Implementation of the dg method

Size: px
Start display at page:

Download "Implementation of the dg method"

Transcription

1 Implementation of the dg method Matteo Cicuttin CERMICS - École Nationale des Ponts et Chaussées Marne-la-Vallée March 6, 2017

2 Outline Model problem, fix notation Representing polynomials Computing integrals Assembly, solve, postprocess Matlab code to solve 1D model problem

3 Model problem Let Ω R d with d {1, 2, 3} be an open, bounded and connected polytopal domain. We will consider the model problem u = f in Ω, u = 0 on Ω, with f L 2 (Ω). By setting V := H 1 0 (Ω), its weak form is Find u V such that ( u, v) Ω = (f, v) Ω for all v V.

4 Notation I: mesh and elements Let be a suitable subdivision of Ω in polytopal elements. We define the skeleton Γ := Moreover, we define: Γ int = Γ \ Ω + and generic elements sharing a face + n n + int e := + Γ int n + and n normals of + and on e

5 Notation II: jump and average Let q : Ω R and φ : R d Average: {q} e := 1 2 (q+ + q ) {φ} e := 1 2 (φ+ + φ ) Jump: [q ] e := q + n + + q n [φ] e := φ + n + + φ n If e belongs to the boundary of the domain (i.e. e Ω) we just drop the terms with : {φ} e := φ + and [q ] e := q + n +

6 Symmetric Interior Penalty dg SIP dg method is derived from the following equation: u v ({ u} [v ]+{ v} [u] η [u] [v ]) = Γ Ω fv = (f, v) In SIP dg we approximate the solution of our equation using piecewise continuous polynomials on the elements. S p h := { w h L 2 (Ω) : w h P k d( ), } SIP dg method will then be: Find u h S p h s.t. a(u h, v h ) = (f, v h ), v h S p h where a(u, v) : S p h Sp h R a(u, v) = u v ({ u} [v ] + { v} [u] η [u] [v ]) Γ

7 Representing polynomials We need to be able to represent d-variate polynomials of degree k on cells: p(x) P k d ( ). We introduce a basis of Pk d ( ): in 1D for example {1, x, x 2,...}. Once the basis is fixed, the coefficients p i fully determine the polynomial. N k d p(x) = p i φ i (x) i=1 where Nd k is the size of the basis for Pk d ( ): ( ) k + d Nd k = d he coefficients of the basis will be called degrees of freedom (DoFs).

8 Scaled monomial basis It is better, however, to use the so-called scaled monomial basis centered on the barycenter x of : { d } d P k d( ) = span x αi,i 1 i d 0 α i k. i=1 where x = (x x )/h and x,i is the i-th component of x. i= k=0 k=1 k=2 k=3 k=4 k=

9 Integrals and mass matrix We want to compute p(x)q(x), where p, q Pk d. As we discussed, we can express polynomials as linear combinations of basis functions: Introduce mass matrix: p(x)q(x) = Rewrite using mass matrix: N k d q i φ i (x) p j φ j (x) i=1 M ij = Let p = {p j } and q = {q i }: p(x)q(x) = N k d j=1 φ i (x)φ j (x) N k k d N d q i i=1 j=1 pq = q Mp. M ij p j.

10 Mass matrix he integral is now hidden inside the mass matrix M ij = φ i (x)φ j (x). How to compute it? We need to do numerical integration using quadrature rules.

11 Quadrature rules Quadrature Q = (Q w, Q p ): collection of Q points and associated weights. Definite integrals are computed as weighted sum of evaluations of the integrand on the points prescribed by the quadrature: 1 Q f(x) dx = w i f(x i ), 1 i=1 w i Q w, x i Q p A quadrature is given on a specific reference element. Because of that you need to map it on your physical element. In particular: Map points from the reference to physical (affine transform) Multiply weights by measure of physical element (Jacobian)

12 Quadratures in practice here are lots of different types of quadrature. Keywords for simplices: 1D: Gauss, Gauss-Lobatto,... 2D: Dunavant, Grundmann-Moeller,... 3D: Keast, ARBQ, Grundmann-Moeller,... On quads, we usually tensorize. Look here for code: jburkardt/. In Matlab code we use Golub-Welsch algorithm to compute Gauss quadrature.

13 Mass matrix and stiffness matrix We are now able to compute the mass matrix: M ij = φ i (x)φ j (x) = Q i=1 w i φ i ( x i )φ j ( x i ), where w i and x i are the quadrature weights and points after the transformations. It is possible to build the stiffness matrix in the same way: S ij = φ i (x) φ j (x) = hese matrices will have size N k d N k d. Q i=1 w i φ i ( x i ) φ j ( x i ).

14 A code he numerical solution of a PDE, in general, consists of three phases: Assembly: Compute the local contributions for every and put them in the global system matrix, Solve: Solve the linear system Au = f, Postprocess: Recover the values of the solution from the DoFs computed in the previous step.

15 Assembly - Cell contributions u h v h ({ u h } [v h ]+{ v h } [u h ] η [u h ] [v h ]) = (f, v h ) Γ Remember: v h can be any function in S p h ; we choose all the coefficients to be 1 for linearity, you can write one equation per basis function the coefficients u j are the unknowns hen, for the terms in red, locally we get for 1 n Nd k u 1 φ 1 φ u n φ n φ 1 = fφ 1 u 1. φ 1 φ n u n φ n φ n = fφ n We ve got Nd k local equations for each element in.

16 Assembly - Cell contributions We now put the equations we obtained in a global matrix card( ) N d k Local stiffness matrices card( ) N d k = Consider a 1D mesh composed on 5 elements (depicted in blue). Each element gets its own set of equations in the global matrix. he structure of the global matrix is related to the mesh. Knowing the mesh, it is easy to determine the size of the system. We haven t assembled the other terms yet. Note the decoupling.

17 Assembly - Face-related terms u h v h ({ u h } [v h ] + { v h } [u h ] η [u h ] [v h ]) = (f, v h ) Γ + We have three additional terms to assemble We expand them with the expressions for jump and average hey will couple adjacent elements

18 Assembly - Face-related terms [v ] = e{ u} 1 ( u + + u ) (v + n + + v n ) = 2 e = 1 [ ( u+ v + n + ) + ( u + v n ) + ( u v + n + ) + ( u v n ) ] 2 e he terms in red will be on the diagonal he terms in green will be off-diagonal A ++ 1 = 1 2 A + 1 = 1 2 e e u + v + n + A + 1 = 1 2 u v + n + A 1 = 1 2 e e u + v n u v n

19 Assembly - Face-related terms A ++ A + A + A Suppose + = 2 and = 3 You can see that the off-diagonal terms introduce a coupling between adjacent elements Remember that since in 1D faces are just points, integrating means that you need to just evaluate the functions there

20 Assembly - Face-related terms We have the two remaining terms, you handle them exactly as the previous one. e { v} [u] = 1 2 e ( v+ + v ) (u + n + + u n ) e η [u] [v ] = e η(u+ n + + u n ) (v + n + + v n ) Don t forget the two boundary faces!

21 Solve Once we have assembled the problem, we must solve it. In Matlab there are different ways: Use the backslash operator u = A\f Use one of the iterative solvers, pcg() is ok

22 Postprocess By solving, we computed the coefficients u i,n, 1 i Nd k for each element 1 n card( ). o recover the values of the solution at any point, we must evaluate them against the basis. We choose N p equispaced points on each element We evaluate there We plot the result N k d u n (x j ) = u i,n φ i (x i ), i=1 1 j N p

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method The Discontinuous Galerkin Finite Element Method Michael A. Saum msaum@math.utk.edu Department of Mathematics University of Tennessee, Knoxville The Discontinuous Galerkin Finite Element Method p.1/41

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

WRT in 2D: Poisson Example

WRT in 2D: Poisson Example WRT in 2D: Poisson Example Consider 2 u f on [, L x [, L y with u. WRT: For all v X N, find u X N a(v, u) such that v u dv v f dv. Follows from strong form plus integration by parts: ( ) 2 u v + 2 u dx

More information

Scientific Computing: Numerical Integration

Scientific Computing: Numerical Integration Scientific Computing: Numerical Integration Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Fall 2015 Nov 5th, 2015 A. Donev (Courant Institute) Lecture

More information

Efficient hp-finite elements

Efficient hp-finite elements Efficient hp-finite elements Ammon Washburn July 31, 2015 Abstract Ways to make an hp-finite element method efficient are presented. Standard FEMs and hp-fems with their various strengths and weaknesses

More information

Parallel Discontinuous Galerkin Method

Parallel Discontinuous Galerkin Method Parallel Discontinuous Galerkin Method Yin Ki, NG The Chinese University of Hong Kong Aug 5, 2015 Mentors: Dr. Ohannes Karakashian, Dr. Kwai Wong Overview Project Goal Implement parallelization on Discontinuous

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

A Fast Fourier transform based direct solver for the Helmholtz problem. AANMPDE 2017 Palaiochora, Crete, Oct 2, 2017

A Fast Fourier transform based direct solver for the Helmholtz problem. AANMPDE 2017 Palaiochora, Crete, Oct 2, 2017 A Fast Fourier transform based direct solver for the Helmholtz problem Jari Toivanen Monika Wolfmayr AANMPDE 2017 Palaiochora, Crete, Oct 2, 2017 Content 1 Model problem 2 Discretization 3 Fast solver

More information

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen CIV-E16 Engineering Computation and Simulation Examination, December 12, 217 / Niiranen This examination consists of 3 problems rated by the standard scale 1...6. Problem 1 Let us consider a long and tall

More information

Lecture 26: Putting it all together #5... Galerkin Finite Element Methods for ODE BVPs

Lecture 26: Putting it all together #5... Galerkin Finite Element Methods for ODE BVPs Lecture 26: Putting it all together #5... Galerkin Finite Element Methods for ODE BVPs Outline 1) : Review 2) A specific Example: Piecewise linear elements 3) Computational Issues and Algorithms A) Calculation

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca GeoPDEs An Octave/Matlab software for research on IGA R. Vázquez IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca Joint work with C. de Falco and A. Reali Supported by the ERC Starting Grant:

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

The Finite Element Method for the Wave Equation

The Finite Element Method for the Wave Equation The Finite Element Method for the Wave Equation 1 The Wave Equation We consider the scalar wave equation modelling acoustic wave propagation in a bounded domain 3, with boundary Γ : 1 2 u c(x) 2 u 0, in

More information

Computational Methods for Engineering Applications II. Homework Problem Sheet 4

Computational Methods for Engineering Applications II. Homework Problem Sheet 4 S. Mishra K. O. Lye L. Scarabosio Autumn Term 2015 Computational Methods for Engineering Applications II ETH Zürich D-MATH Homework Problem Sheet 4 This assignment sheet contains some tasks marked as Core

More information

3. Numerical integration

3. Numerical integration 3. Numerical integration... 3. One-dimensional quadratures... 3. Two- and three-dimensional quadratures... 3.3 Exact Integrals for Straight Sided Triangles... 5 3.4 Reduced and Selected Integration...

More information

TMA4220: Programming project - part 1

TMA4220: Programming project - part 1 TMA4220: Programming project - part 1 TMA4220 - Numerical solution of partial differential equations using the finite element method The programming project will be split into two parts. This is the first

More information

8 A pseudo-spectral solution to the Stokes Problem

8 A pseudo-spectral solution to the Stokes Problem 8 A pseudo-spectral solution to the Stokes Problem 8.1 The Method 8.1.1 Generalities We are interested in setting up a pseudo-spectral method for the following Stokes Problem u σu p = f in Ω u = 0 in Ω,

More information

A brief introduction to finite element methods

A brief introduction to finite element methods CHAPTER A brief introduction to finite element methods 1. Two-point boundary value problem and the variational formulation 1.1. The model problem. Consider the two-point boundary value problem: Given a

More information

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin A Posteriori DG using Non-Polynomial Basis 1 A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin Department of Mathematics, UC Berkeley;

More information

Finite Elements for Nonlinear Problems

Finite Elements for Nonlinear Problems Finite Elements for Nonlinear Problems Computer Lab 2 In this computer lab we apply finite element method to nonlinear model problems and study two of the most common techniques for solving the resulting

More information

Spline Element Method for Partial Differential Equations

Spline Element Method for Partial Differential Equations for Partial Differential Equations Department of Mathematical Sciences Northern Illinois University 2009 Multivariate Splines Summer School, Summer 2009 Outline 1 Why multivariate splines for PDEs? Motivation

More information

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-12 INSTITTE of MATHEMATICS Academy of Sciences Czech Republic Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Antti Hannukainen

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Introduction Till now we dealt only with finite elements having straight edges.

More information

The Spectral-Element Method: Introduction

The Spectral-Element Method: Introduction The Spectral-Element Method: Introduction Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Computational Seismology 1 / 59 Outline 1 Introduction 2 Lagrange

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

3. Mathematical Properties of MDOF Systems

3. Mathematical Properties of MDOF Systems 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are

More information

6.3 Partial Fractions

6.3 Partial Fractions 6.3 Partial Fractions Mark Woodard Furman U Fall 2009 Mark Woodard (Furman U) 6.3 Partial Fractions Fall 2009 1 / 11 Outline 1 The method illustrated 2 Terminology 3 Factoring Polynomials 4 Partial fraction

More information

Discontinuous Galerkin Methods: Theory, Computation and Applications

Discontinuous Galerkin Methods: Theory, Computation and Applications Discontinuous Galerkin Methods: Theory, Computation and Applications Paola. Antonietti MOX, Dipartimento di Matematica Politecnico di Milano.MO. X MODELLISTICA E CALCOLO SCIENTIICO. MODELING AND SCIENTIIC

More information

Chapter 3 Conforming Finite Element Methods 3.1 Foundations Ritz-Galerkin Method

Chapter 3 Conforming Finite Element Methods 3.1 Foundations Ritz-Galerkin Method Chapter 3 Conforming Finite Element Methods 3.1 Foundations 3.1.1 Ritz-Galerkin Method Let V be a Hilbert space, a(, ) : V V lr a bounded, V-elliptic bilinear form and l : V lr a bounded linear functional.

More information

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods Høst 2014

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods Høst 2014 Norwegian University of Science and Technology Department of Mathematical Sciences TMA422 Numerical Solution of Partial Differential Equations Using Element Methods Høst 214 Exercise set 2 1 Consider the

More information

Solving Boundary Value Problems (with Gaussians)

Solving Boundary Value Problems (with Gaussians) What is a boundary value problem? Solving Boundary Value Problems (with Gaussians) Definition A differential equation with constraints on the boundary Michael McCourt Division Argonne National Laboratory

More information

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions.

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions. L Vandenberghe EE133A (Spring 2017) 3 Matrices notation and terminology matrix operations linear and affine functions complexity 3-1 Matrix a rectangular array of numbers, for example A = 0 1 23 01 13

More information

Accuracy, Precision and Efficiency in Sparse Grids

Accuracy, Precision and Efficiency in Sparse Grids John, Information Technology Department, Virginia Tech.... http://people.sc.fsu.edu/ jburkardt/presentations/ sandia 2009.pdf... Computer Science Research Institute, Sandia National Laboratory, 23 July

More information

Directional Field. Xiao-Ming Fu

Directional Field. Xiao-Ming Fu Directional Field Xiao-Ming Fu Outlines Introduction Discretization Representation Objectives and Constraints Outlines Introduction Discretization Representation Objectives and Constraints Definition Spatially-varying

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

Matrix Assembly in FEA

Matrix Assembly in FEA Matrix Assembly in FEA 1 In Chapter 2, we spoke about how the global matrix equations are assembled in the finite element method. We now want to revisit that discussion and add some details. For example,

More information

Numerical Methods for Inverse Kinematics

Numerical Methods for Inverse Kinematics Numerical Methods for Inverse Kinematics Niels Joubert, UC Berkeley, CS184 2008-11-25 Inverse Kinematics is used to pose models by specifying endpoints of segments rather than individual joint angles.

More information

arxiv: v1 [math.na] 1 May 2013

arxiv: v1 [math.na] 1 May 2013 arxiv:3050089v [mathna] May 03 Approximation Properties of a Gradient Recovery Operator Using a Biorthogonal System Bishnu P Lamichhane and Adam McNeilly May, 03 Abstract A gradient recovery operator based

More information

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter Key References: Interpolation 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter 6. 2. Press, W. et. al. Numerical Recipes in C, Cambridge: Cambridge University Press. Chapter 3

More information

ESTIMATES OF THE TRACE OF THE INVERSE OF A SYMMETRIC MATRIX USING THE MODIFIED CHEBYSHEV ALGORITHM

ESTIMATES OF THE TRACE OF THE INVERSE OF A SYMMETRIC MATRIX USING THE MODIFIED CHEBYSHEV ALGORITHM ESTIMATES OF THE TRACE OF THE INVERSE OF A SYMMETRIC MATRIX USING THE MODIFIED CHEBYSHEV ALGORITHM GÉRARD MEURANT In memory of Gene H. Golub Abstract. In this paper we study how to compute an estimate

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Section 6.6 Gaussian Quadrature

Section 6.6 Gaussian Quadrature Section 6.6 Gaussian Quadrature Key Terms: Method of undetermined coefficients Nonlinear systems Gaussian quadrature Error Legendre polynomials Inner product Adapted from http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_p/node44.html

More information

Math 660-Lecture 15: Finite element spaces (I)

Math 660-Lecture 15: Finite element spaces (I) Math 660-Lecture 15: Finite element spaces (I) (Chapter 3, 4.2, 4.3) Before we introduce the concrete spaces, let s first of all introduce the following important lemma. Theorem 1. Let V h consists of

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

LibMesh Experience and Usage

LibMesh Experience and Usage LibMesh Experience and Usage John W. Peterson peterson@cfdlab.ae.utexas.edu and Roy H. Stogner roystgnr@cfdlab.ae.utexas.edu Univ. of Texas at Austin September 9, 2008 1 Introduction 2 Weighted Residuals

More information

Fast tensor-product solvers. Part I: Partially deformed three-dimensional domains

Fast tensor-product solvers. Part I: Partially deformed three-dimensional domains Fast tensor-product solvers. Part I: Partially deformed three-dimensional domains Tormod Bjøntegaard, Yvon Maday, Einar M Rønquist To cite this version: Tormod Bjøntegaard, Yvon Maday, Einar M Rønquist.

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve (https://github.com/ngsxfem/ngsxfem)

ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve (https://github.com/ngsxfem/ngsxfem) ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve (https://github.com/ngsxfem/ngsxfem) Christoph Lehrenfeld (with contributions from F. Heimann, J. Preuß, M. Hochsteger,...) lehrenfeld@math.uni-goettingen.de

More information

Numerical algorithms for one and two target optimal controls

Numerical algorithms for one and two target optimal controls Numerical algorithms for one and two target optimal controls Sung-Sik Kwon Department of Mathematics and Computer Science, North Carolina Central University 80 Fayetteville St. Durham, NC 27707 Email:

More information

Spectral Element Methods (SEM) May 12, D Wave Equations (Strong and Weak form)

Spectral Element Methods (SEM) May 12, D Wave Equations (Strong and Weak form) Spectral Element Methods (SEM) May 12, 2009 1 3-D Wave Equations (Strong and Weak form) Strong form (PDEs): ρ 2 t s = T + F in (1) Multiply a global test function W(x) to both sides and integrate over

More information

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 45 Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems Peter J. Hammond latest revision 2017 September

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Introduction to Finite Element Modelling in Geosciences

Introduction to Finite Element Modelling in Geosciences Introduction to Finite Element Modelling in Geosciences Dave A. May (dave.may@erdw.ethz.ch) Marcel Frehner (marcel.frehner@erdw.ethz.ch) Mike Afanasiev (ETH Zürich) Patrick Sanan (USI Lugano) 651-4144-L

More information

Cholesky factorisations of linear systems coming from a finite difference method applied to singularly perturbed problems

Cholesky factorisations of linear systems coming from a finite difference method applied to singularly perturbed problems Cholesky factorisations of linear systems coming from a finite difference method applied to singularly perturbed problems Thái Anh Nhan and Niall Madden The Boundary and Interior Layers - Computational

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES On the approximation of a virtual coarse space for domain decomposition methods in two dimensions Juan Gabriel Calvo Preprint No. 31-2017 PRAHA 2017

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

On Multivariate Newton Interpolation at Discrete Leja Points

On Multivariate Newton Interpolation at Discrete Leja Points On Multivariate Newton Interpolation at Discrete Leja Points L. Bos 1, S. De Marchi 2, A. Sommariva 2, M. Vianello 2 September 25, 2011 Abstract The basic LU factorization with row pivoting, applied to

More information

Condition number estimates for matrices arising in the isogeometric discretizations

Condition number estimates for matrices arising in the isogeometric discretizations www.oeaw.ac.at Condition number estimates for matrices arising in the isogeometric discretizations K. Gahalaut, S. Tomar RICAM-Report -3 www.ricam.oeaw.ac.at Condition number estimates for matrices arising

More information

(f P Ω hf) vdx = 0 for all v V h, if and only if Ω (f P hf) φ i dx = 0, for i = 0, 1,..., n, where {φ i } V h is set of hat functions.

(f P Ω hf) vdx = 0 for all v V h, if and only if Ω (f P hf) φ i dx = 0, for i = 0, 1,..., n, where {φ i } V h is set of hat functions. Answer ALL FOUR Questions Question 1 Let I = [, 2] and f(x) = (x 1) 3 for x I. (a) Let V h be the continous space of linear piecewise function P 1 (I) on I. Write a MATLAB code to compute the L 2 -projection

More information

Matrix assembly by low rank tensor approximation

Matrix assembly by low rank tensor approximation Matrix assembly by low rank tensor approximation Felix Scholz 13.02.2017 References Angelos Mantzaflaris, Bert Juettler, Boris Khoromskij, and Ulrich Langer. Matrix generation in isogeometric analysis

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

arxiv: v2 [math.na] 8 Sep 2017

arxiv: v2 [math.na] 8 Sep 2017 arxiv:1704.06339v [math.na] 8 Sep 017 A Monte Carlo approach to computing stiffness matrices arising in polynomial chaos approximations Juan Galvis O. Andrés Cuervo September 3, 018 Abstract We use a Monte

More information

Slow Growth for Gauss Legendre Sparse Grids

Slow Growth for Gauss Legendre Sparse Grids Slow Growth for Gauss Legendre Sparse Grids John Burkardt, Clayton Webster April 4, 2014 Abstract A sparse grid for multidimensional quadrature can be constructed from products of 1D rules. For multidimensional

More information

Numerical Modelling in Geosciences

Numerical Modelling in Geosciences Numerical Modelling in Geosciences Dave A. May (ETHZ) dave.may@erdw.ethz.ch Laetitia Le Pourhiet (UPMC) Jonas Ruh (UPMC) Liang Zheng (ETHZ) Zooming In between Plates (FP7 64713) ZIP WP5.1 Short-course

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

Conservation Laws & Applications

Conservation Laws & Applications Rocky Mountain Mathematics Consortium Summer School Conservation Laws & Applications Lecture V: Discontinuous Galerkin Methods James A. Rossmanith Department of Mathematics University of Wisconsin Madison

More information

A GLOBAL COLLOCATION METHOD FOR TWO-DIMENSIONAL RECTANGULAR DOMAINS

A GLOBAL COLLOCATION METHOD FOR TWO-DIMENSIONAL RECTANGULAR DOMAINS JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES Vol., No., A GLOBAL COLLOCATION METHOD FOR TWO-DIMENSIONAL RECTANGULAR DOMAINS CHRISTOPHER G. PROVATIDIS This paper proposes the use of a global collocation

More information

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V Numerical integration - I M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V deterministic methods in 1D equispaced points (trapezoidal, Simpson...), others...

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh & Department of Mathematics, University of

More information

The Discontinuous Galerkin Method for Hyperbolic Problems

The Discontinuous Galerkin Method for Hyperbolic Problems Chapter 2 The Discontinuous Galerkin Method for Hyperbolic Problems In this chapter we shall specify the types of problems we consider, introduce most of our notation, and recall some theory on the DG

More information

A Matlab Tutorial for Diffusion-Convection-Reaction Equations using DGFEM

A Matlab Tutorial for Diffusion-Convection-Reaction Equations using DGFEM MIDDLE EAST TECHNICAL UNIVERSITY Ankara, Turkey INSTITUTE OF APPLIED MATHEMATICS http://iam.metu.edu.tr arxiv:1502.02941v1 [math.na] 10 Feb 2015 A Matlab Tutorial for Diffusion-Convection-Reaction Equations

More information

COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control

COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control CONTENTS 1 INTRODUCTION: THE MAGIC OF FEEDBACK COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control Jorge Cortés and William B. Dunbar March 7, 26 Abstract In

More information

Integration using Gaussian Quadrature

Integration using Gaussian Quadrature Integration using Gaussian Quadrature Tutorials November 25, 2017 Department of Aeronautics, Imperial College London, UK Scientific Computing and Imaging Institute, University of Utah, USA 2 Chapter 1

More information

ON THE MULTIPOINT MIXED FINITE VOLUME METHODS ON QUADRILATERAL GRIDS

ON THE MULTIPOINT MIXED FINITE VOLUME METHODS ON QUADRILATERAL GRIDS ON THE MULTIPOINT MIXED FINITE VOLUME METHODS ON QUADRILATERAL GRIDS VINCENT FONTAINE 1,2 AND ANIS YOUNES 2 1 Laboratoire de Physique des Bâtiments et des Systèmes, Université de La Réunion, 15 avenue

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh Rome, 10th Apr 2017 Joint work with: Emmanuil

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

Spectra of Multiplication Operators as a Numerical Tool. B. Vioreanu and V. Rokhlin Technical Report YALEU/DCS/TR-1443 March 3, 2011

Spectra of Multiplication Operators as a Numerical Tool. B. Vioreanu and V. Rokhlin Technical Report YALEU/DCS/TR-1443 March 3, 2011 We introduce a numerical procedure for the construction of interpolation and quadrature formulae on bounded convex regions in the plane. The construction is based on the behavior of spectra of certain

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

D-MATH Computational Methods for Quantitative Finance II FS Series 2

D-MATH Computational Methods for Quantitative Finance II FS Series 2 D-MATH Computational Methods for Quantitative Finance II FS 2009 Series 2 1. a) With û ( x) = x (u(ϕ( x))) = u (ϕ( x))ϕ ( x) = u (x)ϕ ( x). the results follow immediatly. b) We have ϕ( x) = a + ( x + 1)

More information

Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media

Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media Jesse Chan Department of Computational and Applied Math, Rice University ICOSAHOM 2018 July 12, 2018 Chan (CAAM)

More information

A truly meshless Galerkin method based on a moving least squares quadrature

A truly meshless Galerkin method based on a moving least squares quadrature A truly meshless Galerkin method based on a moving least squares quadrature Marc Duflot, Hung Nguyen-Dang Abstract A new body integration technique is presented and applied to the evaluation of the stiffness

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information