A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

Size: px
Start display at page:

Download "A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions"

Transcription

1 Lin Lin A Posteriori DG using Non-Polynomial Basis 1 A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin Department of Mathematics, UC Berkeley; Computational Research Division, LBNL Joint work with Benjamin Stamm Dimension Reduction: Mathematical Methods and Applications, Penn State University, March, 2015 Supported by DOE SciDAC Program and CAMERA Program

2 Lin Lin A Posteriori DG using Non-Polynomial Basis 2 Outline Introduction: Adaptive local basis functions Computable upper bound for Poisson s equation Computable upper / lower bound for indefinite equations Numerical examples Conclusion and future work

3 Lin Lin A Posteriori DG using Non-Polynomial Basis 3 Motivation Spatially inhomogeneous quantum systems Ω

4 Lin Lin A Posteriori DG using Non-Polynomial Basis 4 Kohn-Sham density functional theory HH ρρ ψψ ii xx = 1 2 Δ + vv eeeeee xx + ddxx ρρ xx NN/2 xx xx + VV xxxx ρρ ψψ ii xx = εε ii ψψ ii xx ρρ xx = 2 ψψ ii xx 2, dddd ψψ ii xx ψψ jj xx = δδ iiii, εε 1 εε 2 ii=1 Efficient: Always solve an equation in RR 3, regardless of the number of electrons NN. Accurate: Exact ground state energy for exact VV xxxx [ρρ], [Hohenberg-Kohn,1964], [Kohn-Sham, 1965] Best compromise between efficiency and accuracy. Most widely used electronic structure theory for condensed matter systems and molecules Nobel Prize in Chemistry, 1998

5 Lin Lin A Posteriori DG using Non-Polynomial Basis 5 Discretization cost Basis Example DOF / atom Construction Uniform basis Planewave Finite difference Finite element 500~10000 or more Simple and systematic Quantum chemistry basis Gaussian orbitals Atomic orbitals 4~100 Fine tuning Non-systematic convergence Q: Combine the advantage of both?

6 Lin Lin A Posteriori DG using Non-Polynomial Basis 6 Adaptive local basis functions Idea: Use local eigenfunctions as basis functions How to patch the basis functions together?

7 Lin Lin A Posteriori DG using Non-Polynomial Basis 7 Discontinuous Galerkin method Kohn-Sham New terms [LL-Lu-Ying-E, J. Comput. Phys. 231, 2140 (2012)] Interior penalty method [Arnold, 1982]

8 Lin Lin A Posteriori DG using Non-Polynomial Basis 8 Why a posteriori error estimator Measuring the accuracy of eigenvalues and densities without performing an expensive converged calculation, or benchmarking with another code. Optimal allocation of basis functions for inhomogeneous systems.

9 Lin Lin A Posteriori DG using Non-Polynomial Basis 9 Residual based a posteriori error estimator Vast literature for second order PDE and eigenvalue problems Polynomial basis functions, finite element: [Verfürth,1996] [Larson, 2000] [Durán-Padra-Rodríguez, 2003] [Chen-He-Zhou, 2011]... Polynomial basis functions, discontinuous Galerkin: [Karakashian-Pascal, 2003], [Houston-Schötzau-Wihler, 2007], [Schötzau-Zhu, 2009], [Giani-Hall, 2012]...

10 Lin Lin A Posteriori DG using Non-Polynomial Basis 10 Difficulty A posteriori error analysis relies on the detailed knowledge of asymptotic approximation properties of the basis set Difficult for equation-aware basis functions Adaptive local basis functions Heterogeneous multiscale method (HMM) [E-Engquist 2003] Multiscale finite element [Hou-Wu 1997] Multiscale discontinuous Galerkin [Wang-Guzmán- Shu, 2011] etc

11 Lin Lin A Posteriori DG using Non-Polynomial Basis 11 Outline Introduction: Adaptive local basis functions Computable upper bound for Poisson s equation Computable upper / lower bound for indefinite equations Numerical examples Conclusion and future work

12 Lin Lin A Posteriori DG using Non-Polynomial Basis 12 Model problem Discontinuous space (broken Sobolev space) κκ FF Ω VV NN HH 2 (KK) Piecewise constant function belongs to VV NN

13 Lin Lin A Posteriori DG using Non-Polynomial Basis 13 DG discretization Bilinear form (θθ = 1 corresponds to the symmetric form) Define the inner products Average and jump operators

14 Lin Lin A Posteriori DG using Non-Polynomial Basis 14 Error quantification DG approximation Error in the broken energy norm Goal: Find a sharp upper bound for

15 Lin Lin A Posteriori DG using Non-Polynomial Basis 15 Upper bound of error Theorem ([LL-Stamm 2015]). Let uu HH # 1 Ω HH 2 (KK) be the true solution and uu NN VV NN the DG-approximation. Then where Residual Jump of gradient Jump of function The key is to find the dependence of aa κκ, bb κκ, cc κκ w.r.t. VV NN.

16 Lin Lin A Posteriori DG using Non-Polynomial Basis 16 Projection operator LL 2 κκ -projection operator Inner product Similar to HH 1 (κκ) norm Projection operator onto basis space Therefore

17 Lin Lin A Posteriori DG using Non-Polynomial Basis 17 Estimating constants Define is in the sense of the inner product,,κκ Lemma. Let κκ KK, vv HH 1 κκ. Then Proof: Similar for bb kk

18 Lin Lin A Posteriori DG using Non-Polynomial Basis 18 Numerical procedure for computing the constants Basic idea: estimate the constants by iteratively solving generalized eigenvalue problems on an infinite dimensional space 1D demonstration, generalizable to any d-dimension. Consider κκ = 0, h, spectral discretization with Legendre- Gauss-Lobatto (LGL) quadrature: 0 yy jj h NN gg NN gg Integration points yy jj jj=1, integration weights ωω jj jj=1

19 Lin Lin A Posteriori DG using Non-Polynomial Basis 19 Numerical representation of inner product LGL grid points defines associated Lagrange polynomials of degree NN gg 1 Approximate any vv HH 1 κκ Define Inner product

20 Lin Lin A Posteriori DG using Non-Polynomial Basis 20 Numerical representation of inner product,κκ requires differentiation matrix Differentiation becomes matrix-vector multiplication

21 Lin Lin A Posteriori DG using Non-Polynomial Basis 21 Numerical representation of inner product Projection onto constant In sum

22 Lin Lin A Posteriori DG using Non-Polynomial Basis 22 Estimating aa kk Here Handling the orthogonal constraint by projection QQ = II Π NN κκ

23 Lin Lin A Posteriori DG using Non-Polynomial Basis 23 Estimating aa kk This is a generalized eigenvalue problem Solve with iterative method, such as the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method [Knyazev 2001] Only require matrix-vector multiplication.

24 Lin Lin A Posteriori DG using Non-Polynomial Basis 24 Estimating bb kk How to estimate uu, vv. Importance of Lobatto grid Here MM bb = WW

25 Lin Lin A Posteriori DG using Non-Polynomial Basis 25 Generalize to high dimensions Tensor product LGL grid Tensor product Lagrange polynomials ll

26 Lin Lin A Posteriori DG using Non-Polynomial Basis 26 Compare with asymptotic results for polynomial basis functions For polynomial basis functions [e.g. Houston-Schötzau- Wihler, 2007] h = 1

27 Lin Lin A Posteriori DG using Non-Polynomial Basis 27 Penalty parameter Parameter {γγ κκ } Large enough for coercivity of the bilinear form magic parameter in interior penalty method [Arnold 1982] Define Lemma. If γγ κκ 1 2 coercive 1 + θθ 2 dd κκ 2, then the bilinear form is Automatic guarantee of stability

28 Lin Lin A Posteriori DG using Non-Polynomial Basis 28 Penalty parameter Computation of dd κκ through eigenvalue problem By setting vv NN = Φcc, span Φ = VV NN κκ. Can be solved with direct method

29 Lin Lin A Posteriori DG using Non-Polynomial Basis 29 Upper bound estimator The last constant dd κκ uu (uu NN ) involves the true solution uu and therefore is the only constant that cannot be explicitly computed. However, numerical result shows that dd uu κκ uu NN dd κκ is a good approximation.

30 Lin Lin A Posteriori DG using Non-Polynomial Basis 30 Outline Introduction: Adaptive local basis functions Computable upper bound for Poisson s equation Computable upper / lower bound for indefinite equations Numerical examples Conclusion and future work

31 Lin Lin A Posteriori DG using Non-Polynomial Basis 31 Model problem Indefinite equation VV LL Ω and Δ + VV has no zero eigenvalue. Bilinear form DG approximation

32 Lin Lin A Posteriori DG using Non-Polynomial Basis 32 Computable upper bound Energy norm Theorem ([LL-Stamm 2015]). Let uu HH # 1 Ω HH 2 (KK) be the true solution and uu NN VV NN the DG-approximation. Then

33 Lin Lin A Posteriori DG using Non-Polynomial Basis 33 Computable lower bound Theorem ([LL-Stamm 2015]). Let uu HH # 1 Ω HH 2 (KK) be the true solution and uu NN VV NN the DG-approximation. Then where All constants other than dd κκ uu are computable

34 Lin Lin A Posteriori DG using Non-Polynomial Basis 34 Computable lower bound Bubble function bb κκ For instance, bb κκ xx = 4 xx 1 xx, κκ = 1 Lemma. where

35 Lin Lin A Posteriori DG using Non-Polynomial Basis 35 Outline Introduction: Adaptive local basis functions Computable upper bound for Poisson s equation Computable upper / lower bound for indefinite equations Numerical examples Conclusion and future work

36 Lin Lin A Posteriori DG using Non-Polynomial Basis 36 1D Poisson equation Δuu xx = sin 6xx Adaptive local basis functions with 11 basis per element.

37 Lin Lin A Posteriori DG using Non-Polynomial Basis 37 Effectiveness of upper/lower estimtaor Measure local effectiveness (CC ηη 1, CC ξξ 1)

38 Lin Lin A Posteriori DG using Non-Polynomial Basis 38 1D indefinite Δuu xx + VV xx uu(xx) = sin 6xx Adaptive local basis functions with 11 basis per element.

39 Lin Lin A Posteriori DG using Non-Polynomial Basis 39 Effectiveness of upper/lower estimtaor

40 Lin Lin A Posteriori DG using Non-Polynomial Basis 40 2D Helmholtz Δuu + VVVV = ff, VV = 16.5, ff xx, yy = ee 2 xx ππ 2 2 yy ππ 2 Adaptive local basis functions with 31 basis per element.

41 Lin Lin A Posteriori DG using Non-Polynomial Basis 41 Effectiveness for upper/lower bound

42 Lin Lin A Posteriori DG using Non-Polynomial Basis 42 Validate the approximation for dd κκ uu Note that Although dd κκ uu is not known, it is only sufficient to have dd κκ uu dd κκ or dd κκ uu bb κκ γγ κκ 1D:

43 Lin Lin A Posteriori DG using Non-Polynomial Basis 43 Validate the approximation for dd κκ uu 2D indefinite

44 Lin Lin A Posteriori DG using Non-Polynomial Basis 44 Conclusion Systematic derivation of a posteriori error estimation for general non-polynomial basis function Explicitly computable constants for upper/lower estimator. The only one non-computable constant can be reasonably estimated by known ones.

45 Lin Lin A Posteriori DG using Non-Polynomial Basis 45 Future work Eigenvalue problem Nonlinearity, atomic force, linear response properties Implementation in DGDFT Other basis functions, including MsFEM, HMM, MsDG etc. Ref: LL and B. Stamm, A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions. Part I: Second order linear PDE, arxiv: Thank you for your attention!

Recent developments of Discontinuous Galerkin Density functional theory

Recent developments of Discontinuous Galerkin Density functional theory Lin Lin Discontinuous Galerkin DFT 1 Recent developments of Discontinuous Galerkin Density functional theory Lin Lin Department of Mathematics, UC Berkeley; Computational Research Division, LBNL Numerical

More information

7.3 The Jacobi and Gauss-Seidel Iterative Methods

7.3 The Jacobi and Gauss-Seidel Iterative Methods 7.3 The Jacobi and Gauss-Seidel Iterative Methods 1 The Jacobi Method Two assumptions made on Jacobi Method: 1.The system given by aa 11 xx 1 + aa 12 xx 2 + aa 1nn xx nn = bb 1 aa 21 xx 1 + aa 22 xx 2

More information

Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix

Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix Lin Lin Compressed Kohn-Sham Orbitals 1 Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix Lin Lin Department of Mathematics, UC Berkeley; Computational Research

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator Lecture No. 1 Introduction to Method of Weighted Residuals Solve the differential equation L (u) = p(x) in V where L is a differential operator with boundary conditions S(u) = g(x) on Γ where S is a differential

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous Research Journal of Mathematics and Statistics 6: -5, 24 ISSN: 242-224, e-issn: 24-755 Maxwell Scientific Organization, 24 Submied: September 8, 23 Accepted: November 23, 23 Published: February 25, 24

More information

Gradient expansion formalism for generic spin torques

Gradient expansion formalism for generic spin torques Gradient expansion formalism for generic spin torques Atsuo Shitade RIKEN Center for Emergent Matter Science Atsuo Shitade, arxiv:1708.03424. Outline 1. Spintronics a. Magnetoresistance and spin torques

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Haar Basis Wavelets and Morlet Wavelets

Haar Basis Wavelets and Morlet Wavelets Haar Basis Wavelets and Morlet Wavelets September 9 th, 05 Professor Davi Geiger. The Haar transform, which is one of the earliest transform functions proposed, was proposed in 90 by a Hungarian mathematician

More information

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering Stochastic Processes and Linear Algebra Recap Slides Stochastic processes and variables XX tt 0 = XX xx nn (tt) xx 2 (tt) XX tt XX

More information

PHY103A: Lecture # 9

PHY103A: Lecture # 9 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 9 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 20-Jan-2018 Summary of Lecture # 8: Force per unit

More information

Math 171 Spring 2017 Final Exam. Problem Worth

Math 171 Spring 2017 Final Exam. Problem Worth Math 171 Spring 2017 Final Exam Problem 1 2 3 4 5 6 7 8 9 10 11 Worth 9 6 6 5 9 8 5 8 8 8 10 12 13 14 15 16 17 18 19 20 21 22 Total 8 5 5 6 6 8 6 6 6 6 6 150 Last Name: First Name: Student ID: Section:

More information

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES COMPUTERS AND STRUCTURES, INC., FEBRUARY 2016 TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES Introduction This technical note

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Approximate Second Order Algorithms. Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo

Approximate Second Order Algorithms. Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo Approximate Second Order Algorithms Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo Why Second Order Algorithms? Invariant under affine transformations e.g. stretching a function preserves the convergence

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Solving Fuzzy Nonlinear Equations by a General Iterative Method

Solving Fuzzy Nonlinear Equations by a General Iterative Method 2062062062062060 Journal of Uncertain Systems Vol.4, No.3, pp.206-25, 200 Online at: www.jus.org.uk Solving Fuzzy Nonlinear Equations by a General Iterative Method Anjeli Garg, S.R. Singh * Department

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

Classical RSA algorithm

Classical RSA algorithm Classical RSA algorithm We need to discuss some mathematics (number theory) first Modulo-NN arithmetic (modular arithmetic, clock arithmetic) 9 (mod 7) 4 3 5 (mod 7) congruent (I will also use = instead

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

CHAPTER 4 Structure of the Atom

CHAPTER 4 Structure of the Atom CHAPTER 4 Structure of the Atom Fall 2018 Prof. Sergio B. Mendes 1 Topics 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the

More information

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

More information

Dressing up for length gauge: Aspects of a debate in quantum optics

Dressing up for length gauge: Aspects of a debate in quantum optics Dressing up for length gauge: Aspects of a debate in quantum optics Rainer Dick Department of Physics & Engineering Physics University of Saskatchewan rainer.dick@usask.ca 1 Agenda: Attosecond spectroscopy

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015 Jasmin Smajic, Christian Hafner 2, Jürg Leuthold 2, March 23, 205 Time Domain Finite Element Method (TD FEM): Continuous and Discontinuous Galerkin (DG-FEM) HSR - University of Applied Sciences of Eastern

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

COMPRESSION FOR QUANTUM POPULATION CODING

COMPRESSION FOR QUANTUM POPULATION CODING COMPRESSION FOR QUANTUM POPULATION CODING Ge Bai, The University of Hong Kong Collaborative work with: Yuxiang Yang, Giulio Chiribella, Masahito Hayashi INTRODUCTION Population: A group of identical states

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

Physics 371 Spring 2017 Prof. Anlage Review

Physics 371 Spring 2017 Prof. Anlage Review Physics 71 Spring 2017 Prof. Anlage Review Special Relativity Inertial vs. non-inertial reference frames Galilean relativity: Galilean transformation for relative motion along the xx xx direction: xx =

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell Background Benefits of Spectral Analysis Type of data Basic Idea

More information

(2) Orbital angular momentum

(2) Orbital angular momentum (2) Orbital angular momentum Consider SS = 0 and LL = rr pp, where pp is the canonical momentum Note: SS and LL are generators for different parts of the wave function. Note: from AA BB ii = εε iiiiii

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

Constitutive Relations of Stress and Strain in Stochastic Finite Element Method

Constitutive Relations of Stress and Strain in Stochastic Finite Element Method American Journal of Computational and Applied Mathematics 15, 5(6): 164-173 DOI: 1.593/j.ajcam.1556. Constitutive Relations of Stress and Strain in Stochastic Finite Element Method Drakos Stefanos International

More information

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr Time Domain Analysis of Linear Systems Ch2 University of Central Oklahoma Dr. Mohamed Bingabr Outline Zero-input Response Impulse Response h(t) Convolution Zero-State Response System Stability System Response

More information

10.1 Three Dimensional Space

10.1 Three Dimensional Space Math 172 Chapter 10A notes Page 1 of 12 10.1 Three Dimensional Space 2D space 0 xx.. xx-, 0 yy yy-, PP(xx, yy) [Fig. 1] Point PP represented by (xx, yy), an ordered pair of real nos. Set of all ordered

More information

Using the Application Builder for Neutron Transport in Discrete Ordinates

Using the Application Builder for Neutron Transport in Discrete Ordinates Using the Application Builder for Neutron Transport in Discrete Ordinates C.J. Hurt University of Tennessee Nuclear Engineering Department (This material is based upon work supported under a Department

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) May 1, 018 G.Tech:

More information

Analysis of uncertainty sources in DNS of a turbulent mixing layer using Nek5000

Analysis of uncertainty sources in DNS of a turbulent mixing layer using Nek5000 Analysis of uncertainty sources in DNS of a turbulent mixing layer using Nek5000 Juan D. Colmenares F. 1 and Svetlana V. Poroseva 2 The University of New Mexico, Albuquerque, NM 87131 Yulia T. Peet 3 Arizona

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) December 4, 2017 IAS:

More information

ON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS

ON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS Materials Physics and Mechanics 32 (2017) 213-221 Received: November 7, 2017 ON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS Ruslan L. Lapin 1, Vitaly A. Kuzkin 1,2 1 Peter the

More information

2.4 Error Analysis for Iterative Methods

2.4 Error Analysis for Iterative Methods 2.4 Error Analysis for Iterative Methods 1 Definition 2.7. Order of Convergence Suppose {pp nn } nn=0 is a sequence that converges to pp with pp nn pp for all nn. If positive constants λλ and αα exist

More information

A POSTERIORI ERROR ESTIMATOR FOR ADAPTIVE LOCAL BASIS FUNCTIONS TO SOLVE KOHN SHAM DENSITY FUNCTIONAL THEORY

A POSTERIORI ERROR ESTIMATOR FOR ADAPTIVE LOCAL BASIS FUNCTIONS TO SOLVE KOHN SHAM DENSITY FUNCTIONAL THEORY COMMUN. MATH. SCI. Vol. 13, No. 7, pp. 1741 1773 c 15 International Press A POSTERIORI ERROR ESTIMATOR FOR ADAPTIVE LOCAL BASIS FUNCTIONS TO SOLVE KOHN SHAM DENSITY FUNCTIONAL THEORY JASON KAYE, LIN LIN,

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition Gravitation Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 What you are about to learn: Newton's law of universal gravitation About motion in circular and other orbits How to

More information

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems SECTION 5: POWER FLOW ESE 470 Energy Distribution Systems 2 Introduction Nodal Analysis 3 Consider the following circuit Three voltage sources VV sss, VV sss, VV sss Generic branch impedances Could be

More information

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition Wave Motion Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Waves: propagation of energy, not particles 2 Longitudinal Waves: disturbance is along the direction of wave propagation

More information

Thornton & Rex, 4th ed. Fall 2018 Prof. Sergio B. Mendes 1

Thornton & Rex, 4th ed. Fall 2018 Prof. Sergio B. Mendes 1 Modern Physics for Scientists and Engineers Thornton & Rex, 4th ed. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 1 The Birth of Modern Physics Fall 2018 Prof. Sergio B. Mendes 2 Topics 1) Classical Physics

More information

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays Journal of Mathematics and System Science 6 (216) 194-199 doi: 1.17265/2159-5291/216.5.3 D DAVID PUBLISHING On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

Numerical Solution of Fredholm and Volterra Integral Equations of the First Kind Using Wavelets bases

Numerical Solution of Fredholm and Volterra Integral Equations of the First Kind Using Wavelets bases The Journal of Mathematics and Computer Science Available online at http://www.tjmcs.com The Journal of Mathematics and Computer Science Vol.5 No.4 (22) 337-345 Numerical Solution of Fredholm and Volterra

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University Property Testing and Affine Invariance Part I Madhu Sudan Harvard University December 29-30, 2015 IITB: Property Testing & Affine Invariance 1 of 31 Goals of these talks Part I Introduce Property Testing

More information

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com.

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com. Mathematics Ext HSC 4 Solutions Suite 43, 4 Elizabeth St, Surry Hills NSW info@keystoneeducation.com.au keystoneeducation.com.au Mathematics Extension : HSC 4 Solutions Contents Multiple Choice... 3 Question...

More information

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster Integrating Rational functions by the Method of Partial fraction Decomposition By Antony L. Foster At times, especially in calculus, it is necessary, it is necessary to express a fraction as the sum of

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam3 12. 9. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Rational Equations and Graphs

Rational Equations and Graphs RT.5 Rational Equations and Graphs Rational Equations In previous sections of this chapter, we worked with rational expressions. If two rational expressions are equated, a rational equation arises. Such

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

ABSTRACT OF THE DISSERTATION

ABSTRACT OF THE DISSERTATION A Study of an N Molecule-Quantized Radiation Field-Hamiltonian BY MICHAEL THOMAS TAVIS DOCTOR OF PHILOSOPHY, GRADUATE PROGRAM IN PHYSICS UNIVERSITY OF CALIFORNIA, RIVERSIDE, DECEMBER 1968 PROFESSOR FREDERICK

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam2 11. 13. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS 14- Hardening Soil Model with Small Strain Stiffness - PLAXIS This model is the Hardening Soil Model with Small Strain Stiffness as presented in PLAXIS. The model is developed using the user-defined material

More information

Cold atoms in optical lattices

Cold atoms in optical lattices Cold atoms in optical lattices www.lens.unifi.it Tarruel, Nature Esslinger group Optical lattices the big picture We have a textbook model, which is basically exact, describing how a large collection of

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

Predicting Winners of Competitive Events with Topological Data Analysis

Predicting Winners of Competitive Events with Topological Data Analysis Predicting Winners of Competitive Events with Topological Data Analysis Conrad D Souza Ruben Sanchez-Garcia R.Sanchez-Garcia@soton.ac.uk Tiejun Ma tiejun.ma@soton.ac.uk Johnnie Johnson J.E.Johnson@soton.ac.uk

More information

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations Ziyang (Christian) Xiao Neil Goldsman University of Maryland OUTLINE 1. GaN (bulk) 1.1 Crystal Structure 1.2 Band Structure Calculation

More information

Coulomb s Law and Coulomb s Constant

Coulomb s Law and Coulomb s Constant Pre-Lab Quiz / PHYS 224 Coulomb s Law and Coulomb s Constant Your Name: Lab Section: 1. What will you investigate in this lab? 2. Consider a capacitor created when two identical conducting plates are placed

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

Equivalent Correlation between Short Channel DG & GAA MOSFETs

Equivalent Correlation between Short Channel DG & GAA MOSFETs Equivalent Correlation between hort Channel DG & GAA FETs K. Yılmaz 1,2, G. Darbandy 1, B. Iñíguez 2, F. Lime 2 and A. Kloes 1 1 NanoP, THM-University of Applied ciences, Giessen, Germany 2 DEEEA, Universitat

More information

APPROXIMATING A COMMON SOLUTION OF A FINITE FAMILY OF GENERALIZED EQUILIBRIUM AND FIXED POINT PROBLEMS

APPROXIMATING A COMMON SOLUTION OF A FINITE FAMILY OF GENERALIZED EQUILIBRIUM AND FIXED POINT PROBLEMS SINET: Ethiop. J. Sci., 38():7 28, 205 ISSN: 0379 2897 (Print) College of Natural Sciences, Addis Ababa University, 205 2520 7997 (Online) APPROXIMATING A COMMON SOLUTION OF A FINITE FAMILY OF GENERALIZED

More information

Lecture 22 Highlights Phys 402

Lecture 22 Highlights Phys 402 Lecture 22 Highlights Phys 402 Scattering experiments are one of the most important ways to gain an understanding of the microscopic world that is described by quantum mechanics. The idea is to take a

More information

On one Application of Newton s Method to Stability Problem

On one Application of Newton s Method to Stability Problem Journal of Multidciplinary Engineering Science Technology (JMEST) ISSN: 359-0040 Vol. Issue 5, December - 204 On one Application of Newton s Method to Stability Problem Şerife Yılmaz Department of Mathematics,

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

Discontinuous Galerkin Methods: Theory, Computation and Applications

Discontinuous Galerkin Methods: Theory, Computation and Applications Discontinuous Galerkin Methods: Theory, Computation and Applications Paola. Antonietti MOX, Dipartimento di Matematica Politecnico di Milano.MO. X MODELLISTICA E CALCOLO SCIENTIICO. MODELING AND SCIENTIIC

More information

Introduction to Kinetic Simulation of Magnetized Plasma

Introduction to Kinetic Simulation of Magnetized Plasma Introduction to Kinetic Simulation of Magnetized Plasma Jae-Min Kwon National Fusion Research Institute, Korea 018 EASW8 July 30 Aug 3, 018 1 Outline Introduction to kinetic plasma model Very brief on

More information

Modeling of a non-physical fish barrier

Modeling of a non-physical fish barrier University of Massachusetts - Amherst ScholarWorks@UMass Amherst International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity Fall 2018 Prof. Sergio B. Mendes 1 Topics 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Inertial Frames of Reference Conceptual and Experimental

More information

A Simple and Usable Wake Vortex Encounter Severity Metric

A Simple and Usable Wake Vortex Encounter Severity Metric A Simple and Usable Wake Vortex Encounter Severity Metric Ivan De Visscher Grégoire Winckelmans WaPT-Wake Prediction Technologies a spin-off company from Université catholique de Louvain (UCL) WakeNet-Europe

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers

Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers Institute of Advanced Study, Tsinghua, April 19, 017 Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers Haiwen Liu ( 刘海文 ) Beijing Normal University

More information

Introduction to Density Estimation and Anomaly Detection. Tom Dietterich

Introduction to Density Estimation and Anomaly Detection. Tom Dietterich Introduction to Density Estimation and Anomaly Detection Tom Dietterich Outline Definition and Motivations Density Estimation Parametric Density Estimation Mixture Models Kernel Density Estimation Neural

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS 31 October, 2007 1 INTRODUCTION 2 ORTHOGONAL POLYNOMIALS Properties of Orthogonal Polynomials 3 GAUSS INTEGRATION Gauss- Radau Integration Gauss -Lobatto Integration

More information

Manipulator Dynamics (1) Read Chapter 6

Manipulator Dynamics (1) Read Chapter 6 Manipulator Dynamics (1) Read Capter 6 Wat is dynamics? Study te force (torque) required to cause te motion of robots just like engine power required to drive a automobile Most familiar formula: f = ma

More information

Advanced data analysis

Advanced data analysis Advanced data analysis Akisato Kimura ( 木村昭悟 ) NTT Communication Science Laboratories E-mail: akisato@ieee.org Advanced data analysis 1. Introduction (Aug 20) 2. Dimensionality reduction (Aug 20,21) PCA,

More information

Theory and Computation for Bilinear Quadratures

Theory and Computation for Bilinear Quadratures Theory and Computation for Bilinear Quadratures Christopher A. Wong University of California, Berkeley 15 March 2015 Research supported by NSF, AFOSR, and SIAM C. Wong (UC Berkeley) Bilinear Quadratures

More information

Lecture 11. Kernel Methods

Lecture 11. Kernel Methods Lecture 11. Kernel Methods COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture The kernel trick Efficient computation of a dot product

More information