EL 625 Lecture 11. Frequency-domain analysis of discrete-time systems

Size: px
Start display at page:

Download "EL 625 Lecture 11. Frequency-domain analysis of discrete-time systems"

Transcription

1 EL 625 Leture 11 1 EL 625 Leture 11 Frequeny-domain analysis of disrete-time systems Theorem: If S is a fixed linear disrete-time system, the zero-state response, S{z k } = H(z)z k (1) Proof: S{z k } = S{z k } z k }{{} H(z,k) S{z k k 0 } = H(z, k k 0 )z (k k 0).z k = H(z, k)z k (2) (3) = z k 0 S{z k } = z k 0 H(z, k)z k (4) = H(z, k) = H(z, k k 0 ) for any k 0 (5) Thus, H(z, k) is independent of k = H(z, k) = H(z). Thus, S{z k } = H(z)z k The response of a linear time-invariant disrete-time system to a omplex exponential input, z k is the same omplex exponential with a hange of omplex magnitude (magnitude and phase).

2 EL 625 Leture 11 2 z-transform: F (z) = Z{f(k)} = k=0 f(k)z k Inverse z-transform: f(k) = 1 2π C F (z)zk 1 dz Output, y(k) = S{u(k)} = 1 2π C U(z)S{zk 1 }dz (6) = 1 2π C U(z)H(z)zk 1 dz (7) Y (z) = H(z)U(z) H(z) is the disrete transfer funtion matrix. The element at the (i, j) position is the disrete transfer funtion from the j th input to the i th output. Properties of z-transform:

3 EL 625 Leture Linearity: Z{α 1 f 1 (k) + α 2 f 2 (k)} = α 1 Z{f 1 (k)} + α 2 Z{f 2 (k)} (8) 2. Convolution: f(k) = k j=0 3. Time translation: f 1 (k j)f 2 (j) = Z{f(k)} = Z{f 1 (k)}z{f 2 (k)}(9) Z{f(k + m)} = z m Z{f(k)} m 1 i=0 Z{f(k m)} = z m Z{f(k)} + m i=1 f(i)z i for m 0 f( i)z i for m 0 (10) 4. Initial value: 5. Final value: f(0) = lim z F (z) = lim z (1 z 1 )F (z) (11) lim f(n) = lim (1 N z 1 z 1 )F (z) (12) provided (1 z 1 )F (z) has no poles for z Time multipliation: df (z) Z{kf(k)} = z dz (13)

4 EL 625 Leture 11 4 Solution of state equations: Consider the fixed disrete-time linear system below with onstant A, B, C and D matries. x(k + 1) = Ax(k) + Bu(k) y(k) = Cx(k) + Du(k) (14) Taking the z-transform of both sides, Z{x(k + 1)} = Z{Ax(k) + Bu(k)} (15) z[z{x(k)} x(0)] = AZ{x(k)} + BZ{u(k)} (16) = (zi A)X(z) = zx(0) + BU(z) (17) where X(z) and U(z) are the z-transforms of x(k) and u(k) respetively. Thus, X(z) = z(zi A) 1 x(0) + (zi A) 1 BU(z) (18) = Y(z) = Z{y(k)} = CX(z) + DU(z) = Cz(zI A) 1 x(0) With zero input, + [C(zI A) 1 B + D] U(z) (19) }{{} H(z) X(z) = z(zi A) 1 x(0) (20) = Z{φ(k)} = Z{A k } = z(zi A) 1 (21)

5 EL 625 Leture 11 5 A system of differene equations an be solved similarly through the use of z-transforms. Sampled signals and sampled data systems: Many real physial systems are hybrid ommonly with an analog system ontrolled by a digital ontroller. Hybrid systems have both analog and disrete signals. The onversion between analog and digital signals is performed using A to D (analog to digital) and D to A (digital to analog) onverters. A to D e(t) e(kt ) or e(t) e(kt ) Ideal Sampler Figure 1: A to D onverter: ideal sampler m(kt ) D to A m a (t) m(kt ) m a (t) or f T (t) Hold Unit Figure 2: D to A onverter Zero Order Hold (ZOH): ZOH is a D to A onverter whih holds the output value onstant between sampling instants as shown in the figure below. m a (t) is the analog signal reonstruted by the zero order hold when the disrete signal, m(kt ) is passed through it.

6 EL 625 Leture 11 6 b b. b. m(kt ) b. b b. b. m a (t) b. 0 T 2T 3T 0 T 2T 3T t Figure 3: Zero Order Hold The zero-order hold is haraterized by the extrapolation funtion, f T (t) = 1 for 0 t < T (22) 0 for all other t 1 f T (t) 0 T Figure 4: Extrapolation funtion for a zero order hold. m a (t) = k= m(kt )f T (t kt ) (23) = M a (s) = m(kt )F T (s)e kt s k= = F T (s) m(kt )e kt s (24) Here, F T (s) is the laplae transform of the extrapolation funtion, f T (t).

7 EL 625 Leture 11 7 F T (s) = L{f T (t)} = 1 e st s (25) The fator, m(kt )e kt s is the z-transform of m(kt ) evaluated at e st. m(kt )e kt s = M(z) z=e st M (s) (26) m (t) = L 1 {M (s)} = = = m(t) m(kt )L 1 {e kt s } m(kt )δ(t kt ) (27) = m(t) δ(t kt ) (28) δ T (t) (29) δ T (t) is an impulse train. m (t) whih is a produt of m(t) and an impulse train is alled an impulse-modulated signal. δ T (t) = = 1 T = m (t) = 1 T = M (s) = 1 T = 1 T δ(t kt ) (30) n= n= n= n= e j2πn T t (31) m(t)e j2πn T t (32) L{m(t)e j2πn T } M(s + j2πn T ) (33)

8 EL 625 Leture 11 8 Hene, M (s) is periodi in the frequeny domain. To obtain the Z-transform from the L-transform: It an be proved that M (s) = M(z) z = e st (34) = M(z) = M (s) e st = z (35) M (s) = M(w) residues of 1 e st e wt at the poles of M(w) (36) = M(z) = M(s) residues of 1 z 1 e st at the poles of M(s) (37) provided lim s sf (s) is finite for all s with Re{s} < Important properties of Impulse modulated signals: {G(s)U (s)} = G (s)u (s) (38) where {} is the impulse-modulation operation. Proof: Let Y (s) = G(s)U (s). Y (s) = 1 T = 1 T n= n= Y (s + j2πn T ) (39) G(s + j2πn T )U (s + j2πn T ) (40)

9 EL 625 Leture 11 9 But, sine U (s) is an impulse modulated signal, Hene, U (s) = U (s + j2πn ) for all n. (41) T Y (s) = 1 G(s + j2πn T n= T )U (s) (42) = G (s)u (s) (43) {G(s)U (s)} = G (s)u (s) 2. (GU) (s) = {G(s)U(s)} = G (s)u (s) From the relations between M(z) and M (s) derived previously in this leture, the operation of sampling and holding is equivalent to the operation of impulse modulating and filtering. m(t) m(kt ) m A to D a (t) D to A M(s) M(z) M a (s) Figure 5: Sampling and holding. The operation of sampling, Z-transforming and holding is equiva-

10 EL 625 Leture m(t) M(s) IM m (t) M (s) m F T (s) a (t) M a (s) Figure 6: Impulse modulating and filtering lent to the operation of impulse modulating, transforming and filtering. e(t) e(kt ) m(kt ) m A to D D(z) a (t) D to A E(s) E(z) M(z) M a (s) Figure 7: Sampling, Z transforming and holding. e(t) E(s) IM e (t) D (s) E (s) m (t) 1 e st m a (t) M (s) s M a (s) Figure 8: Impulse modulating, transforming and filtering

11 EL 625 Leture Example: G 2 (s)x(s) IM G 3 (s) R(s) m + G 1 (s) E(s) H(s) + m C(z) C(s) C(s) = G 3 (s)x (s) + G 1 (s)e(s) (44) E(s) = R(s) H(s)C(s) (45) = R(s) H(s){G 3 (s)x (s) + G 1 (s)e(s)} (46) = E(s) = R(s) H(s)G 3(s)X (s) 1 + H(s)G 1 (s) (47) = A(s)R(s) A(s)H(s)G 3 (s)x (s) (48) where A(s) = H(s)G 1 (s) (49) X(s) = G 2 (s)e(s) (50) = G 2 (s){a(s)r(s) A(s)H(s)G 3 (s)x (s)} (51) = X (s) = (G 2 AR) (s) (G 2 AHG 3 ) (s)x (s) (52) = X (G 2 AR) (s) (s) = (53) 1 + (G 2 AHG 3 ) (s) = C(s) = G 3 (s)x (s) + G 1 (s)e(s) (G 2 AR) (s) = G 3 (s) 1 + (G 2 AHG 3 ) (s) +G 1 (s){a(s)r(s) A(s)H(s)G 3 (s)x (s)}(54)

12 EL 625 Leture C (s) = G (G 2 AR) (s) (s) 1 + (G 2 AHG 3 ) (s) +(G 1 AR) (s) (G 1 AHG 3 ) (s)x (s) (55) G 2 AR(z) C(z) = G(z) 1 + G 2 AHG 3 (z) +G 1 AR(z) G 1 AHG 3 (z)x(z) (56)

LTI system response. Daniele Carnevale. Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata

LTI system response. Daniele Carnevale. Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata LTI system response Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata Fondamenti di Automatica e Controlli Automatici A.A. 2014-2015 1 / 15 Laplace

More information

1. Z-transform: Initial value theorem for causal signal. = u(0) + u(1)z 1 + u(2)z 2 +

1. Z-transform: Initial value theorem for causal signal. = u(0) + u(1)z 1 + u(2)z 2 + 1. Z-transform: Initial value theorem for causal signal u(0) lim U(z) if the limit exists z U(z) u(k)z k u(k)z k k lim U(z) u(0) z k0 u(0) + u(1)z 1 + u(2)z 2 + CL 692 Digital Control, IIT Bombay 1 c Kannan

More information

EE480.3 Digital Control Systems. Part 2. z-transform

EE480.3 Digital Control Systems. Part 2. z-transform EE480.3 Digital Control Systems Part 2. z-transform Kunio Takaya Electrical and Computer Engineering University of Saskatchewan January 14, 2008 ** Go to full-screen mode now by hitting CTRL-L 1 Contents

More information

Systems and Control Theory Lecture Notes. Laura Giarré

Systems and Control Theory Lecture Notes. Laura Giarré Systems and Control Theory Lecture Notes Laura Giarré L. Giarré 2017-2018 Lesson 7: Response of LTI systems in the transform domain Laplace Transform Transform-domain response (CT) Transfer function Zeta

More information

Lecture 7: z-transform Properties, Sampling and Nyquist Sampling Theorem

Lecture 7: z-transform Properties, Sampling and Nyquist Sampling Theorem EE518 Digital Signal Proessing University of Washington Autumn 21 Dept. of Eletrial Engineering ure 7: z-ransform Properties, Sampling and Nyquist Sampling heorem Ot 22, 21 Prof: J. Bilmes

More information

Digital Control & Digital Filters. Lectures 13 & 14

Digital Control & Digital Filters. Lectures 13 & 14 Digital Controls & Digital Filters Lectures 13 & 14, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2017 Systems with Actual Time Delays-Application 2 Case

More information

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu Modelling and Control of Dynamic Systems Stability of Linear Systems Sven Laur University of Tartu Motivating Example Naive open-loop control r[k] Controller Ĉ[z] u[k] ε 1 [k] System Ĝ[z] y[k] ε 2 [k]

More information

Appendix I Discrete-Data Control Systems

Appendix I Discrete-Data Control Systems Appendix I Discrete-Data Control Systems O ACCOMPANY AUOMAIC CONROL SYSEMS EIGHH EDIION BY BENJAMIN C. KUO FARID GOLNARAGHI JOHN WILEY & SONS, INC. Copyright 2003 John Wiley & Sons, Inc. All rights reserved.

More information

Linear dynamical systems with inputs & outputs

Linear dynamical systems with inputs & outputs EE263 Autumn 215 S. Boyd and S. Lall Linear dynamical systems with inputs & outputs inputs & outputs: interpretations transfer function impulse and step responses examples 1 Inputs & outputs recall continuous-time

More information

Why do we need a model?

Why do we need a model? Why do we need a model? For simulation (study the system output for a given input) Ex. Thermal study of a space shuttle when it enters the atmosphere (étude thermique concernant la rentrée dans l atmosphère

More information

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes Engineering Applications of z-transforms 21.4 Introduction In this Section we shall apply the basic theory of z-transforms to help us to obtain the response or output sequence for a discrete system. This

More information

Methods for analysis and control of. Lecture 6: Introduction to digital control

Methods for analysis and control of. Lecture 6: Introduction to digital control Methods for analysis and of Lecture 6: to digital O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename 6th May 2009 Outline Some interesting books:

More information

EEE 188: Digital Control Systems

EEE 188: Digital Control Systems EEE 88: Digital Control Systems Lecture summary # the controlled variable. Example: cruise control. In feedback control, sensors and measurements play an important role. In discrete time systems, the control

More information

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation A. Hably 1 1 Gipsa-lab, Grenoble-INP ahmad.hably@grenoble-inp.fr Commande d un robot mobile (Gipsa-lab (DA)) ASI 1 / 25 Outline 1 2 (Gipsa-lab (DA)) ASI 2 / 25 of controllers Signals must be sampled and

More information

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method - State Estimation

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method - State Estimation EE480.3 Digital Control Systems Part 7. Controller Design I. - Pole Assignment Method - State Estimation Kunio Takaya Electrical and Computer Engineering University of Saskatchewan February 10, 2010 **

More information

Chapter 2 z-transform. X(z) = Z[x(t)] = Z[x(kT)] = Z[x(k)] x(kt)z k = x(kt)z k = x(k)z k. X(z)z k 1 dz 2πj c = 1

Chapter 2 z-transform. X(z) = Z[x(t)] = Z[x(kT)] = Z[x(k)] x(kt)z k = x(kt)z k = x(k)z k. X(z)z k 1 dz 2πj c = 1 One-sided -transform Two-sided -transform Chapter 2 -TRANSFORM X() Z[x(t)] Z[x(kT)] Z[x(k)] x(kt) k x(k) k X() k0 k x(kt) k k0 k x(k) k Note that X() x(0) + x(t ) + x(2t ) 2 + + x(kt) k + Inverse -transform

More information

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada Digital Control System Models M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Model of ADC. Model of DAC. Model of ADC, analog subsystem and DAC. Systems with transport

More information

EE451/551: Digital Control. Chapter 7: State Space Representations

EE451/551: Digital Control. Chapter 7: State Space Representations EE45/55: Digital Control Chapter 7: State Spae Representations State Variables Definition 7.: The system state is a minimal set of { variables x ( t ), i =, 2,, n needed together with the i input ut, and

More information

Module 9: State Feedback Control Design Lecture Note 1

Module 9: State Feedback Control Design Lecture Note 1 Module 9: State Feedback Control Design Lecture Note 1 The design techniques described in the preceding lectures are based on the transfer function of a system. In this lecture we would discuss the state

More information

A Typical Feedback System. Disturbance. Reference. Input Controller Input. Plant. Sensor. Noise

A Typical Feedback System. Disturbance. Reference. Input Controller Input. Plant. Sensor. Noise A Typical Feedback System Disturbance Reference Input Error Controller Input Plant Output Sensor Noise Typical Control Objectives Uncontrolled system (plant) may not behave satisfactorily Design a control

More information

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)}

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)} 1 VI. Z Transform Ch 24 Use: Analysis of systems, simple convolution, shorthand for e jw, stability. A. Definition: X(z) = x(n) z z - transforms Motivation easier to write Or Note if X(z) = Z {x(n)} z

More information

# FIR. [ ] = b k. # [ ]x[ n " k] [ ] = h k. x[ n] = Ae j" e j# ˆ n Complex exponential input. [ ]Ae j" e j ˆ. ˆ )Ae j# e j ˆ. y n. y n.

# FIR. [ ] = b k. # [ ]x[ n  k] [ ] = h k. x[ n] = Ae j e j# ˆ n Complex exponential input. [ ]Ae j e j ˆ. ˆ )Ae j# e j ˆ. y n. y n. [ ] = h k M [ ] = b k x[ n " k] FIR k= M [ ]x[ n " k] convolution k= x[ n] = Ae j" e j ˆ n Complex exponential input [ ] = h k M % k= [ ]Ae j" e j ˆ % M = ' h[ k]e " j ˆ & k= k = H (" ˆ )Ae j e j ˆ ( )

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers

LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna email: claudio.melchiorri@unibo.it

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems ECE 3640 Lecture State-Space Analysis Objective: systems To learn about state-space analysis for continuous and discrete-time Perspective Transfer functions provide only an input/output perspective of

More information

8. z-domain Analysis of Discrete-Time Signals and Systems

8. z-domain Analysis of Discrete-Time Signals and Systems 8. z-domain Analysis of Discrete-Time Signals and Systems 8.. Definition of z-transform (0.0-0.3) 8.2. Properties of z-transform (0.5) 8.3. System Function (0.7) 8.4. Classification of a Linear Time-Invariant

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Distributed Real-Time Control Systems

Distributed Real-Time Control Systems Distributed Real-Time Control Systems Chapter 9 Discrete PID Control 1 Computer Control 2 Approximation of Continuous Time Controllers Design Strategy: Design a continuous time controller C c (s) and then

More information

It is common to think and write in time domain. creating the mathematical description of the. Continuous systems- using Laplace or s-

It is common to think and write in time domain. creating the mathematical description of the. Continuous systems- using Laplace or s- It is common to think and write in time domain quantities, but this is not the best thing to do in creating the mathematical description of the system we are dealing with. Continuous systems- using Laplace

More information

VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING

VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING DEPARTMENT: PROCESS CONTROL AND COMPUTER SYSTEMS BACCALAUREUS TECHNOLOGIAE: ENGINEERING ELECTRICAL SUBJECT : DIGITAL CONTROL SYSTEMS IV EIDBS4A ASSESSMENT

More information

Introduction to the Science of Control

Introduction to the Science of Control Introduction to the Science of Control M.L. Walker General Atomics, San Diego, USA 4 th ITER International Summer School May 31 June 4, 2010, Austin, Teas, USA Objectives of Talk Learn some control terminology

More information

Module 6: Deadbeat Response Design Lecture Note 1

Module 6: Deadbeat Response Design Lecture Note 1 Module 6: Deadbeat Response Design Lecture Note 1 1 Design of digital control systems with dead beat response So far we have discussed the design methods which are extensions of continuous time design

More information

Properties of Open-Loop Controllers

Properties of Open-Loop Controllers Properties of Open-Loop Controllers Sven Laur University of Tarty 1 Basics of Open-Loop Controller Design Two most common tasks in controller design is regulation and signal tracking. Regulating controllers

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Module 1: Introduction to Digital Control Lecture Note 4

Module 1: Introduction to Digital Control Lecture Note 4 Digital Control Module Lecture 4 Module : Introduction to Digital Control Lecture Note 4 Data Reconstruction Most of the control systems have analog controlled processes which are inherently driven by

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #27 Wednesday, March 17, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Discrete Delta Domain Models The

More information

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 2010-2011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 2010-2011 1 / 31 ime-discretization

More information

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) =

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) = Z-Transform The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = Z : G(z) = It is Used in Digital Signal Processing n= g(t)e st dt g[n]z n Used to Define Frequency

More information

26 Feedback Example: The Inverted Pendulum

26 Feedback Example: The Inverted Pendulum 6 Feedback Example: The Inverted Pendulum Solutions to Recommended Problems S6. Ld 0(t) (a) Ldz6(t) = g0(t) a(t) + Lx(t), Ld (t) dt - ga(t) = Lx(t) Taking the Laplace transform of both sides yields szlo(s)

More information

Z-Transform. x (n) Sampler

Z-Transform. x (n) Sampler Chapter Two A- Discrete Time Signals: The discrete time signal x(n) is obtained by taking samples of the analog signal xa (t) every Ts seconds as shown in Figure below. Analog signal Discrete time signal

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

CDS Solutions to Final Exam

CDS Solutions to Final Exam CDS 22 - Solutions to Final Exam Instructor: Danielle C Tarraf Fall 27 Problem (a) We will compute the H 2 norm of G using state-space methods (see Section 26 in DFT) We begin by finding a minimal state-space

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Control Systems Lab - SC4070 Control techniques

Control Systems Lab - SC4070 Control techniques Control Systems Lab - SC4070 Control techniques Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.:015-2788131 TU Delft, February 16, 2015 (slides modified from

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Eon602: Maro Theory Eonomis, HKU Instrutor: Dr. Yulei Luo September 208 Solutions to Problem Set. [0 points] Consider the following lifetime optimal onsumption-saving problem: v (a 0 ) max f;a t+ g t t

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

Errata and changes for Lecture Note 1 (I would like to thank Tomasz Sulka for the following changes): ( ) ( ) lim = should be

Errata and changes for Lecture Note 1 (I would like to thank Tomasz Sulka for the following changes): ( ) ( ) lim = should be Errata and hanges for Leture Note (I would like to thank Tomasz Sulka for the following hanges): Page 5 of LN: f f ' lim should be g g' f f ' lim lim g g ' Page 8 of LN: the following words (in RED) have

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

23 Mapping Continuous-Time Filters to Discrete-Time Filters

23 Mapping Continuous-Time Filters to Discrete-Time Filters 23 Mapping Continuous-Time Filters to Discrete-Time Filters Solutions to Recommended Problems S23.1 (a) X,(z) = - 1-2z 2 Z i. (b) X 2 (z) = 0 (-3)"z = (-3)-"z" 1 z 3-'z < 1, n=o

More information

Recursive, Infinite Impulse Response (IIR) Digital Filters:

Recursive, Infinite Impulse Response (IIR) Digital Filters: Recursive, Infinite Impulse Response (IIR) Digital Filters: Filters defined by Laplace Domain transfer functions (analog devices) can be easily converted to Z domain transfer functions (digital, sampled

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

Discrete-time signals and systems

Discrete-time signals and systems Discrete-time signals and systems 1 DISCRETE-TIME DYNAMICAL SYSTEMS x(t) G y(t) Linear system: Output y(n) is a linear function of the inputs sequence: y(n) = k= h(k)x(n k) h(k): impulse response of the

More information

Discrete-time Controllers

Discrete-time Controllers Schweizerische Gesellschaft für Automatik Association Suisse pour l Automatique Associazione Svizzera di Controllo Automatico Swiss Society for Automatic Control Advanced Control Discrete-time Controllers

More information

Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/28

Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/28 Ingegneria dell Automazione - Sistemi in Tempo Reale Selected topics on discrete-time and sampled-data systems Luigi Palopoli palopoli@sssup.it - Tel. 050/883444 Ingegneria dell Automazione - Sistemi in

More information

Conformal Mapping, Möbius Transformations. Slides-13

Conformal Mapping, Möbius Transformations. Slides-13 , Möbius Transformations Slides-13 Let γ : [a, b] C be a smooth curve in a domain D. Let f be a function defined at all points z on γ. Let C denotes the image of γ under the transformation w = f (z).

More information

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) = 567 This is often referred to as Þnite settling time or deadbeat design because the dynamics will settle in a Þnite number of sample periods. This estimator always drives the error to zero in time 2T or

More information

ON DIRICHLET PROBLEM WITH SINGULAR INTEGRAL BOUNDARY CONDITION

ON DIRICHLET PROBLEM WITH SINGULAR INTEGRAL BOUNDARY CONDITION Qatar Univ. Si. Bull. (1983), 3: 13-18 ON DIRICHLET PROBLEM WITH SINGULAR INTEGRAL BOUNDARY CONDITION By M. I. MOHAMED Math. Dept., University of Qatar, Doha, Qatar ABSTRACT In this paper a Dirihlet problem,

More information

Signals & Systems - Chapter 6

Signals & Systems - Chapter 6 Signals & Systems - Chapter 6 S. A real-valued signal x( is knon to be uniquely determined by its samples hen the sampling frequeny is s = 0,000π. For hat values of is (j) guaranteed to be zero? From the

More information

VI. Z Transform and DT System Analysis

VI. Z Transform and DT System Analysis Summer 2008 Signals & Systems S.F. Hsieh VI. Z Transform and DT System Analysis Introduction Why Z transform? a DT counterpart of the Laplace transform in CT. Generalization of DT Fourier transform: z

More information

ECE503: Digital Signal Processing Lecture 4

ECE503: Digital Signal Processing Lecture 4 ECE503: Digital Signal Processing Lecture 4 D. Richard Brown III WPI 06-February-2012 WPI D. Richard Brown III 06-February-2012 1 / 29 Lecture 4 Topics 1. Motivation for the z-transform. 2. Definition

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

ECE504: Lecture 9. D. Richard Brown III. Worcester Polytechnic Institute. 04-Nov-2008

ECE504: Lecture 9. D. Richard Brown III. Worcester Polytechnic Institute. 04-Nov-2008 ECE504: Lecture 9 D. Richard Brown III Worcester Polytechnic Institute 04-Nov-2008 Worcester Polytechnic Institute D. Richard Brown III 04-Nov-2008 1 / 38 Lecture 9 Major Topics ECE504: Lecture 9 We are

More information

Discrete-time models and control

Discrete-time models and control Discrete-time models and control Silvano Balemi University of Applied Sciences of Southern Switzerland Zürich, 2009-2010 Discrete-time signals 1 Step response of a sampled system Sample and hold 2 Sampling

More information

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design COMM 60: Digital Signal Proeing Leture 8 Digital Filter Deign Remember: Filter Type Filter Band Pratial Filter peifiation Pratial Filter peifiation H ellipti H Pratial Filter peifiation p p IIR Filter

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

9.2 The Input-Output Description of a System

9.2 The Input-Output Description of a System Lecture Notes on Control Systems/D. Ghose/212 22 9.2 The Input-Output Description of a System The input-output description of a system can be obtained by first defining a delta function, the representation

More information

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems EE451/551: Digital Control Chapter 3: Modeling of Digital Control Systems Common Digital Control Configurations AsnotedinCh1 commondigitalcontrolconfigurations As noted in Ch 1, common digital control

More information

Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht

Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht G G QQ K K Z z U K z q Z 22 x z - z 97 Z x z j K K 33 G - 72 92 33 3% 98 K 924 4 G G K 2 G x G K 2 z K j x x 2 G Z 22 j K K x q j - K 72 G 43-2 2 G G z G - -G G U q - z q - G x) z q 3 26 7 x Zz - G U-

More information

Z Transform (Part - II)

Z Transform (Part - II) Z Transform (Part - II). The Z Transform of the following real exponential sequence x(nt) = a n, nt 0 = 0, nt < 0, a > 0 (a) ; z > (c) for all z z (b) ; z (d) ; z < a > a az az Soln. The given sequence

More information

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013 EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding

More information

SURFACE WAVES OF NON-RAYLEIGH TYPE

SURFACE WAVES OF NON-RAYLEIGH TYPE SURFACE WAVES OF NON-RAYLEIGH TYPE by SERGEY V. KUZNETSOV Institute for Problems in Mehanis Prosp. Vernadskogo, 0, Mosow, 75 Russia e-mail: sv@kuznetsov.msk.ru Abstrat. Existene of surfae waves of non-rayleigh

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD 206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

More information

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13)

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) LECTURE NOTES ON DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) FACULTY : B.V.S.RENUKA DEVI (Asst.Prof) / Dr. K. SRINIVASA RAO (Assoc. Prof) DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

More information

y[n] = = h[k]x[n k] h[k]z n k k= 0 h[k]z k ) = H(z)z n h[k]z h (7.1)

y[n] = = h[k]x[n k] h[k]z n k k= 0 h[k]z k ) = H(z)z n h[k]z h (7.1) 7. The Z-transform 7. Definition of the Z-transform We saw earlier that complex exponential of the from {e jwn } is an eigen function of for a LTI System. We can generalize this for signals of the form

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 19: Lattice Filters Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 2008 K. E. Barner (Univ. of Delaware) ELEG

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

The simulation analysis of the bridge rectifier continuous operation in AC circuit

The simulation analysis of the bridge rectifier continuous operation in AC circuit Computer Appliations in Eletrial Engineering Vol. 4 6 DOI 8/j.8-448.6. The simulation analysis of the bridge retifier ontinuous operation in AC iruit Mirosław Wiślik, Paweł Strząbała Kiele University of

More information

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2 Stability 8X(s) X(s) Y(s) = (s 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = 2 and s = -2 If all poles are in region where s < 0, system is stable in Fourier language s = jω G 0 - x3 x7 Y(s)

More information

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections Discrete-Time Signals and Systems The z-transform and Its Application Dr. Deepa Kundur University of Toronto Reference: Sections 3. - 3.4 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Theory of Linear Systems Exercises. Luigi Palopoli and Daniele Fontanelli

Theory of Linear Systems Exercises. Luigi Palopoli and Daniele Fontanelli Theory of Linear Systems Exercises Luigi Palopoli and Daniele Fontanelli Dipartimento di Ingegneria e Scienza dell Informazione Università di Trento Contents Chapter. Exercises on the Laplace Transform

More information

EECS 120 Signals & Systems University of California, Berkeley: Fall 2005 Gastpar November 16, Solutions to Exam 2

EECS 120 Signals & Systems University of California, Berkeley: Fall 2005 Gastpar November 16, Solutions to Exam 2 EECS 0 Signals & Systems University of California, Berkeley: Fall 005 Gastpar November 6, 005 Solutions to Exam Last name First name SID You have hour and 45 minutes to omplete this exam. he exam is losed-book

More information

10.2 The Occurrence of Critical Flow; Controls

10.2 The Occurrence of Critical Flow; Controls 10. The Ourrene of Critial Flow; Controls In addition to the type of problem in whih both q and E are initially presribed; there is a problem whih is of pratial interest: Given a value of q, what fators

More information

Chapter Review of of Random Processes

Chapter Review of of Random Processes Chapter.. Review of of Random Proesses Random Variables and Error Funtions Conepts of Random Proesses 3 Wide-sense Stationary Proesses and Transmission over LTI 4 White Gaussian Noise Proesses @G.Gong

More information

Simple FIR Digital Filters. Simple FIR Digital Filters. Simple Digital Filters. Simple FIR Digital Filters. Simple FIR Digital Filters

Simple FIR Digital Filters. Simple FIR Digital Filters. Simple Digital Filters. Simple FIR Digital Filters. Simple FIR Digital Filters Simple Digital Filters Later in the ourse we shall review various methods of designing frequeny-seletive filters satisfying presribed speifiations We now desribe several low-order FIR and IIR digital filters

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: EE 1354 MODERN CONTROL SYSTEMS

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: EE 1354 MODERN CONTROL SYSTEMS KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: YEAR / SEM : III / VI UNIT I STATE SPACE ANALYSIS OF CONTINUOUS TIME SYSTEMS PART A

More information

ENEE630 ADSP RECITATION 5 w/ solution Ver

ENEE630 ADSP RECITATION 5 w/ solution Ver ENEE630 ADSP RECITATION 5 w/ solution Ver20209 Consider the structures shown in Fig RI, with input transforms and filter responses as indicated Sketch the quantities Y 0 (e jω ) and Y (e jω ) Figure RI:

More information

FINITE WORD LENGTH EFFECTS IN DSP

FINITE WORD LENGTH EFFECTS IN DSP FINITE WORD LENGTH EFFECTS IN DSP PREPARED BY GUIDED BY Snehal Gor Dr. Srianth T. ABSTRACT We now that omputers store numbers not with infinite preision but rather in some approximation that an be paed

More information

On the Equivalence of OKID and Time Series Identification for Markov-Parameter Estimation

On the Equivalence of OKID and Time Series Identification for Markov-Parameter Estimation On the Equivalence of OKID and Time Series Identification for Markov-Parameter Estimation P V Albuquerque, M Holzel, and D S Bernstein April 5, 2009 Abstract We show the equivalence of Observer/Kalman

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 065-3 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 6 October - 0 November, 009 Digital Signal Processing The z-transform Massimiliano Nolich DEEI Facolta' di Ingegneria

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Leture 5 for BST 63: Statistial Theory II Kui Zhang, Spring Chapter 8 Hypothesis Testing Setion 8 Introdution Definition 8 A hypothesis is a statement about a population parameter Definition 8 The two

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information