MATH 260 Homework assignment 8 March 21, px 2yq dy. (c) Where C is the part of the line y x, parametrized any way you like.

Size: px
Start display at page:

Download "MATH 260 Homework assignment 8 March 21, px 2yq dy. (c) Where C is the part of the line y x, parametrized any way you like."

Transcription

1 MATH 26 Homework assignment 8 March 2, 23. Evaluate the line integral x 2 y dx px 2yq dy (a) Where is the part of the parabola y x 2 from p, q to p, q, parametrized as x t, y t 2 for t. (b) Where is the part of the parabola y x 2 from p, q to p, q, parametrized as x sin t, y sin 2 t for t π{2. (c) Where is the part of the line y x, parametrized any way you like. (d) Why should you have expected the answers to (a) and (b) to be the same, but (c) to be different? (a) If x t and y t 2 then dx dt and dy 2t dt so the integral becomes: x 2 y dx px 2yq dy t 4 dt pt 2t 2 q2t dt t 4 2t 2 4t 3 dt t5 5 2t 3 3 t (b) If x sin t and y sin 2 t, then t goes from to π 2, and we have dx cos t dt and dy 2 sin t cos t dt. The integral becomes: x 2 y dx px 2yq dy sin 4 t cos t dt psin t 2 sin 2 tq2 sin t cos t dt using the substitution u sin t. u 4 u5 5 psin 4 t 2 sin 2 t 4 sin 3 tq cos t dt 2u 2 4u 3 du 2u 3 3 u , (c) The simplest way to parametrize the line is x t, y t for t, so dx dt and dy dt. So we get x 2 y dx px 2yq dy t 3 dt pt 2tq dt t 3 t dt t4 4 t (d) The answers to (a) and (b) are the same because of independence of parametrization (the same line integral parametrized two different ways), but (c) is a different curve, and the vector field rx 2 y, s 2ys is not conservative.

2 2 2. alculate F dr where (a) F yi 2xj and is the circle x 2 y 2, traversed counterclockwise starting from p, q, once around. (b) F yi 2xj and is the circle x 2 y 2 4, traversed counterclockwise starting from p, q, once around. (c) F xi 2yj 2xk and is the part of the semicubical parabola given by x t, y t 2, z t 3 starting from p,, q and ending at p,, q. (a) The simplest parametrization would be x cos t, y sin t for t 2π. Then dx sin t dt and dy cos t dt and so 2π 2π F dr y dx 2x dy sin 2 t 2 cos 2 3 t dt cos 2t dt π, 2 2 using the identities cos 2 t 2 2 cos 2t and sin2 t 2 2 sin 2t. (b) This time we let x 2 cos t and y 2 sin t for t 2π, so dx 2 sin t dt and dy 2 cos t dt and so 2π 2π F dr y dx 2x dy 4 sin 2 t 8 cos 2 t dt 2 6 cos 2t dt 4π. The scaling between this part and part (a) makes sense, since F scales linearly and dr also scales linearly so their dot product scales quadratically (so when we make the circle twice as big, the integral gets multiplied by four). (c) We re given a reasonable parametrization so we use it: x t, y t 2 and z t 3 for t, so dx dt, dy 2t dt and dz 3t 2 dt and so t F dr x dx 2y dy 2x dz t 4t 3 6t 3 2 5t 4 dt Let F be a vector field on R 2 or R 3 whose coefficients are differentiable functions, and let be a smooth curve. Prove that F dr ML, where M is a number such that }Fpxq} M for all x, and L the length of. We can parametrize however we like, so we choose to parametrize by arc length s for a s b. Then dr T ds where T is the unit tangent vector field to and ds is the element of arc length (remember?). Then F dr ds F T }Fpsq}}T} M,

3 3 since }Fpsq} M for all s. But then b F dr F T ds a b F T ds M b a a ds ML. 4. If F xi yj, compute (a) The work done by F on a particle that moves around the circle x 2 y 2 (b) The outward flux of F through the circle x 2 y 2. (c) Is F a conservative field? If so, find its potential function, i.e., the function ϕ such that ϕ F. (a) For practice, we do this directly: Let x cos t and y sin t for t 2π, then dx sin t dt and dy cos t dt and we get ¾ ¾ 2π Work F dr x dx y dy cos t sin t sin t cos t dt. (b) To calculate flux, we first note that the outward pointing normal vector to the curve is xi (calculate this as n ds i j dt) and, using the parametrization from part (a) we get dx dt dy dt ¾ ¾ Flux F nds x 2 y 2 ds length of 2π. yj (c) F is a conservative field, since F 2 px2 y 2 q. We could have used this fact to conclude that the integral in part (a) is zero without computing it. Oh, Wronski! (Read the trig.alt notes before attempting these problems.) 5. Suppose the two functions y pxq and y 2 pxq are both solutions of the ODE y 2 ppxqy qpxqy. p q Recall from class that the Wronskian of y and y 2 is defined to be the function: W pxq y pxq y 2 pxq y pxq y 2 pxq y pxqy2 pxq y 2pxqy pxq. (a) Show that W satisfies the first-order equation W pw. (b) Solve this equation, and conclude that for any two solutions y and y 2 of (*), either W pxq is zero for all values of x or else W pxq is never zero.

4 4 (a) The derivative of W is W y y2 2 y2 y 2, so W pw y py2 2 py 2 q y 2py 2 py q. But because y and y 2 are both solutions of (*), we have y 2 py qy and y2 2 py 2 qy 2. Therefore W pw y p qy 2 q y 2 p qy q. (b) The equation W pw is both a separable and a linear equation for W. If we solve it as a linear equation, we learn that W pxq e ³ p. Since the exponential factor is non-zero for all x, we conclude that if then W pxq is zero for all x and if then W pxq for all x. 6. Suppose ypxq is a solution of equation (*) from the previous problem. Find a function vpxq so that the function zpxq vpxqypxq is a solution of an equation of the form z 2 Qpxqz p q i.e., z satisfies an equation without a first-order term. (Hint: If you do it right, you ll have Qpxq qpxq 4 ppxq2 2 p pxq.) This shows that in order to prove general facts about homogeneous, linear, second-order ODEs, we only need to consider equations of the form (**), since any equation of the form (*) can be converted to (**) by this trick. If zpxq vpxqypxq then z v y vy and z 2 v 2 y 2v y vy 2. Therefore z 2 Qpzqz v 2 y 2v y vy 2 Qvy vy 2 2v y pv 2 Qvqy. So y will satisfy the equation y 2 2v v v y 2 Qv y. v We therefore need to choose Q and v so that 2v {v p and pv 2 Qvq{v q. If we view 2v {v p as a differential equation for v (since p is a known function), we can solve it as a separable equation and learn that 2 ln v ³ p or v e ³ 2 p. Since we already know that v 2 vp we have that v2 2 pv p vp q 2 p 2 vp2 vp q 2 vp 2 p2 p q. To find Q, we solve the equation pv 2 Qvq{v q algebraically and get Q q v 2 {v q 4 p2 2 p, using the expression for v 2 from the preceding paragraph. Therefore, y is a solution of y 2 py qy if (and only if) z vy is a solution of z 2 Qz for Q q 4 p2 2 p, which is what we were trying to show. 7. Now let z be a non-trivial (i.e., not identically zero) solution of (**), where Qpxq for all x. Show (by basic calculus arguments) that there is at most one value of x for which zpxq. If there are no values of x for which zpxq then we are already done. If there is one, say x x, then note that any solution of (**) with zpx q is a constant multiple of the specific one

5 5 that satisfies the initial conditions zpx q, z px q (by the uniqueness theorem for initial-value problems). So we need only prove that the solution of the problem z 2 Qpxqz zpx q z px q is never zero for x x. First, consider the case x x. We ll prove that zpxq. We ll work by contradiction: If there were a value of x bigger than x for which zpxq then there must be a point x x with x x x such that z px q (by the mean-value theorem, which guarantees the existence of such an x satisfying z px q zpxq zpx q x x. Next, since z px q and z px q, the set of points tx x x x and z pxq u is non-empty. This set is also closed and so has a minimum. Let x 2 be the smallest value of x between x and x where z pxq. Therefore we know that z pxq for x x x 2. We can conclude that zpxq for x x x 2 (again by the mean-value theorem) and then the differential equation tells us that z 2 pxq Qpxqzpxq for x x x 2 since Qpxq and zpxq. However, the mean-value theorem also tells us that there would be a point x 3 with x x 3 x 2 with z 2 px 3 q z px 2 q z px q x 2 x x 2 x which contradicts our earlier conclusion that z 2 pxq for all x x x 2. Therefore our assumption was faulty and we have proved that there is no point x x where zpxq. The proof for the case where x x is similar. 8. What happens if Qpxq? More on this next week, but you can see that the situation might be complicated from the following example: Solve the (auchy-euler) equation z 2 k x 2 z and show that every nontrivial solution of has an infinite number of zeroes (like sines and cosines do) if k {4, but only a finite number (how many are possible?) if k {4. What if k {4? Since the coefficient k{x 2 in this problem becomes singular for x, we consider solutions defined only for x. and d 2 z dx 2 To solve auchy-euler equations, let x e u, so u ln x. By the chain rule: d dx dz dx d dx x dz du x 2 dz du dz dz du dz dx du dx x du d x du dz du dz du dx x 2 du x d 2 z d 2 z dz du 2 x x 2 du 2 du

6 6 Substitute these into the equation to get z 2 k x 2 z x 2 d 2 z du 2 dz du k x 2 z d 2 z dz x 2 du 2 du kz. Therefore zpuq satisfies the constant-coefficient equation d 2 z dz du 2 du kz. The characteristic equation for this is r 2 r there are three cases: k, which has solutions r 2 p? 4kq and If k {4 then the the two values of r are real and the solution is For x this is z c e 2 p? 4kqu c 2 e 2 p? 4kqu c x 2 p? 4kq c2 x 2 p? 4kq. whose only positive zero is z x 2 p? 4kq pc x? 4k x? {p 4kq c2 if c and c 2 have opposite signs, and otherwise there are no positive zeros. If k {4 then r {2 is a double root of the characteristic equation and we have c z c e 2 u c 2 ue 2 u c? x c2? x ln x? xpc c 2 ln xq whose single positive zero occurs at x e c{c2. If k {4 then 4k is negative so the roots of the characteristic equation are complex: r 2 p a p4k qq 2 p i? 4k q. So the solution is?4k z c e 2 u cos u c 2 q?4k c 2 e 2 u sin u??4k x c cos ln x?4k c 2 sin ln x Since the u-version of the function has infinitely many zeros, spaced π{? 4k apart, the x version has infinitely many positive zeros at the exponentials of the u zeros.

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

16.2. Line Integrals

16.2. Line Integrals 16. Line Integrals Review of line integrals: Work integral Rules: Fdr F d r = Mdx Ndy Pdz FT r'( t) ds r t since d '(s) and hence d ds '( ) r T r r ds T = Fr '( t) dt since r r'( ) dr d dt t dt dt does

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

Introduction to Differential Equations

Introduction to Differential Equations Introduction to Differential Equations J. M. Veal, Ph. D. version 13.08.30 Contents 1 Introduction to Differential Equations 2 1.1 Definitions and Terminology.................... 2 1.2 Initial-Value Problems.......................

More information

Consequences of Orthogonality

Consequences of Orthogonality Consequences of Orthogonality Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of Orthogonality Today 1 / 23 Introduction The three kind of examples we did above involved Dirichlet, Neumann

More information

Section 4.3 Vector Fields

Section 4.3 Vector Fields Section 4.3 Vector Fields DEFINITION: A vector field in R n is a map F : A R n R n that assigns to each point x in its domain A a vector F(x). If n = 2, F is called a vector field in the plane, and if

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

Section 4.7: Variable-Coefficient Equations

Section 4.7: Variable-Coefficient Equations Cauchy-Euler Equations Section 4.7: Variable-Coefficient Equations Before concluding our study of second-order linear DE s, let us summarize what we ve done. In Sections 4.2 and 4.3 we showed how to find

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik AMATH 351 Mar 15, 013 FINAL REVIEW Instructor: Jiri Najemni ABOUT GRADES Scores I have so far will be posted on the website today sorted by the student number HW4 & Exam will be added early next wee Let

More information

2 nd order Linear Homogeneous DEs with Non-Constant Coefficients

2 nd order Linear Homogeneous DEs with Non-Constant Coefficients Math 231, Wed 4-May-2011 -- Wed 4-May-2011 Wednesday, May 4th 2011 Topic:: DEs with Non-Constant Coeffs 2 nd order Linear Homogeneous DEs with Non-Constant Coefficients We consider linear 2 nd order homogeneous

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

MA Ordinary Differential Equations

MA Ordinary Differential Equations MA 108 - Ordinary Differential Equations Santanu Dey Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 76 dey@math.iitb.ac.in March 21, 2014 Outline of the lecture Second

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Chap. 2 Second-Order Linear ODEs Sec. 2.1 Homogeneous Linear ODEs of Second Order On pp. 45-46 we extend concepts defined in Chap. 1, notably solution and homogeneous and nonhomogeneous, to second-order

More information

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12 Philippe B. Laval KSU Today Philippe B. Laval (KSU) Arc Length Today 1 / 12 Introduction In this section, we discuss the notion of curve in greater detail and introduce the very important notion of arc

More information

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS MIDTERM 1 PRACTICE PROBLEM SOLUTIONS Problem 1. Give an example of: (a) an ODE of the form y (t) = f(y) such that all solutions with y(0) > 0 satisfy y(t) = +. lim t + (b) an ODE of the form y (t) = f(y)

More information

Welcome to Math 104. D. DeTurck. January 16, University of Pennsylvania. D. DeTurck Math A: Welcome 1 / 44

Welcome to Math 104. D. DeTurck. January 16, University of Pennsylvania. D. DeTurck Math A: Welcome 1 / 44 Welcome to Math 104 D. DeTurck University of Pennsylvania January 16, 2018 D. DeTurck Math 104 002 2018A: Welcome 1 / 44 Welcome to the course Math 104 Calculus I Topics: Quick review of Math 103 topics,

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

8.7 MacLaurin Polynomials

8.7 MacLaurin Polynomials 8.7 maclaurin polynomials 67 8.7 MacLaurin Polynomials In this chapter you have learned to find antiderivatives of a wide variety of elementary functions, but many more such functions fail to have an antiderivative

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

Solutions to the Final Exam, Math 53, Summer 2012

Solutions to the Final Exam, Math 53, Summer 2012 olutions to the Final Exam, Math 5, ummer. (a) ( points) Let be the boundary of the region enclosedby the parabola y = x and the line y = with counterclockwise orientation. alculate (y + e x )dx + xdy.

More information

Advanced Eng. Mathematics

Advanced Eng. Mathematics Koya University Faculty of Engineering Petroleum Engineering Department Advanced Eng. Mathematics Lecture 6 Prepared by: Haval Hawez E-mail: haval.hawez@koyauniversity.org 1 Second Order Linear Ordinary

More information

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL

More information

Series Solutions Near a Regular Singular Point

Series Solutions Near a Regular Singular Point Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:

More information

4B. Line Integrals in the Plane

4B. Line Integrals in the Plane 4. Line Integrals in the Plane 4A. Plane Vector Fields 4A-1 Describe geometrically how the vector fields determined by each of the following vector functions looks. Tell for each what the largest region

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

Second-Order Homogeneous Linear Equations with Constant Coefficients

Second-Order Homogeneous Linear Equations with Constant Coefficients 15 Second-Order Homogeneous Linear Equations with Constant Coefficients A very important class of second-order homogeneous linear equations consists of those with constant coefficients; that is, those

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

MAT 128A - Practice Midterm Exam

MAT 128A - Practice Midterm Exam MAT 8A - Practice Midterm Exam Karry Wong October 3, 08 Problem (True or False) Given that f : r, s Ñ R is a continuous function, and that ta n u are its Chebyshev coefficients. Also, for N P N, p N pxq

More information

Topic 5.1: Line Element and Scalar Line Integrals

Topic 5.1: Line Element and Scalar Line Integrals Math 275 Notes Topic 5.1: Line Element and Scalar Line Integrals Textbook Section: 16.2 More Details on Line Elements (vector dr, and scalar ds): http://www.math.oregonstate.edu/bridgebook/book/math/drvec

More information

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner:

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner: M ath 0 1 E S 1 W inter 0 1 0 Last Updated: January, 01 0 Solving Second Order Linear ODEs Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections 4. 4. 7 and

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

dt 2 roots r = 1 and r =,1, thus the solution is a linear combination of e t and e,t. conditions. We havey(0) = c 1 + c 2 =5=4 and dy (0) = c 1 + c

dt 2 roots r = 1 and r =,1, thus the solution is a linear combination of e t and e,t. conditions. We havey(0) = c 1 + c 2 =5=4 and dy (0) = c 1 + c MAE 305 Assignment #3 Solutions Problem 9, Page 8 The characteristic equation for d y,y =0isr, = 0. This has two distinct roots r = and r =,, thus the solution is a linear combination of e t and e,t. That

More information

DIFFERENTIAL EQUATIONS COURSE NOTES, LECTURE 2: TYPES OF DIFFERENTIAL EQUATIONS, SOLVING SEPARABLE ODES.

DIFFERENTIAL EQUATIONS COURSE NOTES, LECTURE 2: TYPES OF DIFFERENTIAL EQUATIONS, SOLVING SEPARABLE ODES. DIFFERENTIAL EQUATIONS COURSE NOTES, LECTURE 2: TYPES OF DIFFERENTIAL EQUATIONS, SOLVING SEPARABLE ODES. ANDREW SALCH. PDEs and ODEs, order, and linearity. Differential equations come in so many different

More information

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form Second Order ODEs Second Order ODEs In general second order ODEs contain terms involving y, dy But here only consider equations of the form A d2 y dx 2 + B dy dx + Cy = 0 dx, d2 y dx 2 and F(x). where

More information

Motion in Space Parametric Equations of a Curve

Motion in Space Parametric Equations of a Curve Motion in Space Parametric Equations of a Curve A curve, C, inr 3 can be described by parametric equations of the form x x t y y t z z t. Any curve can be parameterized in many different ways. For example,

More information

Chapter 12 Overview: Review of All Derivative Rules

Chapter 12 Overview: Review of All Derivative Rules Chapter 12 Overview: Review of All Derivative Rules The emphasis of the previous chapters was graphing the families of functions as they are viewed (mostly) in Analytic Geometry, that is, with traits.

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

Lecture 10 - Moment of Inertia

Lecture 10 - Moment of Inertia Lecture 10 - oment of Inertia A Puzzle... Question For any object, there are typically many ways to calculate the moment of inertia I = r 2 dm, usually by doing the integration by considering different

More information

Integration in the Complex Plane (Zill & Wright Chapter 18)

Integration in the Complex Plane (Zill & Wright Chapter 18) Integration in the omplex Plane Zill & Wright hapter 18) 116-4-: omplex Variables Fall 11 ontents 1 ontour Integrals 1.1 Definition and Properties............................. 1. Evaluation.....................................

More information

4.3 - Linear Combinations and Independence of Vectors

4.3 - Linear Combinations and Independence of Vectors - Linear Combinations and Independence of Vectors De nitions, Theorems, and Examples De nition 1 A vector v in a vector space V is called a linear combination of the vectors u 1, u,,u k in V if v can be

More information

Math 322. Spring 2015 Review Problems for Midterm 2

Math 322. Spring 2015 Review Problems for Midterm 2 Linear Algebra: Topic: Linear Independence of vectors. Question. Math 3. Spring Review Problems for Midterm Explain why if A is not square, then either the row vectors or the column vectors of A are linearly

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

NOTES WEEK 04 DAY 1 SCOT ADAMS

NOTES WEEK 04 DAY 1 SCOT ADAMS NOTES WEEK 0 DAY 1 SCOT ADAMS DEFINITION 01 Let m, n P N, B P BpR m, R n q Let e 1,, e m be the standard basis of R m Let f 1,, f n be the standard basis of R n Then we define rbs P R nˆm by rbs ji Bpe

More information

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1) Chapter 3 3 Introduction Reading assignment: In this chapter we will cover Sections 3.1 3.6. 3.1 Theory of Linear Equations Recall that an nth order Linear ODE is an equation that can be written in the

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; differentiation; integration; vectors.

Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; differentiation; integration; vectors. Revision Checklist Unit C4: Core Mathematics 4 Unit description Assessment information Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; differentiation; integration;

More information

Introduction to Algebraic and Geometric Topology Week 14

Introduction to Algebraic and Geometric Topology Week 14 Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University These notes are intended as a supplement to section 3.2 of the textbook Elementary

More information

On linear and non-linear equations.(sect. 2.4).

On linear and non-linear equations.(sect. 2.4). On linear and non-linear equations.sect. 2.4). Review: Linear differential equations. Non-linear differential equations. Properties of solutions to non-linear ODE. The Bernoulli equation. Review: Linear

More information

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES J. WONG (FALL 2017) What did we cover this week? Basic definitions: DEs, linear operators, homogeneous (linear) ODEs. Solution techniques for some classes

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES Overview Throughout the first few weeks of the semester, we have studied vector calculus using almost exclusively the familiar Cartesian x,y,z coordinate

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II) MATH 8, FALL 7 - PROBLEM SET #5 SOLUTIONS (PART II (Oct ; Antiderivatives; + + 3 7 points Recall that in pset 3A, you showed that (d/dx tanh x x Here, tanh (x denotes the inverse to the hyperbolic tangent

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Newbattle Community High School Higher Mathematics. Key Facts Q&A

Newbattle Community High School Higher Mathematics. Key Facts Q&A Key Facts Q&A Ways of using this booklet: 1) Write the questions on cards with the answers on the back and test yourself. ) Work with a friend who is also doing to take turns reading a random question

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 4. Line Integrals in the

More information

Lecture 16. Theory of Second Order Linear Homogeneous ODEs

Lecture 16. Theory of Second Order Linear Homogeneous ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 16. Theory of Second Order Linear Homogeneous ODEs February 17, 2012 Konstantin Zuev (USC) Math 245, Lecture 16 February 17, 2012 1 / 12 Agenda

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations An Overly Simplified and Brief Review of Differential Equation Solution Methods We will be dealing with initial or boundary value problems. A typical initial value problem has the form y y 0 y(0) 1 A typical

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Module 10 - Lecture 24 Kinematics of a particle moving on a curve Today,

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4. MATH 23, FALL 2013 Text: Calculus, Early Transcendentals or Multivariable Calculus, 7th edition, Stewart, Brooks/Cole. We will cover chapters 12 through 16, so the multivariable volume will be fine. WebAssign

More information

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam Math 122 Fall 2008 Handout 15: Review Problems for the Cumulative Final Exam The topics that will be covered on Final Exam are as follows. Integration formulas. U-substitution. Integration by parts. Integration

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions. A bacteria culture initially contains 00 cells and grows at a rate proportional to its size. After an hour the population has increased to 40 cells. (a) Find an expression for the

More information

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007 MATH 220 Midterm Thurs., Sept. 20, 2007 Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the eam and nothing else. Calculators

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz MATH 47 Homework 4 Instructor: D. abrera Due July 7. Find all values of each expression below. a) i) i b) cos i) c) sin ) Solution: a) Here we use the formula z c = e c log z i) i = e i log i) The modulus

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 4430 Line Integrals; Green s Theorem Page 8.01 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

Methods of Mathematics

Methods of Mathematics Methods of Mathematics Kenneth A. Ribet UC Berkeley Math 10B March 15, 2016 Linear first order ODEs Last time we looked at first order ODEs. Today we will focus on linear first order ODEs. Here are some

More information

MATH Green s Theorem Fall 2016

MATH Green s Theorem Fall 2016 MATH 55 Green s Theorem Fall 16 Here is a statement of Green s Theorem. It involves regions and their boundaries. In order have any hope of doing calculations, you must see the region as the set of points

More information

The linear equations can be classificed into the following cases, from easier to more difficult: 1. Linear: u y. u x

The linear equations can be classificed into the following cases, from easier to more difficult: 1. Linear: u y. u x Week 02 : Method of C haracteristics From now on we will stu one by one classical techniques of obtaining solution formulas for PDEs. The first one is the method of characteristics, which is particularly

More information