; f C ([; ]), [; ] R, [; ]. The gmm function is given y () R e t t dt. We de ne the left Riemnn-Liouville integrl J + f () () ( t) f (t) dt; (3). We de ne the suspce C+ ([:]) of C m ([; ]): n o C+ ([; ]) f C m ([; ]) : J + f (m) C ([; ]) : (4) For f C+ ([; ]), we de ne the left generlized -frctionl derivtive of f over [; ] s +f : J + f (m) ; (5) see [], p. 4. Cnvti rst in [3] introduced the ove over [; ]. otice tht +f C ([; ]) : We need the following left frctionl Tylor s formul, see [], pp. 8-, nd in [3] the sme over [; ] tht ppered rst. Theorem 3 Let f C + ([; ]). (i) If ; then f () f ()+f () ( )+f () + () (ii) If < < ; we hve f () We will use (7). otice tht () ( ) +:::+f (m ) () ( t) +f (t) dt; ll [; ] : ( t) +f (t) dt ( )m (m ) (6) ( t) +f (t) dt; ll [; ] : (7) +f ( (t) d t) +f ( ) ( ), where [; ] ; (8) y rst integrl men vlue theorem. Hence, when < <, we get f () +f ( ) ( ) ; ll [; ] : (9) ( + ) 9

30 Furthermore we need: Let gin >, m [], m, f C ([; ]), cll the right Riemnn- Liouville frctionl integrl opertor y J f () : () (t ) f (t) dt; () [; ], see lso [], [4], [5], [6], []. e ne the suspce of functions C ([; ]) : n f C m ([; ]) : J o f (m) C ([; ]) : () e ne the right generlized -frctionl derivtive of f over [; ] s f ( ) m J f (m), () see []. We set f f. otice tht f C ([; ]) : From [], we need the following right Tylor frctionl formul. Theorem 4 Let f C (i) If, we get ([; ]), >, m : []. Then f () mx k f (k) () k (ii) If < <, we get f () J f () () ( ) k + J f () ; ll [; ] : (3) (t ) f (t) dt; ll [; ] : (4) We will use (4). otice tht (t ) f (t) dt f (t (t) d ) f ( ) ( ), where [; ] ; (5) y rst integrl men vlue theorem. Hence, when < <, we otin f () f ( ) ( ) ; ll [; ] : (6) ( + ) 3 3

31 Min Result We present the following frctionl Poly type integrl ineulity without ny oundry conditions. Theorem 5 Let < <, f C ([; ]). Assume f C + f C + ;. Set Then ; + nd n M (f) m +f ;[; + ] ; f o ;[ + ;] : (7) f () d jf ()j d M (f) ( )+ ( + ) : (8) Ineulity (8) is shrp, nmely it is ttined y ( ) ; ; + f () ( ), + ; ; < < : (9) Clerly here non zero constnt functions f re ecluded. Proof. By (9) we get jf ()j + f ;[; + ] ( ) ; for ny ; + : () ( + ) By (6) we derive jf ()j f ( ) + ;[ + ;] ; for ny ( + ) ; : () Hence we get jf ()j d + (y (), ()) +f + ;[; + ] ( ) d + ( + ) + f ;[; + + ] + ( ( + )) ( + ) jf ()j d + jf ()j d + f ;[ + ;] ( ) d ( + ) + f ;[ + ;] ( ( + )) ( + ) + f ;[; + ] + f ;[ + ;] ( + ) + () + : (3) 4 3

32 So we hve proved tht jf ()j d m n +f ;[; + ] ; f ;[ + ;] o ( ) + ( + ) ; (4) proving (8). otice tht f + f + + ; so tht f C ([; ]) : Here m. We see tht J + ( ) () J + ( ) () (y [3], p. 56) ( ) ( ) ( t) (t ) dt ( t) ( ) (t ) (+) dt ( ) ( ) ( + ) () ( ) ( + ) ( ) : Hence Therefore Furthermore we hve + ( ) ( + ) ; for ll + ( ; + : (5) ) ;[; + ] ( + ) : (6) J ( ) () ( ) (t ) ( t) dt (y [3], p. 56) ( ) ( t) (+) (t ) ( ) dt ( ) ( + ) ( ) () ( ) ( + ) ( ) : Therefore ( ) ( + ) ; for ll + ; ; (7) 5 3

33 nd Conseuently we nd tht Applying f into (8) we otin: ( ) ;[ + ;] ( + ) : (8) R.H.S.(8) for f ( + ) while we get the sme result from L.H.S. (8) for f + proving shrpness of (8). We mke M (f ) ( + ) : (9) ( )+ ( )+ ( + ) ( + ) ; (3) f () d ( ) d + ( + ) ( )+ d ( + ) ; (3) Remrk 6 When, thus m [], nd y ssuming tht f (k) () f (k) (), k ; ; :::; m, we cn prove the sme sttements s in Theorem 5. If we set there we derive ectly Theorem. So we generlize Theorem. Agin here f (m) cnnot e constnt di erent thn zero, euivlently, f cnnot e non-trivil polynomil of degree m. References [] G.A. Anstssiou, Frctionl i erentition Ineulities, Reserch Monogrph, Springer, ew York, 9. [] G.A. Anstssiou, On Right Frctionl Clculus, Chos, Solitons nd Frctls, 4 (9), [3] J.A. Cnvti, The Riemnn-Liouville Integrl, ieuw Archief Voor Wiskunde, 5 () (987), [4] A.M.A. El-Syed, M. Ger, On the nite Cputo nd nite Riesz derivtives, Electronic Journl of Theoreticl Physics, Vol. 3, o. (6), [5] G.S. Frederico,.F.M. Torres, Frctionl Optiml Control in the sense of Cputo nd the frctionl oether s theorem, Interntionl Mthemticl Forum, Vol. 3, o. (8),

34 [6] R. Goren o, F. Minrdi, Essentils of Frctionl Clculus,, Mphysto Center, Minrdiotes/fmk.ps. [7] G. Poly, Ein mittelwertstz für Funktionen mehrerer Veränderlichen, Tohoku Mth. J. 9 (9), -3. [8] G. Poly nd G. Szegö, Aufgen und Lehrsätze us der Anlysis, Volume I, Springer-Verlg, Berlin, 95. (Germn) [9] G. Poly nd G. Szegö, Prolems nd Theorems in Anlysis, Volume I, Clssics in Mthemtics, Springer-Verlg, Berlin, 97. [] G. Poly nd G Szegö, Prolems nd Theorems in Anlysis, Volume I, Chinese Edition, 984. [] Feng Qi, Poly type integrl ineulities: origin, vrints, proofs, re nements, generliztions, euivlences, nd pplictions, rticle no., 6th vol. 3, RGMIA, Res. Rep. Coll., [] S.G. Smko, A.A. Kils, O.I. Mrichev, Frctionl Integrls nd erivtives, Theory nd Applictions, (Gordon nd Brech, Amsterdm, 993) [English trnsltion from the Russin, Integrls nd erivtives of Frctionl Order nd Some of Their Applictions (uk i Tekhnik, Minsk, 987)]. [3] E.T. Whittker nd G.. Wtson, A Course in Modern Anlysis, Cmridge University Press,

35 Univrite Frctionl Poly type integrl ineulities George A. Anstssiou eprtment of Mthemticl Sciences University of Memphis Memphis, T 385, U.S.A. gnstss@memphis.edu Astrct Here we estlish series of vrious frctionl Poly type integrl ineulities with the help of generlised right nd left frctionl derivtives. We give ppliction to comple vlued functions de ned on the unit circle. AMS Suject Clssi ction : 6A33, 6, 65. Keywords nd Phrses: Poly integrl ineulity, frctionl derivtive. Introduction We mention the following fmous Poly s integrl ineulity, see [], [3, p, 6], [4] nd [5, p. 83]. Theorem Let f () e di erentile nd not identiclly constnt on [; ] with f () f (). Then the eists t lest one point [; ] such tht jf ()j > 4 ( ) f () d: () In [6], Feng Qi presents the following very interesting Poly type integrl ineulity (), which generlizes (). Theorem Let f () e di erentile nd not identiclly constnt on [; ] with f () f () nd M jf ()j. Then sup [;] f () d ( ) M; () 4 where ( ) 4 in () is the est constnt. 35

36 The ove motivte the current pper. In this rticle we present univrite frctionl Poly type integrl ineulities in vrious cses, similr to (). For the lst we need the following frctionl clculus ckground. Let >, m [] ; m; < < ; f C ([; ]), [; ] R, [; ]. The gmm function is given y () R e t t dt. We de ne the left Riemnn-Liouville integrl J + f () () ( t) f (t) dt; (3). We de ne the suspce C+ ([:]) of C m ([; ]): n o C+ ([; ]) f C m ([; ]) : J + f (m) C ([; ]) : (4) For f C+ ([; ]), we de ne the left generlized -frctionl derivtive of f over [; ] s +f : J + f (m) ; (5) see [], p. 4. Cnvti rst in [5], introduced the ove over [; ]. otice tht +f C ([; ]) : We need the following left frctionl Tylor s formul, see [], pp. 8-, nd in [5] the sme over [; ] tht ppered rst. Theorem 3 Let f C + ([; ]). (i) If ; then f () f ()+f () ( )+f () + () (ii) If < < ; we hve f () () ( ) +:::+f (m ) () ( t) +f (t) dt; ll [; ] : ( )m (m ) (6) ( t) +f (t) dt; ll [; ] : (7) Furthermore we need: Let gin >, m [], m, f C ([; ]), cll the right Riemnn- Liouville frctionl integrl opertor y J f () : () (t ) f (t) dt; (8) [; ], see lso [], [8], [9], [], [7]. e ne the suspce of functions C ([; ]) : n f C m ([; ]) : J o f (m) C ([; ]) : (9) 36

37 e ne the right generlized -frctionl derivtive of f over [; ] s f ( ) m J f (m), () see []. We set f f. otice tht f C ([; ]) : From [], we need the following right Tylor frctionl formul. Theorem 4 Let f C (i) If, we get f () mx k f (k) () k (ii) If < <, we get f () J f () () We need from [3] ([; ]), >, m : []. Then ( ) k + J f () ; ll [; ] : () (t ) f (t) dt; ll [; ] : () e nition 5 Let f C ([; ]), [; ], >, m : []. Assume tht f C + ; nd f C+ ; +. We de ne the lnced Cnvti type frctionl derivtive y f () : f (), for + ; +f () ; for < + : (3) In [4] we proved the following frctionl Poly type integrl ineulity without ny oundry conditions. ; + nd Theorem 6 Let < <, f C ([; ]). Assume f C + f C + ;. Set n M (f) m +f ;[; + ] ; f o ;[ + ;] : (4) Then f () d jf ()j d (5) + f ;[; + ] + f ;[ + ;] + M (f) ( )+ ( + ) ( + ) : (6) Ineulities (5), (6) re shrp, nmely they re ttined y ( ) ; ; + f () ( ), + ; ; < < : (7) Clerly here non zero constnt functions f re ecluded. 3 37

38 The lst result lso motivtes this work. Remrk 7 (see [4]) When, thus m [], nd y ssuming tht f (k) () f (k) (), k ; ; :::; m, we cn prove the sme sttements (5), (6), (7) s in Theorem 6. If we set there we derive ectly Theorem. So we hve generlized Theorem. Agin here f (m) cnnot e constnt di erent thn zero, euivlently, f cnnot e non-trivil polynomil of degree m. We continue here with other interesting univrite frctionl Poly type ineulities. Min Results We present our rst min result. Theorem 8 Let, m [], f C ([; ]). Assume f C+ ; + nd f C + ;, such tht f (k) () f (k) (), k ; ; :::; m. Set n M (f) m + f L([; + ]) ; f o L([ + ;]) : (8) Then f () d k fk ( + ) L([;]) Here f cnnot e non-trivil polynomil of degree m. Proof. By ssumption nd Theorem 3 we hve f () () ( t) +f (t) dt; ll lso it holds, y ssumtion nd Theorem 4, tht f () By () we get () jf ()j ( ) () (t ) f (t) dt; ll () + ( t) +f (t) dt + f (t) dt; 4 M (f) ( + ) ( ) : () ; + ; () + ; : () ll ; + : (3) 38

39 By () we derive jf ()j ( ) () Conseuently we hve + () (t ) f (t) dt f (t) dt; ll + ; : (4) + jf ()j d () + ( ) d +f L([; + ]) (5) nd ( + ) +f L([; + ]) ; + jf ()j d () + ( ) d f L([ + ;]) (6) ( + ) f L([ + ;]) : Therefore we otin y dding (5) nd (6) tht h jf ()j d ( + ) +f L([; + ]) + f i L([ + ;]) k fk ( + ) L([;]) n m + f L([; + ]) ; f o ( ) L([ + ;]) ( + ) ; (8) proving the clim. We continue with Theorem 9 Let p; > : p +, >, m [], f C ([; ]). Assume f C+ ; + nd f C + ;, such tht f (k) () f (k) (), k ; ; :::; m. When < <, the lst oundry conditions re void. Set n M 3 (f) m + f L([; + ]) ; f o L([ + ;]) : (9) Then jf ()j d () (p ( ) + ) p + p + p (3) 5 39

40 h + f L([; + ]) + f i L([ + ;]) () (p ( M 3 (f) ) + ) p + p Agin here f cnnot e non-trivil polynomil of degree m. Proof. By Theorem 3 we hve ( ) + p : (3) jf ()j () ( t) +f (t) dt Tht is jf ()j () (p( )+) p ( ) () (p ( ) + ) p ( ) + p () (p ( ) + ) p Similrly from Theorem 4 we get ( t) p( ) p dt +f (t) dt + f L([; + ]) ; for ll ; + : (3) + f L([; + ]) ; for ll ; + (33) jf ()j () (t ) f (t) dt Tht is jf ()j () ( ) ( )+ p () (p ( ) + ) p (t ) p( ) dt ( ) + p () (p ( ) + ) p p f (t) dt (34) f + L([ + ;]) ; for ll ; : (35) Conseuently we otin y (33) tht + f + L([ + ;]) ; for ll ; : jf ()j d (36) () (p ( ) + ) p + ( ) + p d +f L([; + ]) 6 4

41 () (p ( ) + ) p + p + p +f L([; + ]) : (37) Similrly it holds y (36) tht + jf ()j d () (p ( () (p ( ) + ) p ) + ) p + + p ( ) + p d + p f L([ + ;]) f L([ + ;]) : (38) Adding (37) nd (38) we hve jf ()j d () (p ( ) + ) p + p h + f L([; + ]) + f i L([ + ;]) ]) ; f o L([ + ;]) m n + f L([; + () (p ( ) + ) p + p + p (39) ( ) + p ; (4) proving the clim. Comining Theorem 6, Remrk 7, Theorem 8 nd Theorem 9, we otin Theorem Let ny p; > : p +,, m [], f C ([; ]). Assume f C+ ; + nd f C + ;, such tht f (k) () f (k) (), k ; ; :::; m. Then jf ()j d 8 >< + f ;[; + ] + f ;[ + min ;] + ; >: ( + ) k fk ( + ) ; (4) L([;]) h +f L([; + ]) + i 9 f L([ + ;]) + p > () (p ( ) + ) p + >; p 7 4

42 ( min M (f) ( )+ ( + ) ; M (f) ( + ) ( ) ; () (p ( M 3 (f) ) + ) p + p 9 ( ) + p ; ; (4) where M (f) s in (4), M (f) s in (8) nd M 3 (f) s in (9). Here f cnnot e non-trivil polynomil of degree m. Corollry Here ll s in Theorem. Then f () d jf ()j d 8 >< + f ;[; + ] + f ;[ + min ;] >: ( + ) + ( ) ; (43) ( + ) ( ) k fk ; L([;]) h + f L([; + ]) + f i 9 L([ + ;]) > ( ) + p () (p ( ) + ) p + p + p >; ( ) min M (f) ( + ) ; M (f) ( + ) ( ) ; 9 M 3 (f) ( ) + p () (p ( ) + ) p + p ; : (44) In 938, A. Ostrowski [] proved the following importnt ineulity: Theorem Let f : [; ] R e continuous on [; ] nd di erentile on (; ) whose derivtive f : (; ) R is ounded on (; ), i.e., kf k : jf (t)j < +. Then sup t(;) f (t) dt f () " ( ) # ( ) kf k ; (45) for ny [; ]. The constnt 4 is the est possile. 8 4

43 In (45) for + we get f (t) dt + f 4 kf k : (46) We hve proved the following Theorem 3 Let f C ([; ]), with f f (t) dt ( ) 4 +. Then kf k ; (47) where the constnt 4 is the est possile. So we reproved () with only one initil condition. 3 Appliction Ineulities for comple vlued functions de ned on the unit circle were studied etensively y S. rgomir, see [6], [7]. We give here our version for these functions involved in Poly type ineulity, y pplying result of this rticle. Let t [; ] [; ), the unit circle rc A z C : z e it ; t [; ], nd f : A C e continuous function. Clerly here there eist functions u; v : A R continuous, the rel nd the comple prt of f, respectively, such tht f e it u e it + iv e it : (48) So tht f is continuous, i u; v re continuous. Cll g (t) f e it, l (t) u e it, l (t) v e it, t [; ]; so tht g : [; ] C nd l ; l : [; ] R re continuous functions in t. If g hs derivtive with respect to t, then l, l hve lso derivtives with respect to t. In tht cse (i.e. g (t) l (t) + il (t)), which mens f t e it u t e it + iv t e it ; (49) f t (cos t + i sin t) u t (cos t + i sin t) + iv t (cos t + i sin t) : (5) Let us cll cos t, y sin t. Then u t e it u t (cos t + i sin t) u t ( + iy) u t eit ( sin t) + cos 9 43

44 Similrly we nd tht v t e ( sin t) cos t: (5) Since g is continuous on [; ], then R f eit dt eists. Furthermore it holds We hve here tht f e it dt f e it dt u e it dt + i u e it dt + v e it dt jl (t)j dt + We give the following ppliction of Theorem. v e it dt: (53) f e it dt (54) jl (t)j dt: (55) Theorem 4 Let f C (A; C), [; ] [; ); ny p; > : p +,, m []. Assume l ; l C+ ; + nd l ; l C + ;, such tht l (k) () l (k) () l (k) () l (k) (), k ; ; :::; m. Then f e it dt f e it dt 8 >< + l ;[; + ] + l ;[ + min ;] + ; (56) >: ( + ) k l k ( + ) ; L([;]) h +l L([; + ]) + l i 9 L([ + ;]) + p > () (p ( ) + ) p + >; + p 8 >< + l ;[; + ] + l ;[ + min ;] + ; >: ( + ) k l k ( + ) ; L([;]) h +l L([; + ]) + l i L([ + ;]) () (p ( ) + ) p + p + p 9 > >; 44

45 min ( M (l ) ( )+ ( + ) ; M (l ) ( + ) ( ) ; 9 M 3 (l ) ( ) + p () (p ( ) + ) p + p ; + (57) ( min M (l ) ( )+ ( + ) ; M (l ) ( + ) ( ) ; () (p ( M 3 (l ) ) + ) p + p 9 ( ) + p ; ; where M (l i ) s in (4), M (l i ) s in (8) nd M 3 (l i ) s in (9), i ; : Here l ; l cnnot e non-trivil polynomils of degree m. References [] G.A. Anstssiou, Frctionl i erentition Ineulities, Reserch Monogrph, Springer, ew York, 9. [] G.A. Anstssiou, On Right Frctionl Clculus, Chos, Solitons nd Frctls, 4 (9), [3] G.A. Anstssiou, Blnced Cnvti type frctionl Opil ineulities, to pper, J. of Applied Functionl Anlysis, 4. [4] G.A. Anstssiou, Frctionl Poly type integrl ineulity, sumitted, 3. [5] J.A. Cnvti, The Riemnn-Liouville Integrl, ieuw Archief Voor Wiskunde, 5 () (987), [6] S.S. rgomir, Ostrowski s Type Ineulities for Comple Functions e ned on unit Circle with Applictions for Unitry Opertors in Hilert Spces, rticle no. 6, 6 th vol. 3, RGMIA, Res. Rep. Coll., [7] S.S. rgomir, Generlized Trpezoidl Type Ineulities for Comple Functions e ned on Unit Circle with Applictions for Unitry Opertors in Hilert Spces, rticle no. 9, 6th vol. 3, RGMIA, Res. Rep. Coll., [8] A.M.A. El-Syed, M. Ger, On the nite Cputo nd nite Riesz derivtives, Electronic Journl of Theoreticl Physics, Vol. 3, o. (6),

46 [9] G.S. Frederico,.F.M. Torres, Frctionl Optiml Control in the sense of Cputo nd the frctionl oether s theorem, Interntionl Mthemticl Forum, Vol. 3, o. (8), [] R. Goren o, F. Minrdi, Essentils of Frctionl Clculus,, Mphysto Center, Minrdiotes/fmk.ps. [] A. Ostrowski, Üer die Asolutweichung einer di erentiren Funcktion von ihrem Integrlmittelwert, Comment. Mth. Helv., (938), 6-7. [] G. Poly, Ein mittelwertstz für Funktionen mehrerer Veränderlichen, Tohoku Mth. J. 9 (9), -3. [3] G. Poly nd G. Szegö, Aufgen und Lehrsätze us der Anlysis, Volume I, Springer-Verlg, Berlin, 95. (Germn) [4] G. Poly nd G. Szegö, Prolems nd Theorems in Anlysis, Volume I, Clssics in Mthemtics, Springer-Verlg, Berlin, 97. [5] G. Poly nd G Szegö, Prolems nd Theorems in Anlysis, Volume I, Chinese Edition, 984. [6] Feng Qi, Poly type integrl ineulities: origin, vrints, proofs, re nements, generliztions, euivlences, nd pplictions, rticle no., 6th vol. 3, RGMIA, Res. Rep. Coll., [7] S.G. Smko, A.A. Kils, O.I. Mrichev, Frctionl Integrls nd erivtives, Theory nd Applictions, (Gordon nd Brech, Amsterdm, 993) [English trnsltion from the Russin, Integrls nd erivtives of Frctionl Order nd Some of Their Applictions (uk i Tekhnik, Minsk, 987)]. 46

47 Multivrite Generlised Frctionl Poly type integrl ineulities George A. Anstssiou eprtment of Mthemticl Sciences University of Memphis Memphis, T 385, U.S.A. gnstss@memphis.edu Astrct Here we present set of multivrite generlised frctionl Poly type integrl ineulities on the ll nd shell. We tret oth the rdil nd non-rdil cses in ll possiilities. We give lso estimtes for the relted verges. AMS Suject Clssi ction : 6A33, 6, 65. Keywords nd Phrses: multivrite Poly integrl ineulity, rdil generlised frctionl derivtive, ll, shell. Introduction We mention the following fmous Poly s integrl ineulity, see [9], [, p, 6], [] nd [, p. 83]. Theorem Let f () e di erentile nd not identiclly constnt on [; ] with f () f (). Then the eists t lest one point [; ] such tht jf ()j > 4 ( ) f () d: () In [3], Feng Qi presents the following very interesting Poly type integrl ineulity (), which generlizes (). Theorem Let f () e di erentile nd not identiclly constnt on [; ] with f () f () nd M jf ()j. Then sup [;] f () d ( ) M; () 4 47

48 where ( ) 4 in () is the est constnt. The ove motivte the current pper. In this rticle we present multivrite frctionl Poly type integrl ineulities in vrious cses, similr to (). For the lst we need the following frctionl clculus ckground. Let >, m [] ([] is the integrl prt), m; < < ; f C ([; ]), [; ] R, [; ]. The gmm function is given y () R e t t dt. We de ne the left Riemnn-Liouville integrl J + f () (). We de ne the suspce C + ([:]) of C m ([; ]): C + ([; ]) ( t) f (t) dt; (3) n o f C m ([; ]) : J + f (m) C ([; ]) : (4) For f C+ ([; ]), we de ne the left generlized -frctionl derivtive of f over [; ] s +f : J + f (m) ; (5) see [], p. 4. Cnvti rst in [5], introduced the ove over [; ]. otice tht +f C ([; ]) : We need the following left frctionl Tylor s formul, see [], pp. 8-, nd in [5] the sme over [; ] tht ppered rst. Theorem 3 Let f C + ([; ]). (i) If ; then f () f ()+f () ( )+f () ( ) +:::+f (m ) () ( )m (m ) (6) + () (ii) If < < ; we hve f () () ( t) +f (t) dt; ll [; ] : ( t) +f (t) dt; ll [; ] : (7) Furthermore we need: Let gin >, m [], m, f C ([; ]), cll the right Riemnn- Liouville frctionl integrl opertor y J f () : () (t ) f (t) dt; (8) 48

49 [; ], see lso [], [6], [7], [8], [5]. e ne the suspce of functions C ([; ]) : n f C m ([; ]) : J o f (m) C ([; ]) : (9) e ne the right generlized -frctionl derivtive of f over [; ] s f ( ) m J f (m), () see []. We set f f. otice tht f C ([; ]) : From [], we need the following right Tylor frctionl formul. Theorem 4 Let f C (i) If, we get ([; ]), >, m : []. Then f () mx k f (k) () k (ii) If < <, we get f () J f () () We need from [3] ( ) k + J f () ; ll [; ] : () (t ) f (t) dt; ll [; ] : () e nition 5 Let f C ([; ]), [; ], >, m : []. Assume tht f C + ; nd f C+ ; +. We de ne the lnced Cnvti type frctionl derivtive y f () : f (), for + ; +f () ; for < + : (3) In [4] we proved the following frctionl Poly type integrl ineulity without ny oundry conditions. ; + nd Theorem 6 Let < <, f C ([; ]). Assume f C + f C + ;. Set n M (f) m + f ;[; + ] ; f o ;[ + ;] : (4) Then f () d jf ()j d (5) + f ;[; + ] + f ;[ + ;] + M (f) ( )+ ( + ) ( + ) : (6) 3 49

50 Ineulities (5), (6) re shrp, nmely they re ttined y ( ) ; ; + f () ( ), + ; ; < < : (7) Clerly here non zero constnt functions f re ecluded. The lst result lso motivtes this work. Remrk 7 (see [4]) When, thus m [], nd y ssuming tht f (k) () f (k) (), k ; ; :::; m, we cn prove the sme sttements (5), (6), (7) s in Theorem 6. If we set there we derive ectly Theorem. So we hve generlized Theorem. Agin here f (m) cnnot e constnt di erent thn zero, euivlently, f cnnot e non-trivil polynomil of degree m. We present Poly type integrl ineulities on the ll nd shell. Min Results We need Remrk 8 We de ne the ll B (; R) f R : jj < Rg R,, R >, nd the sphere S : f R : jj g; where jj is the Eucliden norm. Let d e the element of surfce mesure on S nd let d : S For R fg we cn write uniuely r, where r jj > nd r S, jj. ote tht R B(;R) dy R is the Leesgue mesure of the ll. Following [4, pp. 49-5, eercise 6] nd [6, pp , Theorem 5..] we cn write F : B (; R) R Leesgue integrle function tht R F () d F (r) r dr d; (8) B(;R) S we use this formul lot. Initilly the function f : B (; R) R is rdil; tht is, there eists function g such tht f () g (r), where r jj, r [; R], 8 B (; R), >, m []. Here we ssume tht g C ([; R]) with g C+ ; R nd 4 5

51 g CR R ; R, such tht g (k) () g (k) (R), k ; ; :::; m of < < then the lst oundry conditions re void. By ssumption here nd Theorem 3 we hve. In cse g (s) () s (s t) +g (t) dt; (9) ll s ; R ; lso it holds, y ssumption nd Theorem 4, tht g (s) () R s (t s) R g (t) dt; () ll s R ; R : By (9) we get jg (s)j + g ;[; R for ny s ; R : Tht is for ny s ; R : Similrly we otin R ] jg (s)j g ;[ R ;R] () for ny s R ; R : I.e. it holds for ny s R ; R : et we oserve tht R s () () jg (s)j () jg (s)j B(;R) s s R s (s t) + g (t) dt (s t) dt + g ;[; R (t s) dt ( + ) ] + g ;[; R ( + ) (t s) R g (t) dt ] s ; () s ; () R g ;[ R ;R] (R s) ; (3) ( + ) R g ;[ R ;R] (R s) ; (4) ( + ) f (y) dy B(;R) jf (y)j dy (8) 5 5

52 R S R jg (s)j s R ds d jg (s)j s ( R jg (s)j s ds + R " X k ( + ) g ;[ R ;R] ( + ) : k g ;[ R ;R] R R R R R R ds jg (s)j s jg (s)j s ( +g ;[; R ] (R s) s 8 < + g ;[; R ( + ) k R R " X k We hve proved tht R ( + ) : + ] R R ds S d (5) ds ) s + (y () nd (4)) ds+ + R ds + R + R (R s) (+) s 8 < + g ;[; R ( + ) k R ( + ) ( k) k ( + + k) 8 R + < + g ;[; R ] :( + ) ( + ) + g ;[ R ;R] ( ) B(;R) R + + " X k f (y) dy ( ) R g ;[ R ;R] ] ) g ;[ R ;R] (6) k R ds#) + R + (7) #) + k R #) : (8) k ( + + k) B(;R) jf (y)j dy 8 < + g ;[; R ] :( + ) ( + ) + (9) " X k #) : k ( + + k) 6 5

53 Consider now We hve s in [4] tht nd Similrly s in [] we get nd Tht is Conseuently we nd tht s, s ; R g (s) ; (R s) ; s R ; R ; > : +s ( + ), ll s + s ;[; R ] ( + ) : R (R s) ( + ) ; ll s (3) ; R ; (3) R ; R ; (3) R (R s) ;[ R ;R] ( + ) : (33) +g ;[; R ] R g ;[ R ;R] ( + ) : (34) R.H.S. (9) ( ) ( + ) R + + " X k ( + ) + k ( + + k) #) : (35) Let f : B (; R) R e rdil such tht f () g (s), s jj, s [; R], 8 B (; R): Then we hve L.H.S. (9) f (y) dy (8) ( R R g (s) s ( R s + ds + + ( + ) + R R B(;R) ds R R (R s) s ds (R s) s R + + ( + ) + 7 ) (36) R + R ) ds 53

54 X k k X k k R R k ( ) ( + ) R " X k R (R s) (+) s R + + ( + ) + k ( + ) ( k) ( + + k) R + + ( + ) + k ( + + k) proving (9) shrp, infct it is ttined. We hve proved the following min result. #) k R ds) (37) ) + k R (35) R.H.S. (9), (38) Theorem 9 Let f : B (; R) R e rdil; tht is, there eists function g such tht f () g (s), s jj, s [; R], 8 B (; R), >. Assume tht g C ([; R]), with g C+ ; R nd g C R R ; R, such tht g (k) () g (k) (R), k ; ; :::; m, m []. When < < the lst oundry conditions re void. Then f (y) dy jf (y)j dy B(;R) R + + ( ) R g ;[ R ;R] B(;R) 8 < + g ;[; R ] :( + ) ( + ) + (39) " X k #) : k ( + + k) Ineulities (39) re shrp, nmely they re ttined y rdil function f such tht f () g (s), ll s [; R] ; where We continue with s, s ; R g (s) ; (R s) ; s R ; R : (4) 8 54

55 Remrk (Continution of Remrk 8) Here we ssume tht. By (9) we get jg (s)j s () + g L([; R ]) ; (4) ll s ; R : Also, y (), we otin ll s R ; R : Hence s in (5) we get B(;R) (R s) jg (s)j () R g L([ R ;R]) ; (4) jf (y)j dy ( R jg (s)j s ds + R R R R R jg (s)j s jg (s)j s ds ) ds (43) (y (4), (4)) ( R s + ds +g () L([; R ]) + (44) (R s) s ds R g ) L([ R ;R]) (cting the sme s efore, see (6)-(8)) 8 R + < + g L([; R ]) :( + ) () + We hve proved + ( ) R g " X L([ R ;R]) R + + k " X ( ) k gk L([ R ;R]) #) (3) (45) k ( + k) ( k gk L([; R ]) ( + ) () + k #) : (46) k ( + k) 9 55

56 Theorem Here ll terms nd ssumptions s in Theorem 9, however with. Then 8 jf (y)j dy R + < + g L([; R ]) :( + ) () + B(;R) We continue with + ( ) R g " X L([ R ;R]) k #) : (47) k ( + k) Remrk (Also continution of Remrk 8) Let here p; > : p +, with > : By (9) we hve jg (s)j () s (s t) + g (t) dt s (s t) p( ) p s dt () () (p ( ) + ) p s ll s ; R : Similrly y () we otin + p +g (t) dt +g L([; R ]) ; (48) jg (s)j () R s (t s) R g (t) dt () R s (t s) p( ) dt p R s R g (t) dt ll s R ; R : Hence it holds () (R s) + p () (p ( ) + ) p B(;R) ( R jg (s)j s ds + (p ( ) + ) p ( R R g L([ R ;R]) ; (49) jf (y)j dy (5) R R jg (s)j s ds ) (y (48), (49)) s + + p ds + g L([; R ]) + (5) 56

57 () () " X k X 4 () k ( ) R R k (R s) + p s ds R g ) L([ R ;R]) (p ( ) + ) p k R (p ( ) + ) p ( ) k ( k ) () R R 8 < R : + (+ ) (R s) (+ p ) s R g L([ R ;R]) o 8 < : k R (p ( ) + ) p X 4 k k + R (+ ) + g L([; R ]) + k R ds# (+ ) +g L([; R ]) + + p ( k) + p + k R g L([ R ;R]) o 8 < : + R (+ ) 3 + R p + k 5 (5) (+ ) + g L([; R ]) + ( ) + R + p p + k R g L([ R ;R]) ; R + (p ( ) + ) p + + p X 4 k k We hve proved the following (5) 8 < +g L([; R ]) + : p + k R g L([ R ;R]) ; : (53) Theorem 3 Let p; > : p +, >. All other terms nd ssumptions s in Theorem 9. Then jf (y)j dy B(;R) 57

58 ( ) () R + (p ( ) + ) p + + p X 4 k k Comining Theorems 9,, 3 we derive 8 < +g L([; R ]) + : p + k R g L([ R ;R]) ; : (54) Theorem 4 Let ny p; > : p + nd. And let f : B (; R) R e rdil; tht is, there eists function g such tht f () g (s), s jj, s [; R], 8 B (; R). Assume tht g C ([; R]), with g C+ ; R nd g CR R ; R, such tht g (k) () g (k) (R), k ; ; :::; m, m []. When < < the lst oundry conditions re void. Then f (y) dy jf (y)j dy ( ) 8 < min : B(;R) R + + ( ) R g ;[ R ;R] () + B(;R) 8 < + g ;[; R ] :( + ) ( + ) + " X k #) ; k ( + + k) 8 R + < + g L([; R ]) :( + ) () + ( ) R g " X L([ R ;R]) R + (p ( ) + ) p + + p X 4 k k #) ; k ( + k) k 8 < +g L([; R ]) + : p + k R g L([ R ;R]) ;; : (55) ote 5 It holds V ol (B (; R)) R : (56) The corresponding estimte on the verge follows 58

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE RGMIA Reserch Report Collection, Vol., No., 998 http://sci.vut.edu.u/ rgmi SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE S.S. DRAGOMIR Astrct. Some clssicl nd new integrl inequlities of Grüss type re presented.

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

Improvement of Grüss and Ostrowski Type Inequalities

Improvement of Grüss and Ostrowski Type Inequalities Filomt 9:9 (05), 07 035 DOI 098/FIL50907A Pulished y Fculty of Sciences nd Mthemtics, University of Niš, Seri Aville t: http://wwwpmfnicrs/filomt Improvement of Grüss nd Ostrowski Type Inequlities An Mri

More information

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17 (2009, 3 12 RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROIMATION OF CSISZAR S f DIVERGENCE GEORGE A. ANASTASSIOU Abstrct. Here re estblished vrious tight probbilistic

More information

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A TRAPEZOIDAL QUADRATURE RULE WITH APPLICATIONS

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A TRAPEZOIDAL QUADRATURE RULE WITH APPLICATIONS APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A TRAPEZOIDAL QUADRATURE RULE WITH APPLICATIONS S.S. DRAGOMIR Astrct. In this pper we provide shrp ounds for the error in pproximting the Riemnn-Stieltjes

More information

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei Fculty of Sciences nd Mthemtics University of Niš Seri Aville t: http://www.pmf.ni.c.rs/filomt Filomt 25:4 20) 53 63 DOI: 0.2298/FIL0453M INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications Applied Mthemticl Sciences, Vol. 8, 04, no. 38, 889-90 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.988/ms.04.4 A Generlized Inequlity of Ostrowski Type for Twice Differentile Bounded Mppings nd Applictions

More information

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey On New Ineulities of Hermite-Hdmrd-Fejer Type for Hrmoniclly Qusi-Convex Functions Vi Frctionl Integrls Mehmet Kunt * nd İmdt İşcn Deprtment

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t TAMKANG JOURNAL OF MATHEMATICS Volume 33, Numer, Summer 00 ON THE PERTURBED TRAPEZOID FORMULA N. S. BARNETT AND S. S. DRAGOMIR Astrct. Some inequlities relted to the pertured trpezoid formul re given.

More information

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER S. S. DRAGOMIR ;2 Astrct. In this pper we otin severl new logrithmic inequlities for two numers ; minly

More information

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On New Inequalities via Riemann-Liouville Fractional Integration Abstrct nd Applied Anlysis Volume 202, Article ID 428983, 0 pges doi:0.55/202/428983 Reserch Article On New Inequlities vi Riemnn-Liouville Frctionl Integrtion Mehmet Zeki Sriky nd Hsn Ogunmez 2 Deprtment

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES

SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES R. P. AGARWAL, D. O REGAN 2 AND S. H. SAKER 3 Abstrct. In this pper, we will prove severl new ineulities of Hrdy type with

More information

Integral inequalities

Integral inequalities Integrl inequlities Constntin P. Niculescu Bsic remrk: If f : [; ]! R is (Riemnn) integrle nd nonnegtive, then f(t)dt : Equlity occurs if nd only if f = lmost everywhere (.e.) When f is continuous, f =.e.

More information

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral DOI 763/s4956-6-4- Moroccn J Pure nd Appl AnlMJPAA) Volume ), 6, Pges 34 46 ISSN: 35-87 RESEARCH ARTICLE Generlized Hermite-Hdmrd-Fejer type inequlities for GA-conve functions vi Frctionl integrl I mdt

More information

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications Filomt 30:3 06, 360 36 DOI 0.9/FIL6360Q Pulished y Fculty of Sciences nd Mthemtics, University of Niš, Seri Aville t: http://www.pmf.ni.c.rs/filomt A Compnion of Ostrowski Type Integrl Inequlity Using

More information

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE Journl of Alied Mthemtics nd Comuttionl Mechnics 6, 5(4), - wwwmcmczl -ISSN 99-9965 DOI: 75/jmcm64 e-issn 353-588 GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES

More information

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS MOHAMMAD ALOMARI A MASLINA DARUS A AND SEVER S DRAGOMIR B Abstrct In terms of the first derivtive some ineulities of Simpson

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI A, M. DARUS A, AND S.S. DRAGOMIR B Astrct. In this er, some ineulities of Hermite-Hdmrd

More information

arxiv: v1 [math.ca] 28 Jan 2013

arxiv: v1 [math.ca] 28 Jan 2013 ON NEW APPROACH HADAMARD-TYPE INEQUALITIES FOR s-geometrically CONVEX FUNCTIONS rxiv:3.9v [mth.ca 8 Jn 3 MEVLÜT TUNÇ AND İBRAHİM KARABAYIR Astrct. In this pper we chieve some new Hdmrd type ineulities

More information

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES P. CERONE Abstrct. Explicit bounds re obtined for the perturbed or corrected trpezoidl nd midpoint rules in terms of the Lebesque norms of the second derivtive

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NS BARNETT P CERONE SS DRAGOMIR AND J ROUMELIOTIS Abstrct Some ineulities for the dispersion of rndom

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS Miskolc Mthemticl Notes HU ISSN 787-5 Vol. 3 (), No., pp. 33 8 ON OMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE ONVEX WITH APPLIATIONS MOHAMMAD W. ALOMARI, M.

More information

Improvement of Ostrowski Integral Type Inequalities with Application

Improvement of Ostrowski Integral Type Inequalities with Application Filomt 30:6 06), 56 DOI 098/FIL606Q Published by Fculty of Sciences nd Mthemtics, University of Niš, Serbi Avilble t: http://wwwpmfnicrs/filomt Improvement of Ostrowski Integrl Type Ineulities with Appliction

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1 Generl Mthemtics Vol. 6, No. (28), 7 97 Ostrowski Grüss Čebyšev type inequlities for functions whose modulus of second derivtives re convex Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Abstrct In this pper,

More information

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA ttp//sci.vut.edu.u/rgmi/reports.tml SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIABLE MAPPINGS AND APPLICATIONS P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS Astrct. Some generliztions of te Ostrowski

More information

ON THE WEIGHTED OSTROWSKI INEQUALITY

ON THE WEIGHTED OSTROWSKI INEQUALITY ON THE WEIGHTED OSTROWSKI INEQUALITY N.S. BARNETT AND S.S. DRAGOMIR School of Computer Science nd Mthemtics Victori University, PO Bo 14428 Melbourne City, VIC 8001, Austrli. EMil: {neil.brnett, sever.drgomir}@vu.edu.u

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS S.S. DRAGOMIR AND A. SOFO Abstrct. In this pper by utilising result given by Fink we obtin some new results relting to the trpezoidl inequlity

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

Section 3.2 Maximum Principle and Uniqueness

Section 3.2 Maximum Principle and Uniqueness Section 3. Mximum Principle nd Uniqueness Let u (x; y) e smooth solution in. Then the mximum vlue exists nd is nite. (x ; y ) ; i.e., M mx fu (x; y) j (x; y) in g Furthermore, this vlue cn e otined y point

More information

For a continuous function f : [a; b]! R we wish to define the Riemann integral

For a continuous function f : [a; b]! R we wish to define the Riemann integral Supplementry Notes for MM509 Topology II 2. The Riemnn Integrl Andrew Swnn For continuous function f : [; b]! R we wish to define the Riemnn integrl R b f (x) dx nd estblish some of its properties. This

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics http://jipmvueduu/ Volume, Issue, Article, 00 SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NS BARNETT,

More information

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES Volume 1 29, Issue 3, Article 86, 5 pp. ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES SOUMIA BELARBI AND ZOUBIR DAHMANI DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MOSTAGANEM soumi-mth@hotmil.fr zzdhmni@yhoo.fr

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARI- ABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NEIL S. BARNETT, PIETRO CERONE, SEVER S. DRAGOMIR

More information

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX Journl of Mthemticl Ineulities Volume 1, Number 3 18, 655 664 doi:1.7153/jmi-18-1-5 NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX SHAHID

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES M JIBRIL SHAHAB SAHIR Accepted Mnuscript Version This is the unedited version of the rticle s it ppered upon cceptnce by the journl. A finl edited

More information

Hermite-Hadamard type inequalities for harmonically convex functions

Hermite-Hadamard type inequalities for harmonically convex functions Hcettepe Journl o Mthemtics nd Sttistics Volume 43 6 4 935 94 Hermite-Hdmrd type ineulities or hrmoniclly convex unctions İmdt İşcn Abstrct The uthor introduces the concept o hrmoniclly convex unctions

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES Volume 8 (2007), Issue 4, Article 93, 13 pp. ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES A. ČIVLJAK, LJ. DEDIĆ, AND M. MATIĆ AMERICAN COLLEGE OF MANAGEMENT AND TECHNOLOGY ROCHESTER INSTITUTE OF TECHNOLOGY

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions Filomt 3:9 7 5945 5953 htts://doi.org/.98/fil79945i Pulished y Fculty of Sciences nd Mthemtics University of Niš Seri Aville t: htt://www.mf.ni.c.rs/filomt Hermite-Hdmrd nd Simson-like Tye Ineulities for

More information

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations Numericl Methods for Prtil Differentil Equtions Eric de Sturler Deprtment of Computer Science University of Illinois t Urn-Chmpign 11/19/003 1 00 Eric de Sturler Why More Generl Spces We now provide more

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex Stud. Univ. Beş-Bolyi Mth. 6005, No. 4, 57 534 Some Hermite-Hdmrd type inequlities for functions whose exponentils re convex Silvestru Sever Drgomir nd In Gomm Astrct. Some inequlities of Hermite-Hdmrd

More information

NON-NEWTONIAN IMPROPER INTEGRALS

NON-NEWTONIAN IMPROPER INTEGRALS Journl of Science nd Arts Yer 8, No. (4), pp. 49-74, 08 ORIGINAL PAPER NON-NEWTONIAN IMPROPER INTEGRALS MURAT ERDOGAN, CENAP DUYAR Mnuscript received:.09.07; Accepted pper: 4..07; Pulished online: 30.03.08.

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder Divulgciones Mtemátics Vol. 11 No. 2(2003), pp. 115 120 Improvements of some Integrl Inequlities of H. Guchmn involving Tylor s Reminder Mejor de lguns Desigulddes Integrles de H. Guchmn que involucrn

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that Preprints (www.preprints.org) NOT PEER-REVIEWED Posted 6 June 8 doi.944/preprints86.4.v WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, µcebyšev AND LUPAŞ TYPE WITH APPLICATIONS SILVESTRU SEVER DRAGOMIR Abstrct.

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1) TAMKANG JOURNAL OF MATHEMATICS Volume 41, Number 4, 353-359, Winter 1 NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI, M. DARUS

More information

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES S. S. DRAGOMIR, R. P. AGARWAL, AND N. S. BARNETT Abstrct. In this survey pper we present the nturl ppliction of

More information

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN Communictions inmthemticlanlysis Volume 6, Number, pp. 33 41 009) ISSN 1938-9787 www.commun-mth-nl.org A SHARP GRÜSS TYPE INEQUALITY ON TIME SCALES AND APPLICATION TO THE SHARP OSTROWSKI-GRÜSS INEQUALITY

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS S. S. DRAGOMIR Abstrct. Some inequlities for two inner products h i nd h i which generte the equivlent norms kk nd kk with pplictions

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL 28 Nottion: N {, 2, 3,...}. (Tht is, N.. Let (X, M be mesurble spce with σ-finite positive mesure µ. Prove tht there is finite positive mesure ν on (X, M such

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave Applied Mthemticl Sciences Vol. 9 05 no. 5-36 HIKARI Ltd www.m-hikri.com http://d.doi.org/0.988/ms.05.9 Hermite-Hdmrd Type Ineulities for the Functions whose Second Derivtives in Absolute Vlue re Conve

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

A short introduction to local fractional complex analysis

A short introduction to local fractional complex analysis A short introduction to locl rctionl complex nlysis Yng Xio-Jun Deprtment o Mthemtics Mechnics, hin University o Mining Technology, Xuhou mpus, Xuhou, Jingsu, 228, P R dyngxiojun@63com This pper presents

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

FRACTIONAL INTEGRALS AND

FRACTIONAL INTEGRALS AND Applicble Anlysis nd Discrete Mthemtics, 27, 3 323. Avilble electroniclly t http://pefmth.etf.bg.c.yu Presented t the conference: Topics in Mthemticl Anlysis nd Grph Theory, Belgrde, September 4, 26. FRACTONAL

More information

7. Indefinite Integrals

7. Indefinite Integrals 7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term An. Ştiinţ. Univ. Al. I. Cuz Işi. Mt. (N.S. Tomul LXIII, 07, f. A unified generliztion of perturbed mid-point nd trpezoid inequlities nd symptotic expressions for its error term Wenjun Liu Received: 7.XI.0

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Eletronis Tehnologil Edutionl Institute of Lmi, Greee EMil: {kehrin,

More information

New general integral inequalities for quasiconvex functions

New general integral inequalities for quasiconvex functions NTMSCI 6, No 1, 1-7 18 1 New Trends in Mthemticl Sciences http://dxdoiorg/185/ntmsci1739 New generl integrl ineulities for usiconvex functions Cetin Yildiz Atturk University, K K Eduction Fculty, Deprtment

More information

METHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS

METHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS Journl of Young Scientist Volume III 5 ISSN 44-8; ISSN CD-ROM 44-9; ISSN Online 44-5; ISSN-L 44 8 METHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS An ALEXANDRU Scientific Coordintor: Assist

More information

Lecture 3: Curves in Calculus. Table of contents

Lecture 3: Curves in Calculus. Table of contents Mth 348 Fll 7 Lecture 3: Curves in Clculus Disclimer. As we hve textook, this lecture note is for guidnce nd supplement only. It should not e relied on when prepring for exms. In this lecture we set up

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13 Revist Colombin de Mtemátics Volumen 4 7, págins 3 Ostrowski, Grüss, Čebyšev type inequlities for functions whose second derivtives belong to Lp,b nd whose modulus of second derivtives re convex Arif Rfiq

More information

Topics Covered AP Calculus AB

Topics Covered AP Calculus AB Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry dierentil eqution (ODE) du f(t) dt with initil condition u() : Just

More information

Optimal Network Design with End-to-End Service Requirements

Optimal Network Design with End-to-End Service Requirements ONLINE SUPPLEMENT for Optiml Networ Design with End-to-End Service Reuirements Anntrm Blrishnn University of Tes t Austin, Austin, TX Gng Li Bentley University, Wlthm, MA Prsh Mirchndni University of Pittsurgh,

More information

( ) + ( ) = ( ), [, ]

( ) + ( ) = ( ), [, ] Bs, E., et l.: An Appliction of Comprison Criteri to Frctionl Spectrl Prolem... THERMAL SCIENCE: Yer 08, Vol., Suppl., pp. S79-S85 S79 AN APPLICATION OF COMPARISON CRITERIA TO FRACTIONAL SPECTRAL PROBLEM

More information

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 29, Article ID 28347, 3 pges doi:.55/29/28347 Reserch Article On The Hdmrd s Inequlity for Log-Convex Functions on the Coordintes

More information

An optimal 3-point quadrature formula of closed type and error bounds

An optimal 3-point quadrature formula of closed type and error bounds Revist Colombin de Mtemátics Volumen 8), págins 9- An optiml 3-point qudrture formul of closed type nd error bounds Un fórmul de cudrtur óptim de 3 puntos de tipo cerrdo y error de fronter Nend Ujević,

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information