FMM Preconditioner for Radiative Transport

Size: px
Start display at page:

Download "FMM Preconditioner for Radiative Transport"

Transcription

1 FMM Preconditioner for Radiative Transport SIAM CSE 2017, Atlanta Yimin Zhong Department of Mathematics University of Texas at Austin In collaboration with Kui Ren (UT Austin) and Rongting Zhang (UT Austin) March 1, 2017 Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

2 Introduction of Radiative Transport Radiative transport describes the propagation of particles through a medium which is affected by absorption, emission, scattering. It has a wide variety of applications in optics, astrophysics, remote sensing, nuclear engineering, biomedical imaging. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

3 Here we consider following steady-state equation of radiative transport in medium D Ă R d, upx, vq is the density of particles at x along unit direction v, ż v upx, vq ` pσ s pxq ` σ a pxqqu σ s pxq K pv, v 1 qupx, v 1 qdv 1 ` qpxq S d 1 where v P S d 1, x P D, σ a is absorption coefficient, σ s is scattering coefficient. K pv, v 1 q is scattering phase function, describes the probability of each particle altering direction from v 1 to v. qpxq is certain isotropic source. For simplicity, we call σ t σ s ` σ a be extinction coefficient and assume there is vanishing incoming boundary conditions. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

4 Numerical methods for Radiative Transport Solutions to radiative transport in general needs enormous of computing efforts, which is due to high dimensionality of the solution space. In recent decades, some numerical methods are developed for solution of radiative transport. 1 Approximation (P n, SP n methods) : only accurate for scattering dominated medium. 2 Discrete Ordinates Method : high dimensionality, ray effect. 3 Stochastic-based method(monte-carlo) : computational cost. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

5 Integral Representation for Isotropic case Under isotropic setting, K pv, v 1 q 1 VolpS d 1 q. Let Φpxq ż 1 VolpS d 1 upx, vqdv q S d 1 then equation is equivalent to a linear transport equation v u ` σ t u σ s Φpxq ` qpxq Rpxq Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

6 Integral Representation for Isotropic case Along v, it is 1D transport (ODE), the solution for this equation is known upx, vq ż τ px,vq 0 expp ż ρ 0 σ t px ρ 1 vqdρ 1 qrpx ρvqdρ Figure: Illustration for 1D transport along v Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

7 Integral Representation for Isotropic case Integrate upx, vq over S d 1 and take average, Φpxq ż 1 VolpS d 1 q S d 1 ż τ px,vq If we take y x ρv, and let 0 Epx, yq expp expp ż ρ 0 ż ρ 0 σ t px ρ 1 vqdρ 1 qrpx ρvqdρdv σ t px ρ 1 vqdρ 1 q, where E is equivalent to a line integral for σ t from x to y. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

8 Integral Representation for Isotropic case Put E back into the equation, we obtain Φpxq ż 1 VolpS d 1 q S d 1 ż τ px,vq where the dρdv actually fits polar coordinate. 0 Epx, yqrpyqdρdv, Figure: Illustration of polar coordinate Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

9 Integral Representation for Isotropic case We transform from polar coordinate back to Cartesian dy ρ d 1 dρdv, and replace R with σ s Φ ` q, observing ρ x y, Φpxq ż 1 Epx, yq VolpS d 1 q D x y d 1 pσ spyqφpyq ` qpyqqdy we obtain an integral equation about Φ. Observation 1: This equation does not contain angular variable v. Observation 2: This work does not require q to be isotropic. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

10 Integral Representation for Isotropic case In terms of operator, we can write as where integral operator Kf pi KΣ s qφ Kq (1) ż 1 Epx, yq VolpS d 1 qpyqdy (2) q D x y d 1 Remark: K is compact, thus I KΣ s is Fredholm. Since when q 0, this equation only admits zero solution, by Fredholm alternative, I KΣ s is invertible. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

11 Algorithm for Integral Equation Discretize the integral equation, take Ψ pφpx 1 q, Φpx 2 q,..., Φpx n qq t, then Ψ KpΣ s Ψ ` Qq where Σ s diagpσ s px 1 q,..., σ s px n qq, and Q pqpx 1 q,..., qpx n qq t. Finally we obtain pi KΣ s qψ pkqq where matrix K is K ij 1 Epx i, x j q VolpS d 1 q x i x j d 1 w ij where w ij are weights to control the order of accuracy. For singularity part, we handle that separately. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

12 Algorithm for Integral Equation For linear system pi KΣ s qψ pkqq, 1 Observe that when x i x j increases, K ij decreases dramatically, which means (far) off-diagonal parts of K could be small (low rank), thus Krylov subspace method (e.g. GMRES) might work well for such linear system. 2 During each iteration of GMRES, we have to apply operator I KΣ s multiple times, in general, if all entries are known, the matrix-vector multiplication is OpN 2 q complexity, which could be very expensive (running serially) when N is large. 3 To calculate the entries, we need to mention the computational cost of calculating Epx i, x j q. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

13 Algorithm for Integral Equation 1 Due to the low rank property of K, we can adopt interpolative fast multipole method (FMM), such as Chebyshev polynomial, to accelerate the application of operator pi KΣ s q. 2 OpNq time complexity of FMM for calculation of pi KΣ s qψ. Observation 3: For piecewise defined σ a and σ s, the calculation of Epx i, x j q does not change the time complexity due to FMM s hierarchical structure. Observation 4: The total time cost is OpM 2 Nq, M is iteration number. Observation 5: Since GMRES will re-use the same operator, thus caching all expensive information will be beneficial. Observation 6: It is symmetric operator, can reduce storage in half. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

14 Numerical Experiments in 2D We select two source functions as examples below. In following experiments, σ a 0.2 and σ s 2.0, 5.0, 10.0 respectively. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

15 Strong scaling for FMM Solution Figure: Left: Time (s) for preparation. Right: Time(s) for GMRES iterations Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

16 Error from FMM (first source) Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

17 Error from FMM (second source) Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

18 Anisotropic Case: An Intuitive Approach Since our formulation highly depends on integral formulation of the solution, thus anisotropic scattering might not be the most efficient. We consider Henyey-Greenstein phase function p HG pv v 1 q, that ż v upx, vq ` pσ s pxq ` σ a pxqqu σ s pxq p HG pv v 1 qupx, v 1 qdv 1 ` qpxq S d 1 where p HG 1 4π 8ÿ p2k ` 1qg k P k pv v 1 q k 0 and if we expand the formula further p HG pµ, θ, µ 1, θ 1 q 8ÿ m 0 l m 8ÿ χ m l Pl m pµqpl m pµ 1 q cos mpθ θ 1 q Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

19 Anisotropic Case: An Intuitive Approach Because cos mpθ θ 1 q cos mθ cos mθ 1 ` sin mθ sin mθ 1, we can see the decoupling of v and v 1 is completed here. Let Φ m l pµ, θq P m l pµq cos mθ, Ψ m l pµ, θq P m l pµq sin mθ and let ż Cl m pyq upy, µ, θqφ m l pµ, θqdµdθ żs 2 Sl m pyq upy, µ, θqψ m l pµ, θqdµdθ S 2 then multiply the integral formulation by Φ n r and Ψ n r on both sides, we can obtain an integral equation system on C n r and S n r. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

20 Anisotropic Case: An Intuitive Approach The system about pc n r, S n r q is written as, ż Cr n pxq ż Sr n pxq D D Epx, yq σ s pyq ÿ χ m l Φ n r pφ m l Cl m pyq ` Ψ m l Sl m pyqq ` Φ n r qpyq dy l,m Epx, yq σ s pyq ÿ χ m l Ψ n r pφ m l Cl m pyq ` Ψ m l Sl m pyqq ` Ψ n r qpyq dy l,m where all θ, µ can be transformed into Cartesian coordinate with simple algebra. Observation 7: This system is truncated at m L for some small L. Observation 8: This system is symmetric. Observation 9: The time cost is OpM 2 L 2 Nq, where M is iteration number. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

21 Numerical Experiments in 2D on δ-eddington Approximation We adopt one of our previous source function to run simulation under setting µ a 0.2 and µ s 5.0, and g 1 g{p1 ` gq ď 0.5, we take Figure: averaged solution, from left to right, g , Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

22 Numerical Experiments in 2D on δ-eddington Approximation The integral operator system is 3 by 3, but only 5 entries have to be calculated. Figure: averaged solution, from left to right, g , Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

23 Summary and More 1 This method reduced the dimensionality of the problem. 2 For isotropic scattering media, we propose a fast algorithm for radiative transport equation, which can be used as a good preconditioner or approximation to the actual solution, the time complexity is OpNq. 3 This method does not require specific geometry or mesh. 4 And this method can extend to anisotropic scattering media with extra cost but solves in linear time and can be highly parallelized. 5 3D isotropic parallel solver is implemented. 6 Future work might be on optimization of algorithm, time dependent problems and non-intuitive method under anisotropic scattering, etc. Yimin Zhong (UT Austin) FMM Preconditioner for Radiative Transport March 1, / 23

Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations Part A: Local KL Representations

Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations Part A: Local KL Representations Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations Part A: Local KL Representations Andres A. Contreras Paul Mycek Olivier P. Le Maître Francesco Rizzi Bert Debusschere Omar M.

More information

Faster Kernel Ridge Regression Using Sketching and Preconditioning

Faster Kernel Ridge Regression Using Sketching and Preconditioning Faster Kernel Ridge Regression Using Sketching and Preconditioning Haim Avron Department of Applied Math Tel Aviv University, Israel SIAM CS&E 2017 February 27, 2017 Brief Introduction to Kernel Ridge

More information

Mathematische Methoden der Unsicherheitsquantifizierung

Mathematische Methoden der Unsicherheitsquantifizierung Mathematische Methoden der Unsicherheitsquantifizierung Oliver Ernst Professur Numerische Mathematik Sommersemester 2014 Contents 1 Introduction 1.1 What is Uncertainty Quantification? 1.2 A Case Study:

More information

A fast algorithm for radiative transport in isotropic media

A fast algorithm for radiative transport in isotropic media A fast algorithm for radiative transport in isotropic media Kui Ren Rongting Zhang Yimin Zhong October 3, 2016 Abstract We propose in this work a fast numerical algorithm for solving the equation of radiative

More information

LECTURE 16: UNITARY REPRESENTATIONS LECTURE BY SHEELA DEVADAS STANFORD NUMBER THEORY LEARNING SEMINAR FEBRUARY 14, 2018 NOTES BY DAN DORE

LECTURE 16: UNITARY REPRESENTATIONS LECTURE BY SHEELA DEVADAS STANFORD NUMBER THEORY LEARNING SEMINAR FEBRUARY 14, 2018 NOTES BY DAN DORE LECTURE 16: UNITARY REPRESENTATIONS LECTURE BY SHEELA DEVADAS STANFORD NUMBER THEORY LEARNING SEMINAR FEBRUARY 14, 2018 NOTES BY DAN DORE Let F be a local field with valuation ring O F, and G F the group

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

Analysis of Scattering of Radiation in a Plane-Parallel Atmosphere. Stephanie M. Carney ES 299r May 23, 2007

Analysis of Scattering of Radiation in a Plane-Parallel Atmosphere. Stephanie M. Carney ES 299r May 23, 2007 Analysis of Scattering of Radiation in a Plane-Parallel Atmosphere Stephanie M. Carney ES 299r May 23, 27 TABLE OF CONTENTS. INTRODUCTION... 2. DEFINITION OF PHYSICAL QUANTITIES... 3. DERIVATION OF EQUATION

More information

An Angular Multigrid Acceleration Method for S n Equations with Highly Forward-Peaked Scattering

An Angular Multigrid Acceleration Method for S n Equations with Highly Forward-Peaked Scattering An Angular Multigrid Acceleration Method for S n Equations with Highly Forward-Peaked Scattering Bruno Turcksin & Jean C. Ragusa & Jim E. Morel Texas A&M University, Dept. of Nuclear Engineering Bruno

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

REGULARITY AND CONSTRUCTION OF BOUNDARY MULTIWAVELETS

REGULARITY AND CONSTRUCTION OF BOUNDARY MULTIWAVELETS REGULARITY AND CONSTRUCTION OF BOUNDARY MULTIWAVELETS FRITZ KEINERT Abstract. The conventional way of constructing boundary functions for wavelets on a finite interval is to form linear combinations of

More information

MATH 260 Class notes/questions January 10, 2013

MATH 260 Class notes/questions January 10, 2013 MATH 26 Class notes/questions January, 2 Linear transformations Last semester, you studied vector spaces (linear spaces) their bases, dimension, the ideas of linear dependence and linear independence Now

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Monte Carlo Radiation Transfer I

Monte Carlo Radiation Transfer I Monte Carlo Radiation Transfer I Monte Carlo Photons and interactions Sampling from probability distributions Optical depths, isotropic emission, scattering Monte Carlo Basics Emit energy packet, hereafter

More information

Radiative transfer theory (Pure gas atmosphere)

Radiative transfer theory (Pure gas atmosphere) Radiative transfer theory (Pure gas atmosphere Bruno Carli Radiative transfer equation The radiative transfer equation states that the specific intensity of radiation I( (defined as the energy flux per

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Elena Virnik, TU BERLIN Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

arxiv: v1 [math.ca] 4 Apr 2017

arxiv: v1 [math.ca] 4 Apr 2017 ON LOCALIZATION OF SCHRÖDINGER MEANS PER SJÖLIN Abstract. Localization properties for Schrödinger means are studied in dimension higher than one. arxiv:704.00927v [math.ca] 4 Apr 207. Introduction Let

More information

Akira Ishimaru, Sermsak Jaruwatanadilok and Yasuo Kuga

Akira Ishimaru, Sermsak Jaruwatanadilok and Yasuo Kuga INSTITUTE OF PHYSICS PUBLISHING Waves Random Media 4 (4) 499 5 WAVES IN RANDOMMEDIA PII: S959-774(4)789- Multiple scattering effects on the radar cross section (RCS) of objects in a random medium including

More information

MATH 260 Homework assignment 8 March 21, px 2yq dy. (c) Where C is the part of the line y x, parametrized any way you like.

MATH 260 Homework assignment 8 March 21, px 2yq dy. (c) Where C is the part of the line y x, parametrized any way you like. MATH 26 Homework assignment 8 March 2, 23. Evaluate the line integral x 2 y dx px 2yq dy (a) Where is the part of the parabola y x 2 from p, q to p, q, parametrized as x t, y t 2 for t. (b) Where is the

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Benjamin Seibold MIT Applied Mathematics Mar 02 nd, 2009 Collaborator Martin Frank (TU Kaiserslautern) Partial Support NSF

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Lecture 16 Methods for System of Linear Equations (Linear Systems) Songting Luo. Department of Mathematics Iowa State University

Lecture 16 Methods for System of Linear Equations (Linear Systems) Songting Luo. Department of Mathematics Iowa State University Lecture 16 Methods for System of Linear Equations (Linear Systems) Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department

More information

Entropy and Ergodic Theory Lecture 27: Sinai s factor theorem

Entropy and Ergodic Theory Lecture 27: Sinai s factor theorem Entropy and Ergodic Theory Lecture 27: Sinai s factor theorem What is special about Bernoulli shifts? Our main result in Lecture 26 is weak containment with retention of entropy. If ra Z, µs and rb Z,

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Approximation in the Zygmund Class

Approximation in the Zygmund Class Approximation in the Zygmund Class Odí Soler i Gibert Joint work with Artur Nicolau Universitat Autònoma de Barcelona New Developments in Complex Analysis and Function Theory, 02 July 2018 Approximation

More information

Block-Göttsche invariants from wall-crossing

Block-Göttsche invariants from wall-crossing Block-Göttsche invariants from wall-crossing Sara Angela Filippini 6 giugno 2014 Outline GW theory of GPS Quiver representations GW invariants q-deformation q-deformed GW invariants The GW theory of GPS

More information

DS-GA 3001: PROBLEM SESSION 2 SOLUTIONS VLADIMIR KOBZAR

DS-GA 3001: PROBLEM SESSION 2 SOLUTIONS VLADIMIR KOBZAR DS-GA 3: PROBLEM SESSION SOLUTIONS VLADIMIR KOBZAR Note: In this discussion we allude to the fact the dimension of a vector space is given by the number of basis vectors. We will shortly establish this

More information

Singular integral operators and the Riesz transform

Singular integral operators and the Riesz transform Singular integral operators and the Riesz transform Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto November 17, 017 1 Calderón-Zygmund kernels Let ω n 1 be the measure

More information

Including general scattering in high-fidelity deterministic particle transport calculations for proton therapy applications

Including general scattering in high-fidelity deterministic particle transport calculations for proton therapy applications Including general scattering in high-fidelity deterministic particle transport calculations for proton therapy applications L.F. de Niet Guided by Dr. D. Lathouwers February 2, 2016 Abstract Normal proton

More information

Mariusz Jurkiewicz, Bogdan Przeradzki EXISTENCE OF SOLUTIONS FOR HIGHER ORDER BVP WITH PARAMETERS VIA CRITICAL POINT THEORY

Mariusz Jurkiewicz, Bogdan Przeradzki EXISTENCE OF SOLUTIONS FOR HIGHER ORDER BVP WITH PARAMETERS VIA CRITICAL POINT THEORY DEMONSTRATIO MATHEMATICA Vol. XLVIII No 1 215 Mariusz Jurkiewicz, Bogdan Przeradzki EXISTENCE OF SOLUTIONS FOR HIGHER ORDER BVP WITH PARAMETERS VIA CRITICAL POINT THEORY Communicated by E. Zadrzyńska Abstract.

More information

Serco Assurance. Resonance Theory and Transport Theory in WIMSD J L Hutton

Serco Assurance. Resonance Theory and Transport Theory in WIMSD J L Hutton Serco Assurance Resonance Theory and Transport Theory in WIMSD J L Hutton 2 March 2004 Outline of Talk Resonance Treatment Outline of problem - pin cell geometry U 238 cross section Simple non-mathematical

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0 Singular value decomposition If only the first p singular values are nonzero we write G =[U p U o ] " Sp 0 0 0 # [V p V o ] T U p represents the first p columns of U U o represents the last N-p columns

More information

Lecture 19 - Covariance, Conditioning

Lecture 19 - Covariance, Conditioning THEORY OF PROBABILITY VLADIMIR KOBZAR Review. Lecture 9 - Covariance, Conditioning Proposition. (Ross, 6.3.2) If X,..., X n are independent normal RVs with respective parameters µ i, σi 2 for i,..., n,

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

High-Order Similarity Relations in Radiative Transfer: Supplementary Document

High-Order Similarity Relations in Radiative Transfer: Supplementary Document High-Order Similarity Relations in Radiative Transfer: Supplementary Document Shuang hao Ravi Ramamoorthi Kavita Bala Cornell University University of California, Berkeley Cornell University Overview This

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM PACS: 43.20.Fn Gumerov, Nail A.; Duraiswami, Ramani; Fantalgo LLC, 7496

More information

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations Institute of Applied Physics and Computational Mathematics, Beijing NUS, Singapore, March 2-6, 2015 (joint

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

A fast and well-conditioned spectral method: The US method

A fast and well-conditioned spectral method: The US method A fast and well-conditioned spectral method: The US method Alex Townsend University of Oxford Leslie Fox Prize, 24th of June 23 Partially based on: S. Olver & T., A fast and well-conditioned spectral method,

More information

Fast numerical methods for solving linear PDEs

Fast numerical methods for solving linear PDEs Fast numerical methods for solving linear PDEs P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

4 Relativistic kinematics

4 Relativistic kinematics 4 Relativistic kinematics In astrophysics, we are often dealing with relativistic particles that are being accelerated by electric or magnetic forces. This produces radiation, typically in the form of

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

LA Support for Scalable Kernel Methods. David Bindel 29 Sep 2018

LA Support for Scalable Kernel Methods. David Bindel 29 Sep 2018 LA Support for Scalable Kernel Methods David Bindel 29 Sep 2018 Collaborators Kun Dong (Cornell CAM) David Eriksson (Cornell CAM) Jake Gardner (Cornell CS) Eric Lee (Cornell CS) Hannes Nickisch (Phillips

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

In this method, one defines

In this method, one defines 1 Feautrier s Method for Radiative Transfer This project is to use Feautrier s method to solve the Gray Atmosphere problem for a plane-parallel atmosphere Although we have developed alternate techniques

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Sobolev-Type Extremal Polynomials

Sobolev-Type Extremal Polynomials Soolev-Type Extremal Polyomials (case of the sigular measures) Ael Díaz-Gozález Joi with Héctor Pijeira-Carera ULL 2016 Soolev-Type Extremal Polyomials adiazgo@math.uc3m.es 1 / 18 Moic extremal polyomials

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,  ISSN X Application of the fast multipole method to the 3-D BEM analysis of electron guns T. Nishida and K. Hayami Department of Mathematical Engineering and Information Physics, School of Engineering, University

More information

Flag Varieties. Matthew Goroff November 2, 2016

Flag Varieties. Matthew Goroff November 2, 2016 Flag Varieties Matthew Goroff November 2, 2016 1. Grassmannian Variety Definition 1.1: Let V be a k-vector space of dimension n. The Grassmannian Grpr, V q is the set of r-dimensional subspaces of V. It

More information

JOHN THICKSTUN. p x. n sup Ipp y n x np x nq. By the memoryless and stationary conditions respectively, this reduces to just 1 yi x i.

JOHN THICKSTUN. p x. n sup Ipp y n x np x nq. By the memoryless and stationary conditions respectively, this reduces to just 1 yi x i. ESTIMATING THE SHANNON CAPACITY OF A GRAPH JOHN THICKSTUN. channels and graphs Consider a stationary, memoryless channel that maps elements of discrete alphabets X to Y according to a distribution p y

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method direct and indirect methods positive definite linear systems Krylov sequence spectral analysis of Krylov sequence preconditioning Prof. S. Boyd, EE364b, Stanford University Three

More information

Fast Multipole Methods for Incompressible Flow Simulation

Fast Multipole Methods for Incompressible Flow Simulation Fast Multipole Methods for Incompressible Flow Simulation Nail A. Gumerov & Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park Support of NSF awards 0086075

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

Traces of rationality of Darmon points

Traces of rationality of Darmon points Traces of rationality of Darmon points [BD09] Bertolini Darmon, The rationality of Stark Heegner points over genus fields of real quadratic fields Seminari de Teoria de Nombres de Barcelona Barcelona,

More information

Fast Direct Methods for Gaussian Processes

Fast Direct Methods for Gaussian Processes Fast Direct Methods for Gaussian Processes Mike O Neil Departments of Mathematics New York University oneil@cims.nyu.edu December 12, 2015 1 Collaborators This is joint work with: Siva Ambikasaran Dan

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Astro 305 Lecture Notes Wayne Hu

Astro 305 Lecture Notes Wayne Hu Astro 305 Lecture Notes Wayne Hu Set 1: Radiative Transfer Radiation Observables From an empiricist s point of view there are 4 observables for radiation Energy Flux Direction Color Polarization Energy

More information

Spectral analysis and numerical methods for fractional diffusion equations

Spectral analysis and numerical methods for fractional diffusion equations Spectral analysis and numerical methods for fractional diffusion equations M. Dehghan M. Donatelli M. Mazza H. Moghaderi S. Serra-Capizzano Department of Science and High Technology, University of Insubria,

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

The Conjugate Gradient Method for Solving Linear Systems of Equations

The Conjugate Gradient Method for Solving Linear Systems of Equations The Conjugate Gradient Method for Solving Linear Systems of Equations Mike Rambo Mentor: Hans de Moor May 2016 Department of Mathematics, Saint Mary s College of California Contents 1 Introduction 2 2

More information

Entropy and Ergodic Theory Notes 21: The entropy rate of a stationary process

Entropy and Ergodic Theory Notes 21: The entropy rate of a stationary process Entropy and Ergodic Theory Notes 21: The entropy rate of a stationary process 1 Sources with memory In information theory, a stationary stochastic processes pξ n q npz taking values in some finite alphabet

More information

Shifted Laplace and related preconditioning for the Helmholtz equation

Shifted Laplace and related preconditioning for the Helmholtz equation Shifted Laplace and related preconditioning for the Helmholtz equation Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

A Closed-Form Solution to Single Scattering for General Phase Functions and Light Distributions. Vincent Pegoraro Mathias Schott Steven G.

A Closed-Form Solution to Single Scattering for General Phase Functions and Light Distributions. Vincent Pegoraro Mathias Schott Steven G. A Closed-Form Solution to Single Scattering for General Phase Functions and Light Distributions Vincent Pegoraro Mathias Schott Steven G. Parker Outline Introduction Related Work Closed-Form Single Scattering

More information

Interpolation and Approximation

Interpolation and Approximation Interpolation and Approximation The Basic Problem: Approximate a continuous function f(x), by a polynomial p(x), over [a, b]. f(x) may only be known in tabular form. f(x) may be expensive to compute. Definition:

More information

Defect-based a-posteriori error estimation for implicit ODEs and DAEs

Defect-based a-posteriori error estimation for implicit ODEs and DAEs 1 / 24 Defect-based a-posteriori error estimation for implicit ODEs and DAEs W. Auzinger Institute for Analysis and Scientific Computing Vienna University of Technology Workshop on Innovative Integrators

More information

Fast Multipole Methods for The Laplace Equation. Outline

Fast Multipole Methods for The Laplace Equation. Outline Fast Multipole Methods for The Laplace Equation Ramani Duraiswami Nail Gumerov Outline 3D Laplace equation and Coulomb potentials Multipole and local expansions Special functions Legendre polynomials Associated

More information

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

Sparse Tensor Galerkin Discretizations for First Order Transport Problems Sparse Tensor Galerkin Discretizations for First Order Transport Problems Ch. Schwab R. Hiptmair, E. Fonn, K. Grella, G. Widmer ETH Zürich, Seminar for Applied Mathematics IMA WS Novel Discretization Methods

More information

The HJB-POD approach for infinite dimensional control problems

The HJB-POD approach for infinite dimensional control problems The HJB-POD approach for infinite dimensional control problems M. Falcone works in collaboration with A. Alla, D. Kalise and S. Volkwein Università di Roma La Sapienza OCERTO Workshop Cortona, June 22,

More information

Inexact inverse iteration with preconditioning

Inexact inverse iteration with preconditioning Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest)) 1 Introduction 2 Preconditioned

More information

Singular Value Decomposition and its. SVD and its Applications in Computer Vision

Singular Value Decomposition and its. SVD and its Applications in Computer Vision Singular Value Decomposition and its Applications in Computer Vision Subhashis Banerjee Department of Computer Science and Engineering IIT Delhi October 24, 2013 Overview Linear algebra basics Singular

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

A DG-based incompressible Navier-Stokes solver

A DG-based incompressible Navier-Stokes solver A DG-based incompressible Navier-Stokes solver Higer-order DG metods and finite element software for modern arcitectures - Bat 2016 Marian Piatkowski 1 Peter Bastian 1 1 Interdisciplinary Center for Scientific

More information

NOTES WEEK 15 DAY 1 SCOT ADAMS

NOTES WEEK 15 DAY 1 SCOT ADAMS NOTES WEEK 15 DAY 1 SCOT ADAMS We fix some notation for the entire class today: Let n P N, W : R n, : 2 P N pw q, W : LpW, W q, I : id W P W, z : 0 W 0 n. Note that W LpR n, R n q. Recall, for all T P

More information

The MOOD method for steady-state Euler equations

The MOOD method for steady-state Euler equations The MOOD method for steady-state Euler equations G.J. Machado 1, S. Clain 1,2, R. Loubère 2 1 Universidade do Minho, Centre of Mathematics, Guimarães, Portugal 2 Université Paul Sabatier, Institut de Mathématique

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

Implementation of the dg method

Implementation of the dg method Implementation of the dg method Matteo Cicuttin CERMICS - École Nationale des Ponts et Chaussées Marne-la-Vallée March 6, 2017 Outline Model problem, fix notation Representing polynomials Computing integrals

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

On a Topology Optimization Problem Governed by the One dimensional Wave Equation

On a Topology Optimization Problem Governed by the One dimensional Wave Equation Reports of the Department of Mathematical Information Technology Series B. Scientific Computing No. B 5/214 On a Topology Optimization Problem Governed by the One dimensional Wave Equation Raino A. E.

More information

Nonlinear Iterative Solution of the Neutron Transport Equation

Nonlinear Iterative Solution of the Neutron Transport Equation Nonlinear Iterative Solution of the Neutron Transport Equation Emiliano Masiello Commissariat à l Energie Atomique de Saclay /DANS//SERMA/LTSD emiliano.masiello@cea.fr 1/37 Outline - motivations and framework

More information

Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media

Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media Zhixiong Guo and Sunil Kumar The discrete-ordinates method is formulated to solve transient radiative transfer

More information

POTENTIAL THEORY AND HEAT CONDUCTION DIRICHLET S PROBLEM

POTENTIAL THEORY AND HEAT CONDUCTION DIRICHLET S PROBLEM Chapter 6 POTENTIAL THEORY AND HEAT CONDUCTION DIRICHLET S PROBLEM M. Ragheb 9/19/13 6.1 INTRODUCTION The solution of the Dirichlet problem is one of the easiest approaches to grasp using Monte Carlo methodologies.

More information

Rapid evaluation of electrostatic interactions in multi-phase media

Rapid evaluation of electrostatic interactions in multi-phase media Rapid evaluation of electrostatic interactions in multi-phase media P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Mark Tygert and

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

A robust computational method for the Schrödinger equation cross sections using an MG-Krylov scheme

A robust computational method for the Schrödinger equation cross sections using an MG-Krylov scheme A robust computational method for the Schrödinger equation cross sections using an MG-Krylov scheme International Conference On Preconditioning Techniques For Scientific And Industrial Applications 17-19

More information

Preconditioning via Diagonal Scaling

Preconditioning via Diagonal Scaling Preconditioning via Diagonal Scaling Reza Takapoui Hamid Javadi June 4, 2014 1 Introduction Interior point methods solve small to medium sized problems to high accuracy in a reasonable amount of time.

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems Abstract and Applied Analysis Article ID 237808 pages http://dxdoiorg/055/204/237808 Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite

More information