Reflection groups. Arun Ram Department of Mathematics University of Wisconsin Madison, WI s f(α),λ = fs α,λ f 1.

Size: px
Start display at page:

Download "Reflection groups. Arun Ram Department of Mathematics University of Wisconsin Madison, WI s f(α),λ = fs α,λ f 1."

Transcription

1 Reflection groups Arun Ram Department of Mathematics University of Wisconsin Madison, WI 576 Definition of a reflection group Let V be a finite dimensional complex vector space of dimension n > Let, : V V C be a Hermitian form on V, ie such that ax + by, z = a x, z + b y, z x, y = y, x, for all x, y V, x, ay + bz = ā x, y + b x, z, where ā is the complex conjugate of a Let α V and let s α,λ : V V be the reflection in the hyperplane with eigenvalue λ Then x, α () s α,λ (x) = x + (λ ) α, α α () s α,λ s α,µ = s α,λµ, H α = {x V x, α = } () s α,λ x, s α,λ y = x, y for all x, y V if and only if λ λ = () Let f : V V be such that fx, fy = x, y for all x, y V Then s f(α),λ = fs α,λ f Proof () Write x = x α + x with x C and x (Cα) Then and s α,λ (x) = λx + x x, α x + (λ ) α, α α = x x, α α + x + (λ ) α, α α = x α + x + λx α x α = λx α + x () s α,λ s α,µ (x) = s α,λ (µx α + x ) = λµx α + x = s α,λµ (x) () λx α+x, λy α+y = λ λ α, α x y + x, y and x α+x, y α+y = x y α, α + x, y If x = y = and x y = we get λ λ = () fs α,λ f = f ( f (x) + (λ ) f x,α α,α α ) = x + (λ ) f x,f fα fα,fα fα = s fα,λ

2 Let h be a vector space over a field F and let n = dim(h ) s α GL(h ) such that A reflection is an element dim ( (h ) sα) = n, where (h ) sα = {x h s α x = x} A reflection group is a finite subgroup W of GL(h ) generated by reflections If W is a reflection group the set {H α s α is a reflection in W } is the hyperplane arrangement corresponding to G Since H s is codimension H α = ker α where α: V C is a linear form on V The form α C is determined up to constant multiples A linear form α: V C determines a hyperplane and a reflection s α : V V by H α = {v V α(v) = } v, α s α,ξ (v) = v + (ξ ) α, α α Let V be a complex vector space of dimension n A reflection is an element s GL(V ) such that codim(v s ) = Let M = (q ij ) be such that (i) q ij Z, (ii) M is symmetric, (iii) if q ij is odd then q ii = q jj Let D be the graph with vertices indexed by,,, n with edges labeled q ij and the label q ii are vertex i q ij q ii q jj If q ij = we do not draw the edge between vertex i and vertex j The Cartan matrix (a ij is given by setting a ii = sin ( π ), aij = if q ij =, q ii a ij = cos ( π ) sin ( π π ), if qij > q ij q ii q ij Since cos (π/) = / and sin (π/) = / we have that cos ( π ) sin ( π π ) q ij q ii q ij if q ij >

3 So A is a real symmetric matrix The matrix A is irreducible if we cannot partition the index set {,,, n} into two proper subsets I and J such that a ij = for all i I, j J, I J ( ) (also figure out how to get TeX to label the columns I and J) A is irreducible if and only if D is connected The matrix A is of affine type if there is a vector of positive real numbers m = m m n such that Am = A subdiagram of D is any diagram obtained from D by (a) deleting some vertices (and the edges issuing from them), (b) decreasing the labels on some of the edges (q ij q ij ) (c) decreasing the labels on some of the vertices (q ii q ii ) such that if q ij > then q ii q jj The graph D is of affine type if the corresponding Cartan matrix is of affine type Lemma Let d be a diagram of affine type Then no proper subdiagram of D is of affine type Proof (a) Reducing numbers on edges of D corresponds to increasing off diagonal entries a ij of A (decreasing (a ij )) (b) Reducing numbers in vertices of D corresponds to increasing diagonal entries a ii of A (c) Deleting vertices of D corresponds to passing to a principal submatrix Hence the Cartan matrix of D is of the form B I where B A (take B = A outside I) By Lemma, B I is nonsingular, hence D is not of affine type We can use the graph D (or the matrix M) to define a group W by generators r,, r n and relations r q ii i =, r i r j r i }{{} q ij mathrmfactors = r j r i r j }{{} q ij mathrmfactors We will define a representation of W on a space V by reflections Let V = span{α,, α n } so that the symbols α,, α n are a basis of V Define a Hermitian form on V by α i, α i = a ii = sin( π ), q ii α i, α j = a ij = q ii cos ( π q ij ) sin ( π q ii q jj π ) q ij

4 In general the formula s α : V V, defines the reflection in the hyperplane x, α s α,λ (x) = x + (λ ) α, α α, α V, λ C, H α = {x V x, α = } with eigenvalue λ The endomorphism s α,λ is an isometry if and only if λ λ = Define a representation of W on V by Φ: W GL(V ) r j s αj,λ j where λ j = e πi/q jj This representation has, as a W -invariant form and it is faithful if Φ(W ) is finite This happens exactly when the form, is positive definite (The proof of this in Koster refers to Coxeter s classifications and presentations for one direction This is unpleasant) Classification of diagrams of affine type Let D be an affine diagram () Suppose D contains a cycle (with vertices) Then D has a subdiagram of the form (A n ) (n + vertices, n ), () D has a branch of order Then D has a subdiagram of the form (D ) () Suppose that D has or more branch points of order The D has a subdiagram of the form (D n, n 5) () Suppose that D has one branch point of order and at least one multiple bond Then D

5 has a subdiagram of the form sin(π/p) p sin(π/p) a a ( B p n, n ) where sin(π/p) a = (5) Suppose D has one branch point or order and no mulitple bonds Then D has a subdiagram of the form E 6 E E 8 (6) We have exhausted the possibilities where D has a branch point Assume now that D is a 5

6 chain If D has at least two multiple bonds it will contain one of the following diagrams sin(π/p) p p sin(π/p) a a where a = sin(π/p) sin(π/p and b = ) sin(π/p) p p sin(π/p ) sin(π/p ) b b sin(π/p ) a a sin(π/p) a (C p, p ) a sin(π/p) where a = (7) Assume now that D is a chain with just one multiple bond (C p,p n, n ) (a) strength 6 (b) strength ` / / 8 ( / / / / / ) ( ) / / / (c) strength ( ( ) ) 6

7 (d) strength / / / / / / / / / / (F ) / 6 ( / / ) (8) Assume that D has no multiple bonds Then D has a subdiagram of the form sin(π/) cos(π/) cos(π/) sin(π/) cos(π/) = cos(π/) sin(π/) 7

8 ( 6 6 sin(π/6) cos(π/) cos(π/) sin(π/6) (note that all the numbers on the vertices must be equal in this case) ) ( = ) The Chevalley-Shephard-Todd theorem Theorem Let h be a vector space and let W be a finite subgroup of GL(h ) The following are equivalent (a) W is a reflection group, W = s α s α W is a reflection (b) S(h ) W is a polynomial ring, S(h ) W = C[f, f,, f n ] (c) S(h ) is a free S(h ) W -module Let R be a local regular ring, fm a maximal ideal, and K = R/m the residue field The R G is a local ring with maximal ideal Assume that m G = m R G (a) R G is noetherian and R is a finite type R G module, and (b) The composition R G R k is surjective Define V = m/m (a k vector space: the tangent space) The action of G on R define a homomorphism ε: G GL(V ) (a) Let p be a prime ideal of height in R and let s G be such that s(p) = p and s operates trivially on R/p Show that ε(s) is a pseudoreflection in V (Remark taht the image of p in m/m is of dimension or Structure theorems Theorem (a) (Chevalley, Shephard-Todd) A finite group W GL(h ) is generated by reflections if and only if S(h ) W = C[I,, I r ] where I,, I r are algebraically independent and homogeneous (b) (Solomon) Let W be a finite reflection group Then (see Benson page 86) (c) S(h ) = H S(h ) W (S(h ) Λ(h)) W = C[I,, I r ] Λ(dI,, di r ) 8

9 Some additional remarks: (a) and λ R, λ det ( I j x j ) = λp, where p = α R + α (b) H has basis {h w = w() w W } where w are the BGG operators and deg(h w ) = l(w) Theorem (Molien theorems) (a) (b) Proof Now apply to S(h ) Λ(h): P ((S(h ) Λ(h)) W ; q, t) = W P (S(h ) W ; t) = W j Z q j Tr(w, Λ j h) = j Z t j Tr(w, S j h) = det( + wq) det( wt) det( wt) ( + λ i q) = det( + w q, h ) i= det( wt, h ) = ( λ i t) W w P ((S(h ) Λ(h)) W ; q, t) = W Tr ( q,t w, S(h ) Λ(h)) ) = W i= Tr q,t (w, S(h ) Λ(h)) Theorem P (S(h ); t) = i= t P (S(h ) W ; t) = t d i i= P (H; t) = i= t d i t and P ((S(h ) Λ(h)) W ; q, t) = i= + qt d i t d i Proof (a) is clear (b) follows from Chevalley s theorem (c) follows from part (c) of the structure theorem since it implies (d) follows from Solomon s theorem P (S(h ); t) = P (H; t)p (S(h ) W ; t) 9

10 Let Corollary 5 (a) (b) d(w) = dim(v w ) = multiplicity of as an eigenvalue of w, d m (w) = multiplicity of e πi/m as an eigenvalue of w, {, if m divides d i, χ(m d i ) =, if m does not divide d i t dm(w) = (t χ(m di) + d i ) i= t d(w) = (t + d i ) i= (c) The number of reflections in W is r i= (d i ) (d) W = r i= d i Proof (b) follows from (a) by putting m = (c) follows from taking the coefficient of t r on both sides of the identity in (b) (d) follows by putting t = in (b) (a) (following Macdonald) Replace q and t with q/ξ and t/ξ, where ξ = e πi/m Then det(ξ + qw) ( ξ d W det(ξ tw) = i + qt d ) i ξ d i t d i from W Now let q = ( t)x Then i= det( + qw) ( + qt d det( tw) = i ) t d i det(ξ + qw) det(ξ tw) = i= i= (ξ + λ i (( t)x )) (ξ λ i t) So, now take the limit as t When we do this we get the result we want but we will need d i = W To get this set q = and multiply by ( t) r in the Molien formula to get Now set t = Then W i= LHS = W ( + ) = W w ( t) r det( tw) = t t d i i= and RHS = i= d i

11 Nice formulas Symmetric and determinantal functions Let S(h ) be the symmetric algebra of h Then u + S(h ) = symmetric polynomials u S(h ) = determinant symmetric polynomials and, as vector spaces u + S(h ) sim u S(h ) f fa ρ Weyl denominators Theorem w t α eα e α = t R(w), α R + where {t α α R + } are indeterminates t E = α E t α, for E R +, and R(w) = {α R + wα R } Corollary () w teα e α = t l(w) α R + () t+ht(α) t ht(α) = α R + t l(w) where ht(α) = ρ, α () If h i is the number of roots of height i then (h, h, ) = (d, d, ) t

12 A n n n à n n n B n n n Bn n n n C n n n Cn n n D n n n Dn n n n 5 E 6 Ẽ E 7 Ẽ E 8 Ẽ F F G G References [Dr] G Drinfel d, A new realization of Yangians and quantized affine algebras, Soviet Math Dokl 6 No, (998), 6

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

Root systems. S. Viswanath

Root systems. S. Viswanath Root systems S. Viswanath 1. (05/07/011) 1.1. Root systems. Let V be a finite dimensional R-vector space. A reflection is a linear map s α,h on V satisfying s α,h (x) = x for all x H and s α,h (α) = α,

More information

Representations of semisimple Lie algebras

Representations of semisimple Lie algebras Chapter 14 Representations of semisimple Lie algebras In this chapter we study a special type of representations of semisimple Lie algberas: the so called highest weight representations. In particular

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

Integral Extensions. Chapter Integral Elements Definitions and Comments Lemma

Integral Extensions. Chapter Integral Elements Definitions and Comments Lemma Chapter 2 Integral Extensions 2.1 Integral Elements 2.1.1 Definitions and Comments Let R be a subring of the ring S, and let α S. We say that α is integral over R if α isarootofamonic polynomial with coefficients

More information

Algebra Qualifying Exam August 2001 Do all 5 problems. 1. Let G be afinite group of order 504 = 23 32 7. a. Show that G cannot be isomorphic to a subgroup of the alternating group Alt 7. (5 points) b.

More information

5 Quiver Representations

5 Quiver Representations 5 Quiver Representations 5. Problems Problem 5.. Field embeddings. Recall that k(y,..., y m ) denotes the field of rational functions of y,..., y m over a field k. Let f : k[x,..., x n ] k(y,..., y m )

More information

LIE ALGEBRAS: LECTURE 3 6 April 2010

LIE ALGEBRAS: LECTURE 3 6 April 2010 LIE ALGEBRAS: LECTURE 3 6 April 2010 CRYSTAL HOYT 1. Simple 3-dimensional Lie algebras Suppose L is a simple 3-dimensional Lie algebra over k, where k is algebraically closed. Then [L, L] = L, since otherwise

More information

Outline. Some Reflection Group Numerology. Root Systems and Reflection Groups. Example: Symmetries of a triangle. Paul Renteln

Outline. Some Reflection Group Numerology. Root Systems and Reflection Groups. Example: Symmetries of a triangle. Paul Renteln Outline 1 California State University San Bernardino and Caltech 2 Queen Mary University of London June 13, 2014 3 Root Systems and Reflection Groups Example: Symmetries of a triangle V an n dimensional

More information

A SHORT COURSE IN LIE THEORY

A SHORT COURSE IN LIE THEORY A SHORT COURSE IN LIE THEORY JAY TAYLOR Abstract. These notes are designed to accompany a short series of talks given at the University of Aberdeen in the second half session of the academic year 2009/2010.

More information

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that ALGEBRAIC GROUPS 61 5. Root systems and semisimple Lie algebras 5.1. Characteristic 0 theory. Assume in this subsection that chark = 0. Let me recall a couple of definitions made earlier: G is called reductive

More information

Algebra Exam Topics. Updated August 2017

Algebra Exam Topics. Updated August 2017 Algebra Exam Topics Updated August 2017 Starting Fall 2017, the Masters Algebra Exam will have 14 questions. Of these students will answer the first 8 questions from Topics 1, 2, and 3. They then have

More information

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS ANA BALIBANU DISCUSSED WITH PROFESSOR VICTOR GINZBURG 1. Introduction The aim of this paper is to explore the geometry of a Lie algebra g through the action

More information

A method for construction of Lie group invariants

A method for construction of Lie group invariants arxiv:1206.4395v1 [math.rt] 20 Jun 2012 A method for construction of Lie group invariants Yu. Palii Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia and Institute

More information

LECTURE 16: REPRESENTATIONS OF QUIVERS

LECTURE 16: REPRESENTATIONS OF QUIVERS LECTURE 6: REPRESENTATIONS OF QUIVERS IVAN LOSEV Introduction Now we proceed to study representations of quivers. We start by recalling some basic definitions and constructions such as the path algebra

More information

Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

More information

Reflection Groups and Invariant Theory

Reflection Groups and Invariant Theory Richard Kane Reflection Groups and Invariant Theory Springer Introduction 1 Reflection groups 5 1 Euclidean reflection groups 6 1-1 Reflections and reflection groups 6 1-2 Groups of symmetries in the plane

More information

On some combinatorial aspects of Representation Theory

On some combinatorial aspects of Representation Theory On some combinatorial aspects of Representation Theory Doctoral Defense Waldeck Schützer schutzer@math.rutgers.edu Rutgers University March 24, 2004 Representation Theory and Combinatorics p.1/46 Overview

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

Homework 4 Solutions

Homework 4 Solutions Homework 4 Solutions November 11, 2016 You were asked to do problems 3,4,7,9,10 in Chapter 7 of Lang. Problem 3. Let A be an integral domain, integrally closed in its field of fractions K. Let L be a finite

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

arxiv: v1 [math.rt] 15 Oct 2008

arxiv: v1 [math.rt] 15 Oct 2008 CLASSIFICATION OF FINITE-GROWTH GENERAL KAC-MOODY SUPERALGEBRAS arxiv:0810.2637v1 [math.rt] 15 Oct 2008 CRYSTAL HOYT AND VERA SERGANOVA Abstract. A contragredient Lie superalgebra is a superalgebra defined

More information

Hilbert function, Betti numbers. Daniel Gromada

Hilbert function, Betti numbers. Daniel Gromada Hilbert function, Betti numbers 1 Daniel Gromada References 2 David Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry 19, 110 David Eisenbud: The Geometry of Syzygies 1A, 1B My own notes

More information

Problems in Linear Algebra and Representation Theory

Problems in Linear Algebra and Representation Theory Problems in Linear Algebra and Representation Theory (Most of these were provided by Victor Ginzburg) The problems appearing below have varying level of difficulty. They are not listed in any specific

More information

About polynomiality of the Poisson semicentre for parabolic subalgebras

About polynomiality of the Poisson semicentre for parabolic subalgebras About polynomiality of the Poisson semicentre for parabolic subalgebras University of Saint-Etienne, ICJ, LYON - France The Canicular Days - Haifa - July 2017 - Celebrating A. Joseph s 75th birthday Aim.

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

The classification of root systems

The classification of root systems The classification of root systems Maris Ozols University of Waterloo Department of C&O November 28, 2007 Definition of the root system Definition Let E = R n be a real vector space. A finite subset R

More information

ON SOME PARTITIONS OF A FLAG MANIFOLD. G. Lusztig

ON SOME PARTITIONS OF A FLAG MANIFOLD. G. Lusztig ON SOME PARTITIONS OF A FLAG MANIFOLD G. Lusztig Introduction Let G be a connected reductive group over an algebraically closed field k of characteristic p 0. Let W be the Weyl group of G. Let W be the

More information

Background on Chevalley Groups Constructed from a Root System

Background on Chevalley Groups Constructed from a Root System Background on Chevalley Groups Constructed from a Root System Paul Tokorcheck Department of Mathematics University of California, Santa Cruz 10 October 2011 Abstract In 1955, Claude Chevalley described

More information

4.4 Noetherian Rings

4.4 Noetherian Rings 4.4 Noetherian Rings Recall that a ring A is Noetherian if it satisfies the following three equivalent conditions: (1) Every nonempty set of ideals of A has a maximal element (the maximal condition); (2)

More information

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introduction to Cluster Algebra Ivan C.H. Ip Update: May 16, 2017 5 Review of Root Systems In this section, let us have a brief introduction to root system and finite Lie type classification

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS Contents 1. Regular elements in semisimple Lie algebras 1 2. The flag variety and the Bruhat decomposition 3 3. The Grothendieck-Springer resolution 6 4. The

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 Throughout this lecture k denotes an algebraically closed field. 17.1 Tangent spaces and hypersurfaces For any polynomial f k[x

More information

Algebra Exam Syllabus

Algebra Exam Syllabus Algebra Exam Syllabus The Algebra comprehensive exam covers four broad areas of algebra: (1) Groups; (2) Rings; (3) Modules; and (4) Linear Algebra. These topics are all covered in the first semester graduate

More information

SIMPLE ROOT SYSTEMS AND PRESENTATIONS FOR CERTAIN COMPLEX REFLECTION GROUPS. Jian-yi Shi

SIMPLE ROOT SYSTEMS AND PRESENTATIONS FOR CERTAIN COMPLEX REFLECTION GROUPS. Jian-yi Shi SIMPLE ROOT SYSTEMS AND PRESENTATIONS FOR CERTAIN COMPLEX REFLECTION GROUPS Jian-yi Shi Department of Mathematics, East China Normal University, Shanghai, 200062, China and Center for Combinatorics, Nankai

More information

Yuriy Drozd. Intriduction to Algebraic Geometry. Kaiserslautern 1998/99

Yuriy Drozd. Intriduction to Algebraic Geometry. Kaiserslautern 1998/99 Yuriy Drozd Intriduction to Algebraic Geometry Kaiserslautern 1998/99 CHAPTER 1 Affine Varieties 1.1. Ideals and varieties. Hilbert s Basis Theorem Let K be an algebraically closed field. We denote by

More information

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

More information

Longest element of a finite Coxeter group

Longest element of a finite Coxeter group Longest element of a finite Coxeter group September 10, 2015 Here we draw together some well-known properties of the (unique) longest element w in a finite Coxeter group W, with reference to theorems and

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information

Topics in Representation Theory: SU(n), Weyl Chambers and the Diagram of a Group

Topics in Representation Theory: SU(n), Weyl Chambers and the Diagram of a Group Topics in Representation Theory: SU(n), Weyl hambers and the Diagram of a Group 1 Another Example: G = SU(n) Last time we began analyzing how the maximal torus T of G acts on the adjoint representation,

More information

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N 74 16. Lecture 16: Springer Representations 16.1. The flag manifold. Let G = SL n (C). It acts transitively on the set F of complete flags 0 F 1 F n 1 C n and the stabilizer of the standard flag is the

More information

Exercise Sheet 7 - Solutions

Exercise Sheet 7 - Solutions Algebraic Geometry D-MATH, FS 2016 Prof. Pandharipande Exercise Sheet 7 - Solutions 1. Prove that the Zariski tangent space at the point [S] Gr(r, V ) is canonically isomorphic to S V/S (or equivalently

More information

January 2016 Qualifying Examination

January 2016 Qualifying Examination January 2016 Qualifying Examination If you have any difficulty with the wording of the following problems please contact the supervisor immediately. All persons responsible for these problems, in principle,

More information

The Image of Weyl Group Translations in Hecke Algebras

The Image of Weyl Group Translations in Hecke Algebras The Image of Weyl Group Translations in Hecke Algebras UROP+ Final Paper, Summer 2015 Arkadiy Frasinich Mentor: Konstantin Tolmachov Project Suggested By Roman Bezrukavnikov September 1, 2015 Abstract

More information

The Cartan Decomposition of a Complex Semisimple Lie Algebra

The Cartan Decomposition of a Complex Semisimple Lie Algebra The Cartan Decomposition of a Complex Semisimple Lie Algebra Shawn Baland University of Colorado, Boulder November 29, 2007 Definition Let k be a field. A k-algebra is a k-vector space A equipped with

More information

THE SEMISIMPLE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS

THE SEMISIMPLE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 67 (2006) 2006, Pages 225 259 S 0077-1554(06)00156-7 Article electronically published on December 27, 2006 THE SEMISIMPLE SUBALGEBRAS OF EXCEPTIONAL

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

FULLY COMMUTATIVE ELEMENTS AND KAZHDAN LUSZTIG CELLS IN THE FINITE AND AFFINE COXETER GROUPS. Jian-yi Shi

FULLY COMMUTATIVE ELEMENTS AND KAZHDAN LUSZTIG CELLS IN THE FINITE AND AFFINE COXETER GROUPS. Jian-yi Shi FULLY COMMUTATIVE ELEMENTS AND KAZHDAN LUSZTIG CELLS IN THE FINITE AND AFFINE COXETER GROUPS Jian-yi Shi Abstract. The main goal of the paper is to show that the fully commutative elements in the affine

More information

Rings and groups. Ya. Sysak

Rings and groups. Ya. Sysak Rings and groups. Ya. Sysak 1 Noetherian rings Let R be a ring. A (right) R -module M is called noetherian if it satisfies the maximum condition for its submodules. In other words, if M 1... M i M i+1...

More information

Linear Algebraic Groups

Linear Algebraic Groups Linear Algebraic Groups Fall 2015 These are notes for the graduate course Math 6690 (Linear Algebraic Groups) taught by Dr. Mahdi Asgari at the Oklahoma State University in Fall 2015. The notes are taken

More information

THE STRONG TOPOLOGICAL MONODROMY CONJECTURE FOR COXETER HYPERPLANE ARRANGEMENTS

THE STRONG TOPOLOGICAL MONODROMY CONJECTURE FOR COXETER HYPERPLANE ARRANGEMENTS THE STRONG TOPOLOGICAL MONODROMY CONJECTURE FOR COXETER HYPERPLANE ARRANGEMENTS ASILATA BAPAT AND ROBIN WALTERS ABSTRACT. The Bernstein Sato polynomial, or the b-function, is an important invariant of

More information

(Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1. Lisa Carbone Rutgers University

(Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1. Lisa Carbone Rutgers University (Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1 Lisa Carbone Rutgers University Slides will be posted at: http://sites.math.rutgers.edu/ carbonel/ Video will be

More information

Auslander s Theorem for permutation actions on noncommutative algebras

Auslander s Theorem for permutation actions on noncommutative algebras Auslander s Theorem for permutation actions on noncommutative algebras Robert Won Joint with Jason Gaddis, Ellen Kirkman, and Frank Moore AMS Western Sectional Meeting, Pullman, WA April 23, 2017 1 / 22

More information

ON THE CLASSIFICATION OF RANK 1 GROUPS OVER NON ARCHIMEDEAN LOCAL FIELDS

ON THE CLASSIFICATION OF RANK 1 GROUPS OVER NON ARCHIMEDEAN LOCAL FIELDS ON THE CLASSIFICATION OF RANK 1 GROUPS OVER NON ARCHIMEDEAN LOCAL FIELDS LISA CARBONE Abstract. We outline the classification of K rank 1 groups over non archimedean local fields K up to strict isogeny,

More information

Invariant Theory of Finite Groups. University of Leicester, March 2004

Invariant Theory of Finite Groups. University of Leicester, March 2004 Invariant Theory of Finite Groups University of Leicester, March 2004 Jürgen Müller Abstract This introductory lecture will be concerned with polynomial invariants of finite groups which come from a linear

More information

Algebra I Fall 2007

Algebra I Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary

More information

The Hilbert-Mumford Criterion

The Hilbert-Mumford Criterion The Hilbert-Mumford Criterion Klaus Pommerening Johannes-Gutenberg-Universität Mainz, Germany January 1987 Last change: April 4, 2017 The notions of stability and related notions apply for actions of algebraic

More information

Toshiaki Shoji (Nagoya University) Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1 / 1

Toshiaki Shoji (Nagoya University) Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1 / 1 Character sheaves on a symmetric space and Kostka polynomials Toshiaki Shoji Nagoya University July 27, 2012, Osaka Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1

More information

UC Berkeley Summer Undergraduate Research Program 2015 July 8 Lecture

UC Berkeley Summer Undergraduate Research Program 2015 July 8 Lecture UC Berkeley Summer Undergraduate Research Program 25 July 8 Lecture This lecture is intended to tie up some (potential) loose ends that we have encountered on the road during the past couple of weeks We

More information

These notes are incomplete they will be updated regularly.

These notes are incomplete they will be updated regularly. These notes are incomplete they will be updated regularly. LIE GROUPS, LIE ALGEBRAS, AND REPRESENTATIONS SPRING SEMESTER 2008 RICHARD A. WENTWORTH Contents 1. Lie groups and Lie algebras 2 1.1. Definition

More information

NOTES ON LINEAR ALGEBRA OVER INTEGRAL DOMAINS. Contents. 1. Introduction 1 2. Rank and basis 1 3. The set of linear maps 4. 1.

NOTES ON LINEAR ALGEBRA OVER INTEGRAL DOMAINS. Contents. 1. Introduction 1 2. Rank and basis 1 3. The set of linear maps 4. 1. NOTES ON LINEAR ALGEBRA OVER INTEGRAL DOMAINS Contents 1. Introduction 1 2. Rank and basis 1 3. The set of linear maps 4 1. Introduction These notes establish some basic results about linear algebra over

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 As usual, all the rings we consider are commutative rings with an identity element. 18.1 Regular local rings Consider a local

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

On certain family of B-modules

On certain family of B-modules On certain family of B-modules Piotr Pragacz (IM PAN, Warszawa) joint with Witold Kraśkiewicz with results of Masaki Watanabe Issai Schur s dissertation (Berlin, 1901): classification of irreducible polynomial

More information

The Cayley-Hamilton Theorem and the Jordan Decomposition

The Cayley-Hamilton Theorem and the Jordan Decomposition LECTURE 19 The Cayley-Hamilton Theorem and the Jordan Decomposition Let me begin by summarizing the main results of the last lecture Suppose T is a endomorphism of a vector space V Then T has a minimal

More information

WEAK NULLSTELLENSATZ

WEAK NULLSTELLENSATZ WEAK NULLSTELLENSATZ YIFAN WU, wuyifan@umich.edu Abstract. We prove weak Nullstellensatz which states if a finitely generated k algebra is a field, then it is a finite algebraic field extension of k. We

More information

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples Chapter 3 Rings Rings are additive abelian groups with a second operation called multiplication. The connection between the two operations is provided by the distributive law. Assuming the results of Chapter

More information

REPRESENTATION THEORY WEEK 5. B : V V k

REPRESENTATION THEORY WEEK 5. B : V V k REPRESENTATION THEORY WEEK 5 1. Invariant forms Recall that a bilinear form on a vector space V is a map satisfying B : V V k B (cv, dw) = cdb (v, w), B (v 1 + v, w) = B (v 1, w)+b (v, w), B (v, w 1 +

More information

SEMI-INVARIANTS AND WEIGHTS OF GROUP ALGEBRAS OF FINITE GROUPS. D. S. Passman P. Wauters University of Wisconsin-Madison Limburgs Universitair Centrum

SEMI-INVARIANTS AND WEIGHTS OF GROUP ALGEBRAS OF FINITE GROUPS. D. S. Passman P. Wauters University of Wisconsin-Madison Limburgs Universitair Centrum SEMI-INVARIANTS AND WEIGHTS OF GROUP ALGEBRAS OF FINITE GROUPS D. S. Passman P. Wauters University of Wisconsin-Madison Limburgs Universitair Centrum Abstract. We study the semi-invariants and weights

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

Algebraic structures I

Algebraic structures I MTH5100 Assignment 1-10 Algebraic structures I For handing in on various dates January March 2011 1 FUNCTIONS. Say which of the following rules successfully define functions, giving reasons. For each one

More information

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction NONCOMMUTATIVE POLYNOMIAL EQUATIONS Edward S Letzter Introduction My aim in these notes is twofold: First, to briefly review some linear algebra Second, to provide you with some new tools and techniques

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur s Lemma 1.2 Tensor products 1.3 Unitary representations

More information

1 Absolute values and discrete valuations

1 Absolute values and discrete valuations 18.785 Number theory I Lecture #1 Fall 2015 09/10/2015 1 Absolute values and discrete valuations 1.1 Introduction At its core, number theory is the study of the ring Z and its fraction field Q. Many questions

More information

IDEAL CLASSES AND RELATIVE INTEGERS

IDEAL CLASSES AND RELATIVE INTEGERS IDEAL CLASSES AND RELATIVE INTEGERS KEITH CONRAD The ring of integers of a number field is free as a Z-module. It is a module not just over Z, but also over any intermediate ring of integers. That is,

More information

Algebraic varieties and schemes over any scheme. Non singular varieties

Algebraic varieties and schemes over any scheme. Non singular varieties Algebraic varieties and schemes over any scheme. Non singular varieties Trang June 16, 2010 1 Lecture 1 Let k be a field and k[x 1,..., x n ] the polynomial ring with coefficients in k. Then we have two

More information

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n.

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n. Vector Spaces Definition: The usual addition and scalar multiplication of n-tuples x = (x 1,..., x n ) R n (also called vectors) are the addition and scalar multiplication operations defined component-wise:

More information

Pure Braid Group Representations of Low Degree

Pure Braid Group Representations of Low Degree International Journal of Algebra, Vol 5, 2011, no 21, 1011-1020 Pure Braid Group Representations of Low Degree Mohammad N Abdulrahim and Ghenwa H Abboud Department of Mathematics Beirut Arab University

More information

Polynomial and Inverse Forms

Polynomial and Inverse Forms Contemporary Mathematics Polynomial and Inverse Forms D. S. Passman Abstract. In a recent paper, this author studied invariant ideals in abelian group algebras under the action of certain infinite, locally

More information

Classification of Root Systems

Classification of Root Systems U.U.D.M. Project Report 2018:30 Classification of Root Systems Filip Koerfer Examensarbete i matematik, 15 hp Handledare: Jakob Zimmermann Examinator: Martin Herschend Juni 2018 Department of Mathematics

More information

Unitary representations of the icosahedral graded Hecke algebra

Unitary representations of the icosahedral graded Hecke algebra Unitary representations of the icosahedral graded Hecke algebra AMS Southeastern Section Meeting, LA - March 9, 008 Cathy Kriloff Idaho State University krilcath@isu.edu Joint work in progress with Yu

More information

Auslander s Theorem for permutation actions on noncommutative algebras

Auslander s Theorem for permutation actions on noncommutative algebras Auslander s Theorem for permutation actions on noncommutative algebras (arxiv:1705.00068) Jason Gaddis Miami University Joint with Ellen Kirkman, W. Frank Moore, Robert Won Invariant Theory Throughout,

More information

QUIVERS AND LATTICES.

QUIVERS AND LATTICES. QUIVERS AND LATTICES. KEVIN MCGERTY We will discuss two classification results in quite different areas which turn out to have the same answer. This note is an slightly expanded version of the talk given

More information

ALGEBRA HW 4. M 0 is an exact sequence of R-modules, then M is Noetherian if and only if M and M are.

ALGEBRA HW 4. M 0 is an exact sequence of R-modules, then M is Noetherian if and only if M and M are. ALGEBRA HW 4 CLAY SHONKWILER (a): Show that if 0 M f M g M 0 is an exact sequence of R-modules, then M is Noetherian if and only if M and M are. Proof. ( ) Suppose M is Noetherian. Then M injects into

More information

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

CHEVALLEY S THEOREM AND COMPLETE VARIETIES CHEVALLEY S THEOREM AND COMPLETE VARIETIES BRIAN OSSERMAN In this note, we introduce the concept which plays the role of compactness for varieties completeness. We prove that completeness can be characterized

More information

1.4 Solvable Lie algebras

1.4 Solvable Lie algebras 1.4. SOLVABLE LIE ALGEBRAS 17 1.4 Solvable Lie algebras 1.4.1 Derived series and solvable Lie algebras The derived series of a Lie algebra L is given by: L (0) = L, L (1) = [L, L],, L (2) = [L (1), L (1)

More information

HARTSHORNE EXERCISES

HARTSHORNE EXERCISES HARTSHORNE EXERCISES J. WARNER Hartshorne, Exercise I.5.6. Blowing Up Curve Singularities (a) Let Y be the cusp x 3 = y 2 + x 4 + y 4 or the node xy = x 6 + y 6. Show that the curve Ỹ obtained by blowing

More information

REPRESENTATION THEORY OF S n

REPRESENTATION THEORY OF S n REPRESENTATION THEORY OF S n EVAN JENKINS Abstract. These are notes from three lectures given in MATH 26700, Introduction to Representation Theory of Finite Groups, at the University of Chicago in November

More information

Canonical systems of basic invariants for unitary reflection groups

Canonical systems of basic invariants for unitary reflection groups Canonical systems of basic invariants for unitary reflection groups Norihiro Nakashima, Hiroaki Terao and Shuhei Tsujie Abstract It has been known that there exists a canonical system for every finite

More information

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

PROBLEMS, MATH 214A. Affine and quasi-affine varieties PROBLEMS, MATH 214A k is an algebraically closed field Basic notions Affine and quasi-affine varieties 1. Let X A 2 be defined by x 2 + y 2 = 1 and x = 1. Find the ideal I(X). 2. Prove that the subset

More information

4. Noether normalisation

4. Noether normalisation 4. Noether normalisation We shall say that a ring R is an affine ring (or affine k-algebra) if R is isomorphic to a polynomial ring over a field k with finitely many indeterminates modulo an ideal, i.e.,

More information

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11 3. Examples I did some examples and explained the theory at the same time. 3.1. roots of unity. Let L = Q(ζ) where ζ = e 2πi/5 is a primitive 5th root of

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg =

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg = Problem 1 Show that if π is an irreducible representation of a compact lie group G then π is also irreducible. Give an example of a G and π such that π = π, and another for which π π. Is this true for

More information

Subgroups of Linear Algebraic Groups

Subgroups of Linear Algebraic Groups Subgroups of Linear Algebraic Groups Subgroups of Linear Algebraic Groups Contents Introduction 1 Acknowledgements 4 1. Basic definitions and examples 5 1.1. Introduction to Linear Algebraic Groups 5 1.2.

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

A GRAPHICAL REPRESENTATION OF RINGS VIA AUTOMORPHISM GROUPS

A GRAPHICAL REPRESENTATION OF RINGS VIA AUTOMORPHISM GROUPS A GRAPHICAL REPRESENTATION OF RINGS VIA AUTOMORPHISM GROUPS N. MOHAN KUMAR AND PRAMOD K. SHARMA Abstract. Let R be a commutative ring with identity. We define a graph Γ Aut R (R) on R, with vertices elements

More information

A PROOF OF BURNSIDE S p a q b THEOREM

A PROOF OF BURNSIDE S p a q b THEOREM A PROOF OF BURNSIDE S p a q b THEOREM OBOB Abstract. We prove that if p and q are prime, then any group of order p a q b is solvable. Throughout this note, denote by A the set of algebraic numbers. We

More information