UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

Size: px
Start display at page:

Download "UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE"

Transcription

1 UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence (f n ) converges pointwise on E if there is function f : E Y such tht f n (p) f(p) for every p E. Clerly, such function f is unique nd it is clled the pointwise limit of (f n ) on E. We then write f n f on E. For simplicity, we shll ssume Y = R with the usul metric. Let f n f on E. We sk the following questions: (i) If ech f n is bounded on E, must f be bounded on E? If so, must sup p E f n (p) sup p E f(p)? (ii) If E is metric spce nd ech f n is continuous on E, must f be continuous on E? (iii) If E is n intervl in R nd ech f n is differentible on E, must f be differentible on E? If so, must f n f on E? (iv) If E = [, b] nd ech f n is Riemnn integrble on E, must f be Riemnn integrble on E? If so, must f n(x)dx f(x)dx? These questions involve interchnge of two processes (one of which is tking the limit s n ) s shown below. (i) lim sup f n (p) = sup lim f n(p). n p E p E n (ii) For p E nd p k p in E, lim lim f n(p k ) = lim lim f n(p k ). k n n k d (iii) lim n dx (f n) = d ( ) lim dx f n. n (iv) lim n f n (x)dx = ( lim f n(x) n ) dx. Answers to these questions re ll negtive. Exmples 1.1. (i) Let E := (0, 1] nd define f n : E R by { 0 if 0 < x 1/n, f n (x) := 1/x if 1/n x 1. Then f n (x) n for ll x E, f n f on E, where f(x) := 1/x. Thus ech f n is bounded on E, but f is not bounded on E. (ii) Let E := [0, 1] nd define f n : E R by f n (x) := 1/(nx + 1). Then ech f n is continuous on E, f n f on E, where f(0) := 1 nd f(x) := 0 if 0 < x 1. Clerly, f is not continuous on E. (iii) () Let E := ( 1, 1) nd define f n : E R by f n (x) := 1/(nx 2 + 1). Then ech f n is differentible on E nd f n f on ( 1, 1), 1

2 2 MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE (iv) where f(0) := 1 nd f(x) := 0 if 0 < x < 1. Clerly, f is not differentible on E. (b) Let E := R nd define f n : R R by f n (x) := (sin nx)/n. Then ech f n is differentible, f n f on R, where f 0. But f n (x) = cos nx for x R, nd (f n ) does not converge pointwise on R. For exmple, (f n (π)) is not convergent sequence. (c) Let E := ( 1, 1) nd define f n (x) := { [2 (1 + x) n ]/n if 1 < x < 0, (1 x) n /n if 0 x < 1. Then ech f n is differentible on E. (In prticulr, we hve f n (0) = 1 by L Hôpitl s Rule.) Also, f n f on ( 1, 1), where f 0. Also, { f n(x) (1 + x) n 1 if 1 < x < 0, = (1 x) n 1 if 0 x < 1. Further, f n g on ( 1, 1), where g(0) := 1 nd g(x) := 0 for 0 < x < 1. Clerly, f g. () Let E := [0, 1] nd define f n : [0, 1] R by { 1 if x = 0, 1/n!, 2/n!,..., n!/n! = 1, f n (x) := 0 otherwise. Then ech f n is Riemnn integrble on [0, 1] since it is discontinuous only t finite number of points. { 1 if x is rtionl, Also, f n f on [0, 1], where f(x) := 0 if x is irrtionl. For if x = p/q with p {0, 1, 2,..., q} N, then for ll n q, we hve n!x {0, 1, 2,...} nd so f n (x) = 1, while if x is n irrtionl number, then f n (x) = 0 for ll n N. We hve seen tht the Dirichlet function f is not Riemnn integrble. (b) Let E := [0, 1], nd define f n : [0, 1] R by f n (x) := n 3 xe nx. Then ech f n is Riemnn integrble nd f n f on [0, 1], where f 0. (Use L Hôpitl s Rule repetedly to show tht lim t t 3 /e st = 0 for ny s R with s > 0.) However, using Integrtion by Prts, we hve 1 0 xe nx dx = 1 n 2 1 n 2 e n 1 ne n for ech n N, so tht 1 0 f n(x)dx = n (n/e n ) (n 2 /e n ). (c) Let E := [0, 1] nd define f n : [0, 1] R by f n (x) := n 2 xe nx. As bove, ech f n is Riemnn integrble, nd f n f on [0, 1], where f 0, nd 1 0 f n(x)dx = 1 (1/e n ) (n/e n ) 1, which is not equl to 1 0 f(x)dx = Uniform Convergence of Sequence In n ttempt to obtin ffirmtive nswers to the questions posed t the beginning of the previous section, we introduce stronger concept of convergence.

3 UNIFORM CONVERGENCE 3 Let E be set nd consider functions f n : E R for n = 1, 2,.... We sy tht the sequence (f n ) of functions converges uniformly on E if there is function f : E R such tht for every ɛ > 0, there is n 0 N stisfying n n 0, p E = f n (p) f(p) < ɛ. Note tht the nturl number n 0 mentioned in the bove definition my depend upon the given sequence (f n ) of functions nd on the given positive number ɛ, but it is independent of p E. Clerly, such function f is unique nd it is clled the uniform limit of (f n ) on E. We then write f n f on E. Obviously, f n f on E = f n f on E, but the converse is not true : Let E := (0, 1] nd define f n (x) := 1/(nx + 1) for 0 < x 1. If f(x) := 0 for x (0, 1], then f n f on (0, 1], but f n f on (0, 1]. To see this, let ɛ := 1/2, note tht there is no n 0 N stisfying 1 f n (x) f(x) = nx + 1 < 1 2 for ll n n 0 nd for ll x (0, 1], since 1/(nx + 1) = 1/2 when x = 1/n, n N. A sequence (f n ) of rel-vlued functions defined on set E is sid to be uniformly Cuchy on E if for every ɛ > 0, there is n 0 N stisfying m, n n 0, p E = f m (p) f n (p) < ɛ. Proposition 2.1. (Cuchy Criterion for Uniform Convergence of Sequence) Let (f n ) be sequence of rel-vlued functions defined on set E. Then (f n ) is uniformly convergent on E if nd only if (f n ) is uniformly Cuchy on E. Proof. = ) Let f n f. For ll m, n N nd p E, we hve f m (p) f n (p) f m (p) f(p) + f(p) f n (p). =) For ech p E, (f n (p)) is Cuchy sequence in R, nd so it converges to rel number which we denote by f(p). Let ɛ > 0. There is n 0 N stisfying m, n n 0, p E = f m (p) f n (p) < ɛ. For ny m n 0 nd p E, letting n, we hve f m (p) f(p) ɛ. We hve the following useful test for checking the uniform convergence of (f n ) when its pointwise limit is known. Proposition 2.2. (Test for Uniform Convergence of Sequence) Let f n nd f be rel-vlued functions defined on set E. If f n f on E, nd if there is sequence ( n ) of rel numbers such tht n 0 nd f n (p) f(p) n for ll p E, then f n f on E. Proof. Let ɛ > 0. Since n 0, there is n 0 N such tht n n 0 = n < ɛ, nd so f n (p) f(p) < ɛ for ll p E. Exmple 2.3. Let 0 < r < 1 nd f n (x) := x n for x [ r, r]. Thenf n (x) 0 for ech x [ r, r]. Since r n 0 nd f n (x) 0 r n for ll x [ r, r], (f n ) is uniformly convergent on [ r, r]. Let us now pose the four questions stted in the lst section with convergence replced by uniform convergence. We shll nswer them one by one, but not necessrily in the sme order.

4 4 MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE Uniform Convergence nd Boundedness. Proposition 2.4. Let f n nd f be rel-vlued functions defined on set E. If f n f on E nd ech f n is bounded on E, then f bounded on E. Proof. There is n 0 N such tht n n 0, p E = f n (p) f(p) < 1. Also, since f n0 is bounded on E, there is α 0 such tht p E = f n0 (p) α 0. Hence p E = f(p) f(p) f n0 (p) + f n0 (p) < 1 + α 0. The converse of the bove result is not true, tht is, ech f n s well s f bounded on E nd f n f f n f on E. For exmple, let E := (0, 1], f n (x) := 1/(nx + 1) nd f 0. Given set E, let B(E) denote the set of ll rel-vlued bounded functions defined on E. For f, g in B(E), define d(f, g) := sup{ f(p) g(p) : p E}. Then it is esy to see tht d is metric on B(E), known s the sup-metric on B(E). Also, by Proposition 2.2, for f n nd f in B(E), we hve f n f on E if nd only if d(f n, f) 0, tht is, (f n ) converges to f in the sup-metric on B(E). Similrly, (f n ) is uniformly Cuchy on E if nd only if d(f n, f m ) 0 s n, m, tht is, (f n ) is Cuchy sequence in the sup-metric on B(E). Thus Propositions 2.1 nd 2.4 show tht B(E) is complete metric spce. Also, under the hypotheses of Proposition 2.4, we hve sup p E f n (p) sup p E nd so, sup p E f n (p) sup p E f(p). Uniform Convergence nd Integrtion. f(p) d(f n, f) 0, Proposition 2.5. Let (f n ) be sequence of rel-vlued functions defined on [, b]. If f n f on [, b] nd ech f n is Riemnn integrble on [, b], then f is Riemnn integrble on [, b] nd f n(x)dx f(x)dx. Proof. Since f n f nd ech f n is bounded, we see tht f is bounded on [, b] by Proposition 2.4. For n N, let α n := d(f n, f), where d denotes the sup-metric on B([, b]). For ech n N nd x [, b], we hve f n (x) f(x) α n, tht is, f n (x) α n f(x) f n (x) + α n, nd so L(f n ) α n (b ) L(f) U(f) U(f n ) + α n (b ). But since f n is Riemnn integrble, we hve L(f n ) = U(f n ), nd hence 0 U(f) L(f) 2α n (b ) 0 s n. Thus L(f) = U(f), tht is, f is Riemnn integrble on [, b]. Also, tht is, f n (x)dx α n (b ) f(x)dx f n (x)dx + α n (b ), f n(x)dx f(x)dx αn (b ) 0 s n. The converse of the bove result is not true, tht is, ech f n s well s f Riemnn integrble on [, b], f n f on [, b] nd f n(x)dx f(x)dx f n f. For exmple, if f n (x) := 1/(nx + 1) for x [0, 1],

5 0 UNIFORM CONVERGENCE 5 f(0) := 1, f(x) := 0 for x (0, 1], then f n f on [0, 1], but f is integrble nd 1 ln(nx + 1) f n (x)dx = 1 ln(1 + n) 1 = 0 = f(x)dx. n 0 n Uniform Convergence nd Continuity. Proposition 2.6. Let (f n ) be sequence of rel-vlued functions defined on metric spce E. If f n f on E nd ech f n is continuous on E, then f is continuous on E. Proof. Let ɛ > 0. There is n 0 N such tht p E = f n0 (p) f(p) < ɛ/3. Consider p 0 E. Since f n0 is continuous t p 0, there is δ > 0 such tht p E, d(p, p 0 ) < δ = f n0 (p) f n0 (p 0 ) < ɛ/3. nd hence f(p) f(p 0 ) f(p) f n0 (p) + f n0 (p) f n0 (p 0 ) + f n0 (p 0 ) f(p 0 ) < ɛ, estblishing the continuity of f t p 0 E. The converse of the bove result is not true, tht is, ech f n s well s f continuous on metric spce E, f n f on E f n f. For exmple, let f n (x) := nxe nx nd f(x) := 0 for x [0, 1]. Since f n (0) = 0 nd for x (0, 1], f n (x) 0 s n by L Hôpitl s Rule, we see tht f n f. But there is no n 0 N such tht n n 0, x [0, 1] = nxe nx 0 < 1, since nxe nx = e 1 for x = 1/n, n N. However, the following prtil converse holds. Proposition 2.7. (Dini s Theorem) Let (f n ) be sequence of rel-vlued functions defined on compct metric spce E. If f n f on E, ech f n nd f re continuous on E, nd (f n ) is monotonic sequence (tht is, f n f n+1 for ll n N, or f n f n+1 for ll n N), then f n f on E. For proof, see Theorem 7.13 of [3]. The following exmples show tht neither the compctness of the metric spce E nor the continuity of the function f cn be dropped from Dini s Theorem: (i) E := (0, 1] nd f n (x) := 1/(nx + 1), x E, (ii) E := [0, 1] nd f n (x) := x n, x E. Uniform Convergence nd Differentition. Answers to the questions regrding differentition posed in the lst section re not ffirmtive even when f n f on n intervl of R. () Let f n (x) := x 2 + (1/n 2 ) nd f(x) := x for x [ 1, 1]. Since f n (x) f(x) = x 2 + (1/n 2 ) x 2 x 2 + (1/n 2 ) x 2 = 1 n for ll n N nd x [ 1, 1], Proposition 2.2 shows tht f n f on [ 1, 1]. Although ech f n is differentible on [ 1, 1], the limit function f is not. (b) In Exmple 1.1 (iii) (b), f n f on R, ech f n differentible, but (f n ) does not converge pointwise. (c) In Exmple 1.1 (iii) (c), f n f on ( 1, 1) nd ech f n s well s f is differentible on ( 1, 1), nd f n g on ( 1, 1), where g f. However, if we ssume the uniform convergence of the derived sequence (f n) long with the convergence of the sequence (f n ) t only one point of the intervl, we hve stisfctory nswer. 0

6 6 MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE Proposition 2.8. Let (f n ) be sequence of rel-vlued functions defined on [, b]. If (f n ) converges t one point of [, b], ech f n is continuously differentible on [, b] nd (f n) converges uniformly on [, b], then there is f : [, b] R such tht f is continuously differentible on [, b], f n f on [, b] nd in fct, f n f on [, b]. Proof. Let x 0 [, b] nd c 0 R be such tht f n (x 0 ) c 0. Also, let ech f n be continuously differentible nd g : [, b] R be such tht f n g on [, b]. By Proposition 2.6, the function g is continuous on [, b]. Define f : [, b] R by x f(x) := c 0 + g(t)dt for x [, b]. x 0 By prt (ii) of the Fundmentl Theorem of Clculus (FTC), f exists on [, b] nd f (x) = g(x) for x [, b]. Thus f is continuously differentible on [, b] nd f n g = f. Also, by prt (i) of the FTC, we hve f n (x) = f n (x 0 ) + x x 0 f n (t)dt for x [, b]. Hence for n N nd x [, b], we obtin x ( f n (x) f(x) f n (x 0 ) c 0 + f n (t) g(t) ) dt x 0 f n (x 0 ) c 0 + x x 0 sup f n (t) g(t) t [,b] Thus f n f on [, b] by Proposition 2.2. f n (x 0 ) c 0 + (b )d(f n, g). The converse of the bove result is not true, tht is, ech f n s well s f continuously differentible on [, b], f n f on [, b], f n f on [, b] f n f. For exmple, let f n (x) := (nx + 1)e nx /n nd f(x) := 0 for x [0, 1]. Since f n (x) = nxe nx for ech n N nd ll x [0, 1], ech f n is monotoniclly decresing on [0, 1]. As f n (0) = 1/n, we obtin f n (x) f(x) 1/n for ll x [0, 1], nd so f n f on [0, 1]. Also, we hve seen fter the proof of Proposition 2.6 tht f n f, but f n f on [0, 1]. Remrk 2.9. Proposition 2.8 holds if we drop the word continuously ppering (two times) in its sttement, but then the proof is much more involved. See Theorem 7.17 of [3]. The results in Propositions 2.4, 2.5, 2.6 nd 2.8 re summrized in the following theorem. Theorem (i) The uniform limit of sequence of rel-vlued bounded functions defined on set is bounded. (ii) The uniform limit of sequence of Riemnn integrble functions defined on [, b] is Riemnn integrble, nd its Riemnn integrl is the limit of the sequence of termwise Riemnn integrls, tht is, if (f n ) is uniformly convergent to f on [, b] nd ech f n is Riemnn integrble on [, b], then the function f is Riemnn integrble on [, b] nd f(x)dx = lim n f n(x)dx.

7 UNIFORM CONVERGENCE 7 (iii) The uniform limit of sequence of continuous functions defined on metric spce is continuous. (vi) If sequence of continuously differentible functions defined on [, b] is convergent t one point of [, b] nd if the derived sequence is uniformly convergent on [, b], then the given sequence converges uniformly on [, b], the uniform limit is continuously differentible on [, b] nd its derivtive is the limit of the sequence of termwise derivtives, tht is, if (f n ) converges t one point of [, b], ech f n is continuously differentible on [, b] nd (f n ) is uniformly convergent on [, b], then (f n ) converges uniformly to continuously differentible function f on [, b], nd f (x) = lim n f n(x) for ll x [, b]. 3. Uniform Convergence of series The reder is ssumed to be fmilir with the elementry theory of series of rel numbers. (See, for exmple, Chpter 9 of [1], or Chpter 3 of [3].) Let (f k ) be sequence of rel-vlued functions defined on set E. Consider the sequence (s n ) of rel-vlued functions on E defined by s n := f f n = n f k. Note: Just s the sequence (f k ) determines the sequence (s n ), so does (s n ) determine (f k ): If we let s 0 = 0, then we hve f k = s k s k 1 for ll k N. We sy tht the series f k converges pointwise on E if the sequence (s n ) converges pointwise on E, nd we sy tht the series f k converges uniformly on E if the sequence (s n ) converges uniformly on E. For n N, the function s n is clled the nth prtil sum of the series f k nd if s n s, then the function s is clled its sum. Results bout convergence / uniform convergence of sequences of functions crry over to corresponding results bout convergence / uniform convergence of series of functions. Proposition 3.1. (Cuchy Criterion for Uniform Convergence of Series) Let (f k ) be sequence of rel-vlued functions defined on set E. Then the series f k converges uniformly on E if nd only if for every ɛ > 0, there is n 0 N such tht m n n 0, p E = m f k (p) < ɛ. k=n Proof. Use Proposition 2.1 for the sequence (s n ) of prtil sums. Proposition 3.2. (Weierstrss M-Test for Uniform Absolute Convergence of Series) Let (f k ) be sequence of rel-vlued functions defined on set E. Suppose there is sequence (M k ) in R such tht f k (p) M k for ll k N nd ll p E. If M k is convergent, then f k converges uniformly nd bsolutely on E.

8 8 MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE Proof. Note tht m f k (p) k=n nd use Proposition 3.1. m f k (p) k=n m M k for ll m n, Exmples 3.3. (i) Consider the series k=0 xk, where x ( 1, 1). If r < 1, then the series converges uniformly on {x R : x r} since the series k=0 M k is convergent, where M k := r k for k = 0, 1,... (ii) For k N, let f k (x) := ( 1) k (x + k)/k 2, where x [0, 1]. We show tht the series f k converges uniformly on [0, 1]. For k N, let g k (x) := ( 1) k x/k 2, where x [0, 1]. Letting M k := 1/k 2 for k N, we observe tht the series k=0 M k is convergent. Hence the series g k(x) converges uniformly on [0, 1]. Also, the series ( 1)k /k converges uniformly on [0, 1], being convergent series of constnts. Since f k (x) = g k (x) + ( 1) k /k for k N nd x [0, 1], the series f k(x) converges uniformly on [0, 1]. This exmple lso shows tht the converse of Weierstrss M-test does not hold: If M k := sup x [0,1] f k (x) = (1 + k)/k 2 for k N, then M k does not converge, since 1/k2 converges, but 1/k diverges. Proposition 3.4. (Dirichlet s Test for Uniform Conditionl Convergence of Series) Let (f k ) be monotonic sequence of rel-vlued functions defined on set E such tht f k 0 on E. If (g k ) is sequence of rel-vlued functions defined on E such tht the prtil sums of the series g k re uniformly bounded on E, then the series f kg k converges uniformly on E. In prticulr, the series ( 1)k f k converges uniformly on E. Proof. For ech p E, the series f k(p)g k (p) converges in R by Dirichlet s Test for conditionl convergence of series of rel numbers. (See, for exmple, Proposition 9.20 of [1], or Theorem 3.42 of [3].) For p E, let H(p) := f k(p)g k (p). Also, for n N, let G n := n g k nd H n := n f kg k. Further, let β R be such tht G n (p) β for ll n N nd ll p E. Then by using the prtil summtion formul n n 1 f k g k = (f k f k+1 )G k + f n G n for ll n 2, we hve H(p) H n (p) 2β f n+1 (p) for ll p E. Since f n+1 0 on E, it follows tht H n H on E, tht is, the series f kg k converges uniformly on E. In prticulr, letting g k (p) := ( 1) k for ll k N nd p E, nd noting tht G n (p) 1 for ll n N nd ll p E, we obtin the uniform convergence of the series ( 1)k f k on E. Exmple 3.5. Let E := [0, 1] nd f k (x) := x k /k for k N nd x [0, 1]. Then (f k ) is momotoniclly decresing sequence nd since f k (x) 1/k for k N nd x [0, 1], we see tht f k 0 on [0, 1] by Proposition 2.2. Hence the series ( 1)k x k /k converges uniformly on [0, 1]. k=n

9 UNIFORM CONVERGENCE 9 Results regrding the boundedness, Riemnn integrbility, continuity nd differentibility of the sum function of convergent series of functions cn be esily deduced from the corresponding results for the sequence of its prtil sums. Theorem 3.6. (i) The sum function of uniformly convergent series of rel-vlued bounded functions defined on set is bounded. (ii) The sum function of uniformly convergent series of Riemnn integrble functions defined on [, b] is Riemnn integrble, nd the series cn be integrted term by term, tht is, if f k is uniformly convergent on [, b] nd ech f k is Riemnn integrble on [, b], then the function f k is Riemnn integrble on [, b] nd ( ) f k (x) dx = f k (x)dx. (iii) The sum function of uniformly convergent series of rel-vlued continuous functions defined on metric spce is continuous. (vi) If series of continuously differentible functions defined on [, b] is convergent t one point of [, b] nd if the derived series is uniformly convergent on [, b], then the given series converges uniformly on [, b], the sum function is continuously differentible on [, b] nd the series cn be differentited term by term, tht is, if f k converges t one point of [, b], ech f k is continuously differentible on [, b] nd f k is uniformly convergent on [, b], then f k converges uniformly to continuously differentible function, nd ( ) f k (x) = f k (x) for ll x [, b]. Proof. The results follow by pplying Theorem 2.10 to the sequence of prtil sums of the given series. 4. Two Celebrted Theorems on Uniform Approximtion We hve seen in Proposition 2.6 tht uniform limit of sequence of continuous functions on metric spce is continuous. In this section, we reverse the procedure nd sk whether every continuous function on closed nd bounded intervl of R is the uniform limit of sequence of some specil continuous functions. For function f : [0, 1] R nd n N, we define the nth Bernstein polynomil of f by n ( ) ( n k B n (f) := f x k n) k (1 x) n k. k=0 Theorem 4.1. (Polynomil Approximtion Theorem of Weierstrss) If f : [0, 1] R is continuous, then B n (f) f on [0, 1]. Consequently, every rel-vlued continuous function on [0, 1] is the uniform limit of sequence of rel-vlued polynomil functions.

10 10 MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE For proof, see Theorem 7.26 of [3], or Corollry 3.12 of [2]. Remrk 4.2. Theorem 4.1 cn be used to prove tht every rel-vlued continuous function on ny closed nd bounded intervl [, b] is the uniform limit of sequence of rel-vlued polynomil functions. Let φ : [0, 1] [, b] be defined by φ(x) := (1 x) + xb for x [0, 1]. Then φ is bijective continuous function nd its continuous inverse φ 1 : [, b] [0, 1] is given by φ 1 (t) = (t )/(b ) for t [, b]. Given continuous rel-vlued function g on [, b], consider the continuous function f := g φ defined on [0, 1]. If (P n ) is sequence of polynomil functions such tht P n f on [0, 1], nd if we let Q n := P n φ 1, then since Q n (t) = P n ( (t )/(b ) ) for t [, b], ech Q n is polynomil function, nd Q n f φ 1 = g on [, b]. Insted of polynomils, let us now consider trigonometric polynomils for pproximting function. They re given by n 0 + ( k cos kx + b k sin kx) for n N, where 0, 1, 2,..., b 1, b 2,... re rel numbers. For Riemnn integrble function f on [ π, π], we define the Fourier coefficients of f by k (f) := 1 π π 0 (f) := 1 2π π π π f(t) cos kt dt, b k (f) := 1 π f(t)dt, nd for k N, π π f(t) sin kt dt. The series 0 (f) + ( k (f) cos kx + b k (f) sin kx ) of functions defined on [ π, π] is clled the Fourier series of the function f. For n = 0, 1, 2,..., let s n (f) denote the nth prtil sum of this series, nd consider the rithmetic mens of these prtil sums given by σ n (f) := s 0(f) + s 1 (f) + s n (f) n + 1 for n = 0, 1, 2... Theorem 4.3. (Trigonometric Polynomil Approximtion Theorem of Fejér) If f : [ π, π] R is continuous nd f( π) = f(π), then σ n (f) f on [ π, π]. Consequently, every rel-vlued continuous function on [ π, π] hving the sme vlue t π nd π is the uniform limit of sequence of rel-vlued trigonometric polynomil functions. For proof, see Theorem 8.15 nd Exercise 8.15 of [3], or Theorem 3.13 of [2]. References [1] S. R. Ghorpde nd B. V. Limye, A Course in Clculus nd Rel Anlysis, Springer Interntionl Ed., New Delhi, [2] B. V. Limye, Functionl Anlysis, New Age Interntionl, 2nd Ed., New Delhi, [3] W. Rudin, Principles of Mthemticl Anlysis, 3rd Ed., McGrw Hill, New Delhi, 1976.

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Chapter 6. Riemann Integral

Chapter 6. Riemann Integral Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

More information

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE HANS RINGSTRÖM. Questions nd exmples In the study of Fourier series, severl questions rise nturlly, such s: () (2) re there conditions on c n, n Z, which ensure

More information

Chapter 6. Infinite series

Chapter 6. Infinite series Chpter 6 Infinite series We briefly review this chpter in order to study series of functions in chpter 7. We cover from the beginning to Theorem 6.7 in the text excluding Theorem 6.6 nd Rbbe s test (Theorem

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem The Bnch lgebr of functions of bounded vrition nd the pointwise Helly selection theorem Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto Jnury, 015 1 BV [, b] Let < b. For f

More information

IMPORTANT THEOREMS CHEAT SHEET

IMPORTANT THEOREMS CHEAT SHEET IMPORTANT THEOREMS CHEAT SHEET BY DOUGLAS DANE Howdy, I m Bronson s dog Dougls. Bronson is still complining bout the textbook so I thought if I kept list of the importnt results for you, he might stop.

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim 1. Let n be positive integers. ntrnce xm, Rel Anlysis September 1, 29 Solve exctly 6 out of the 8 problems. Sketch the grph of the function f(x): f(x) = lim e x2n. Compute the following nd justify your

More information

For a continuous function f : [a; b]! R we wish to define the Riemann integral

For a continuous function f : [a; b]! R we wish to define the Riemann integral Supplementry Notes for MM509 Topology II 2. The Riemnn Integrl Andrew Swnn For continuous function f : [; b]! R we wish to define the Riemnn integrl R b f (x) dx nd estblish some of its properties. This

More information

7.2 Riemann Integrable Functions

7.2 Riemann Integrable Functions 7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Principles of Real Analysis I Fall VI. Riemann Integration

Principles of Real Analysis I Fall VI. Riemann Integration 21-355 Principles of Rel Anlysis I Fll 2004 A. Definitions VI. Riemnn Integrtion Let, b R with < b be given. By prtition of [, b] we men finite set P [, b] with, b P. The set of ll prtitions of [, b] will

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer. Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

More information

NOTES AND PROBLEMS: INTEGRATION THEORY

NOTES AND PROBLEMS: INTEGRATION THEORY NOTES AND PROBLEMS: INTEGRATION THEORY SAMEER CHAVAN Abstrct. These re the lecture notes prepred for prticipnts of AFS-I to be conducted t Kumun University, Almor from 1st to 27th December, 2014. Contents

More information

Math 324 Course Notes: Brief description

Math 324 Course Notes: Brief description Brief description These re notes for Mth 324, n introductory course in Mesure nd Integrtion. Students re dvised to go through ll sections in detil nd ttempt ll problems. These notes will be modified nd

More information

Advanced Calculus I (Math 4209) Martin Bohner

Advanced Calculus I (Math 4209) Martin Bohner Advnced Clculus I (Mth 4209) Spring 2018 Lecture Notes Mrtin Bohner Version from My 4, 2018 Author ddress: Deprtment of Mthemtics nd Sttistics, Missouri University of Science nd Technology, Roll, Missouri

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

II. Integration and Cauchy s Theorem

II. Integration and Cauchy s Theorem MTH6111 Complex Anlysis 2009-10 Lecture Notes c Shun Bullett QMUL 2009 II. Integrtion nd Cuchy s Theorem 1. Pths nd integrtion Wrning Different uthors hve different definitions for terms like pth nd curve.

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson Convergence of Fourier Series nd Fejer s Theorem Lee Ricketson My, 006 Abstrct This pper will ddress the Fourier Series of functions with rbitrry period. We will derive forms of the Dirichlet nd Fejer

More information

Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that

Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that Mth 118: Honours Clculus II Winter, 2005 List of Theorems Lemm 5.1 (Prtition Refinement): If P nd Q re prtitions of [, b] such tht Q P, then L(P, f) L(Q, f) U(Q, f) U(P, f). Lemm 5.2 (Upper Sums Bound

More information

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 ( FUNDAMNTALS OF RAL ANALYSIS by Doğn Çömez III. MASURABL FUNCTIONS AND LBSGU INTGRAL III.. Mesurble functions Hving the Lebesgue mesure define, in this chpter, we will identify the collection of functions

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

11 An introduction to Riemann Integration

11 An introduction to Riemann Integration 11 An introduction to Riemnn Integrtion The PROOFS of the stndrd lemms nd theorems concerning the Riemnn Integrl re NEB, nd you will not be sked to reproduce proofs of these in full in the exmintion in

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

STUDY GUIDE FOR BASIC EXAM

STUDY GUIDE FOR BASIC EXAM STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There

More information

a n+2 a n+1 M n a 2 a 1. (2)

a n+2 a n+1 M n a 2 a 1. (2) Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside

More information

Problem Set 4: Solutions Math 201A: Fall 2016

Problem Set 4: Solutions Math 201A: Fall 2016 Problem Set 4: s Mth 20A: Fll 206 Problem. Let f : X Y be one-to-one, onto mp between metric spces X, Y. () If f is continuous nd X is compct, prove tht f is homeomorphism. Does this result remin true

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

PROBLEMS AND NOTES: UNIFORM CONVERGENCE AND POLYNOMIAL APPROXIMATION

PROBLEMS AND NOTES: UNIFORM CONVERGENCE AND POLYNOMIAL APPROXIMATION PROBLEMS AND NOTES: UNIFORM CONVERGENCE AND POLYNOMIAL APPROXIMATION SAMEER CHAVAN Abstrct. These re the lecture notes prepred for the prticipnts of IST to be conducted t BP, Pune from 3rd to 15th November,

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

LECTURE. INTEGRATION AND ANTIDERIVATIVE.

LECTURE. INTEGRATION AND ANTIDERIVATIVE. ANALYSIS FOR HIGH SCHOOL TEACHERS LECTURE. INTEGRATION AND ANTIDERIVATIVE. ROTHSCHILD CAESARIA COURSE, 2015/6 1. Integrtion Historiclly, it ws the problem of computing res nd volumes, tht triggered development

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

Fundamental Theorem of Calculus and Computations on Some Special Henstock-Kurzweil Integrals

Fundamental Theorem of Calculus and Computations on Some Special Henstock-Kurzweil Integrals Fundmentl Theorem of Clculus nd Computtions on Some Specil Henstock-Kurzweil Integrls Wei-Chi YANG wyng@rdford.edu Deprtment of Mthemtics nd Sttistics Rdford University Rdford, VA 24142 USA DING, Xiofeng

More information

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

More information

Regulated functions and the regulated integral

Regulated functions and the regulated integral Regulted functions nd the regulted integrl Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics University of Toronto April 3 2014 1 Regulted functions nd step functions Let = [ b] nd let X be normed

More information

Calculus in R. Chapter Di erentiation

Calculus in R. Chapter Di erentiation Chpter 3 Clculus in R 3.1 Di erentition Definition 3.1. Suppose U R is open. A function f : U! R is di erentible t x 2 U if there exists number m such tht lim y!0 pple f(x + y) f(x) my y =0. If f is di

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

arxiv: v1 [math.ca] 7 Mar 2012

arxiv: v1 [math.ca] 7 Mar 2012 rxiv:1203.1462v1 [mth.ca] 7 Mr 2012 A simple proof of the Fundmentl Theorem of Clculus for the Lebesgue integrl Mrch, 2012 Rodrigo López Pouso Deprtmento de Análise Mtemátic Fcultde de Mtemátics, Universidde

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

1 The Lagrange interpolation formula

1 The Lagrange interpolation formula Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 Lecture 6: Line Integrls INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Anlysis Autumn 2012 August 8, 2012 Lecture 6: Line Integrls Lecture 6: Line Integrls Lecture 6: Line Integrls Integrls of complex

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

Analysis Comp Study Guide

Analysis Comp Study Guide Anlysis Comp Study Guide The Rel nd Complex Number Systems nd Bsic Topology Theorem 1 (Cuchy-Schwrz Inequlity). ( n ) 2 k b k b 2 k. 2 k As ( k tb k ) 2 0, s qudrtic in t it hs t most one root. So the

More information

Riemann Stieltjes Integration - Definition and Existence of Integral

Riemann Stieltjes Integration - Definition and Existence of Integral - Definition nd Existence of Integrl Dr. Adity Kushik Directorte of Distnce Eduction Kurukshetr University, Kurukshetr Hryn 136119 Indi. Prtition Riemnn Stieltjes Sums Refinement Definition Given closed

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

MATH 174A: PROBLEM SET 5. Suggested Solution

MATH 174A: PROBLEM SET 5. Suggested Solution MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion

More information

The Henstock-Kurzweil integral

The Henstock-Kurzweil integral fculteit Wiskunde en Ntuurwetenschppen The Henstock-Kurzweil integrl Bchelorthesis Mthemtics June 2014 Student: E. vn Dijk First supervisor: Dr. A.E. Sterk Second supervisor: Prof. dr. A. vn der Schft

More information

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 + Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

More information

TOPICS IN FOURIER ANALYSIS-II. Contents

TOPICS IN FOURIER ANALYSIS-II. Contents TOPICS IN FOURIER ANALYSIS-II M.T. NAIR Contents. Trigonometric series nd Fourier series 2 2. Riemnn Lebesgue Lemm 4 3. Dirichlet kernel 6 4. Dirichlet-Dini criterion for convergence 8 5. Ce`sro summblity

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Chapter 28. Fourier Series An Eigenvalue Problem.

Chapter 28. Fourier Series An Eigenvalue Problem. Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

The Riemann Integral

The Riemann Integral Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

More information

arxiv: v1 [math.ca] 11 Jul 2011

arxiv: v1 [math.ca] 11 Jul 2011 rxiv:1107.1996v1 [mth.ca] 11 Jul 2011 Existence nd computtion of Riemnn Stieltjes integrls through Riemnn integrls July, 2011 Rodrigo López Pouso Deprtmento de Análise Mtemátic Fcultde de Mtemátics, Universidde

More information

0.1 Properties of regulated functions and their Integrals.

0.1 Properties of regulated functions and their Integrals. MA244 Anlysis III Solutions. Sheet 2. NB. THESE ARE SKELETON SOLUTIONS, USE WISELY!. Properties of regulted functions nd their Integrls.. (Q.) Pick ny ɛ >. As f, g re regulted, there exist φ, ψ S[, b]:

More information

Week 7 Riemann Stieltjes Integration: Lectures 19-21

Week 7 Riemann Stieltjes Integration: Lectures 19-21 Week 7 Riemnn Stieltjes Integrtion: Lectures 19-21 Lecture 19 Throughout this section α will denote monotoniclly incresing function on n intervl [, b]. Let f be bounded function on [, b]. Let P = { = 0

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

7 Improper Integrals, Exp, Log, Arcsin, and the Integral Test for Series

7 Improper Integrals, Exp, Log, Arcsin, and the Integral Test for Series 7 Improper Integrls, Exp, Log, Arcsin, nd the Integrl Test for Series We hve now ttined good level of understnding of integrtion of nice functions f over closed intervls [, b]. In prctice one often wnts

More information

ON THE C-INTEGRAL BENEDETTO BONGIORNO

ON THE C-INTEGRAL BENEDETTO BONGIORNO ON THE C-INTEGRAL BENEDETTO BONGIORNO Let F : [, b] R be differentible function nd let f be its derivtive. The problem of recovering F from f is clled problem of primitives. In 1912, the problem of primitives

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

1. On some properties of definite integrals. We prove

1. On some properties of definite integrals. We prove This short collection of notes is intended to complement the textbook Anlisi Mtemtic 2 by Crl Mdern, published by Città Studi Editore, [M]. We refer to [M] for nottion nd the logicl stremline of the rguments.

More information

Mapping the delta function and other Radon measures

Mapping the delta function and other Radon measures Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Lecture 1: Introduction to integration theory and bounded variation

Lecture 1: Introduction to integration theory and bounded variation Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You

More information

Fundamental Theorem of Calculus for Lebesgue Integration

Fundamental Theorem of Calculus for Lebesgue Integration Fundmentl Theorem of Clculus for Lebesgue Integrtion J. J. Kolih The existing proofs of the Fundmentl theorem of clculus for Lebesgue integrtion typiclly rely either on the Vitli Crthéodory theorem on

More information

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ), 1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

Analysis III. Ben Green. Mathematical Institute, Oxford address:

Analysis III. Ben Green. Mathematical Institute, Oxford  address: Anlysis III Ben Green Mthemticl Institute, Oxford E-mil ddress: ben.green@mths.ox.c.uk 2000 Mthemtics Subject Clssifiction. Primry Contents Prefce 1 Chpter 1. Step functions nd the Riemnn integrl 3 1.1.

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Calculus I-II Review Sheet

Calculus I-II Review Sheet Clculus I-II Review Sheet 1 Definitions 1.1 Functions A function is f is incresing on n intervl if x y implies f(x) f(y), nd decresing if x y implies f(x) f(y). It is clled monotonic if it is either incresing

More information

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f 1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where

More information

A basic logarithmic inequality, and the logarithmic mean

A basic logarithmic inequality, and the logarithmic mean Notes on Number Theory nd Discrete Mthemtics ISSN 30 532 Vol. 2, 205, No., 3 35 A bsic logrithmic inequlity, nd the logrithmic men József Sándor Deprtment of Mthemtics, Bbeş-Bolyi University Str. Koglnicenu

More information

Appendix to Notes 8 (a)

Appendix to Notes 8 (a) Appendix to Notes 8 () 13 Comprison of the Riemnn nd Lebesgue integrls. Recll Let f : [, b] R be bounded. Let D be prtition of [, b] such tht Let D = { = x 0 < x 1

More information