Simple FIR Digital Filters. Simple FIR Digital Filters. Simple Digital Filters. Simple FIR Digital Filters. Simple FIR Digital Filters

Size: px
Start display at page:

Download "Simple FIR Digital Filters. Simple FIR Digital Filters. Simple Digital Filters. Simple FIR Digital Filters. Simple FIR Digital Filters"

Transcription

1 Simple Digital Filters Later in the ourse we shall review various methods of designing frequeny-seletive filters satisfying presribed speifiations We now desribe several low-order FIR and IIR digital filters with reasonable seletive frequeny responses that often are satisfatory in a number of appliations FIR digital filters onsidered here have integer-valued impulse response oeffiients These filters are employed in a number of pratial appliations, primarily beause of their simpliity, whih makes them amenable to inexpensive hardware implementations 3 Lowpass FIR Digital Filters The simplest lowpass FIR digital filter is the -point moving-average filter given by H ( ) ( + ) + The above transfer funtion has a ero at and a pole at Note that here the pole vetor has a unity magnitude for all values of ω 4 On the other hand, as ω inreases from to π, the magnitude of the ero vetor dereases from a value of, the diameter of the unit irle, to Hene, the magnitude response H( e ) is a monotonially dereasing funtion of ω from ω to ω π The maximum value of the magnitude funtion is at ω, and the minimum value is at ω π, i.e., j jπ H ( e ), H( e ) The frequeny response of the above filter is given by H / ( e ) e os( ω / ) The magnitude response H( e ) os( ω/ ) an be seen to be a monotonially dereasing funtion of ω First-order FIR lowpass filter

2 7 The frequeny ω ω at whih j H( e ) H( e ) is of pratial interest sine here the gain G( ω) in db is given by j G ( ω) log H ( e ω ) j log H ( e ) log 3 db j sine the d gain G( ) log H( e ) 8 Thus, the gain G(ω) at ω ω is approximately 3 db less than the gain at ω As a result, ω is alled the 3-dB utoff frequeny To determine the value of ω we set ω H ( e j ) os ( ω / ) whih yields ω π/ ω The 3-dB utoff frequeny an be onsidered as the passband edge frequeny As a result, for the filter H () the passband width is approximately π/ The stopband is from π/ to π Note: H () has a ero at or ω π, whih is in the stopband of the filter A asade of the simple FIR filter ( ) H ( + ) results in an improved lowpass frequeny response as illustrated below for a asade of 3 setions First-order FIR lowpass filter asade The 3-dB utoff frequeny of a asade of M setions is given by / M ω os ( ) For M 3, the above yields ω. 3π Thus, the asade of first-order setions yields a sharper magnitude response but at the expense of a derease in the width of the passband A better approximation to the ideal lowpass filter is given by a higher-order movingaverage filter Signals with rapid flutuations in sample values are generally assoiated with highfrequeny omponents These high-frequeny omponents are essentially removed by an moving-average filter resulting in a smoother output waveform

3 Highpass FIR Digital Filters The simplest highpass FIR filter is obtained from the simplest lowpass FIR filter by replaing with This results in H ( ) ( ) Corresponding frequeny response is given by / H( e ) j e sin( ω/ ) whose magnitude response is plotted below First-order FIR highpass filter The monotonially inreasing behavior of the magnitude funtion an again be demonstrated by examining the pole-ero pattern of the transfer funtion H () The highpass transfer funtion H () has a ero at or ω whih is in the stopband of the filter 6 Improved highpass magnitude response an again be obtained by asading several setions of the first-order highpass filter Alternately, a higher-order highpass filter of the form M n n H ( ) M n ( ) is obtained by replaing with in the transfer funtion of a moving average filter 7 An appliation of the FIR highpass filters is in moving-target-indiator (MTI) radars In these radars, interfering signals, alled lutters, are generated from fixed objets in the path of the radar beam The lutter, generated mainly from ground ehoes and weather returns, has frequeny omponents near ero frequeny (d) 8 The lutter an be removed by filtering the radar return signal through a two-pulse aneler, whih is the first-order FIR highpass filter ( ) H ( ) For a more effetive removal it may be neessary to use a three-pulse aneler obtained by asading two two-pulse anelers 3

4 Lowpass IIR Digital Filters We have shown earlier that the first-order ausal IIR transfer funtion K H( ), < α < α has a lowpass magnitude response for α > An improved lowpass magnitude response is obtained by adding a fator ( + ) to the numerator of transfer funtion K( + ) H( ), < α < α This fores the magnitude response to have a ero at ω π in the stopband of the filter 9 On the other hand, the first-order ausal IIR transfer funtion K H( ), < α < α has a highpass magnitude response for α < However, the modified transfer funtion obtained with the addition of a fator ( + ) to the numerator K( + ) H( ), < α < α exhibits a lowpass magnitude response 3 The modified first-order lowpass transfer funtion for both positive and negative values of α is then given by K( + ) H LP ( ), < α < α As ω inreases from to π, the magnitude of the ero vetor dereases from a value of to 4 The maximum values of the magnitude funtion is K /( α) at ω and the minimum value is at ω π, i.e., j K jπ HLP( e ), HLP( e ) α Therefore, H LP ( e ) is a monotonially dereasing funtion of ω from ω to ω π 4

5 5 For most appliations, it is usual to have a d gain of db, that is to have H( e j ) To this end, we hoose K ( α) / resulting in the first-order IIR lowpass transfer funtion α ( ) + H LP, < α < α The above transfer funtion has a ero at i.e., at ω π whih is in the stopband 6 Lowpass IIR Digital Filters A first-order ausal lowpass IIR digital filter has a transfer funtion given by α + H LP ( ) α where α < for stability The above transfer funtion has a ero at i.e., at ω π whih is in the stopband 7 H LP () has a real pole at α As ω inreases from to π, the magnitude of the ero vetor dereases from a value of to, whereas, for a positive value of α, the magnitude of the pole vetor inreases from a value of α to + α The maximum value of the magnitude funtion is at ω, and the minimum value is at ω π 8 j i.e., H LP( e ), H LP( e ) Therefore, H LP ( e ) is a monotonially dereasing funtion of ω from ω to ω π as indiated below α.8 α.7 α Gain, db jπ α.8 α.7 α The squared magnitude funtion is given by ( α) ( + osω) H LP ( e ) ( + α αosω) The derivative of H LP( e ) with respet to ω is given by d H LP( e ) ( α) ( + α + α )sin ω dω ( αosω + α ) 3 d H LP( e ) / dω in the range ω π verifying again the monotonially dereasing behavior of the magnitude funtion To determine the 3-dB utoff frequeny we set H ( ) LP e in the expression for the square magnitude funtion resulting in 5

6 3 ( α) ( + osω ) ( + α αosω ) or ( α) ( + osω ) + α αosω whih when solved yields α osω + α The above quadrati equation an be solved for α yielding two solutions 3 The solution resulting in a stable transfer funtion H LP () is given by sin ω α osω It follows from ( α) H LP ( e ) ( + α ( + osω) αosω) that H LP () is a BR funtion for α < 33 Highpass IIR Digital Filters A first-order ausal highpass IIR digital filter has a transfer funtion given by + α H HP ( ) α where α < for stability The above transfer funtion has a ero at i.e., at ω whih is in the stopband 34 ω Its 3-dB utoff frequeny is given by α ( sin ω ) / osω whih is the same as that of H LP () and gain responses of H HP () are shown below α.8 α.7 α Gain, db α.8 α.7 α H HP () is a BR funtion for α < Example-Design a first-order highpass digital filter with a 3-dB utoff frequeny of.8π Now, sin( ω ) sin(.8π) and os(.8π). 89 Therefore α ( sin ω ) / osω Therefore, + α H HP ( ) α

7 37 Bandpass IIR Digital Filters A nd-order bandpass digital transfer funtion is given by α H BP ( ) β( + α) + α Its squared magnitude funtion is H BP ( e [ + β ) ( + α) ( α) ( osω) + α β( + α) osω + αosω] 38 H BP ( e ) goes to ero at ω and ω π It assumes a maximum value of at ω ω o, alled the enter frequeny of the bandpass filter, where ωo os ( β) The frequenies ω and ω where H BP ( e ) beomes / are alled the 3-dB utoff frequenies The differene between the two utoff frequenies, assuming ω > ω is alled the 3-dB bandwidth and is given by B ω ω os α w + α The transfer funtion H BP () is a BR funtion if α < and β < Plots of H BP ( e β.34 α.8 α.5 α. ) are shown below α.6 β.8 β.5 β Example-Design a nd order bandpass digital filter with enter frequeny at.4π and a 3-dB bandwidth of.π Hereβ os( ωo ) os(.4π).397 and α os( B ) os(. ) w π + α The solution of the above equation yields: α and α The orresponding transfer funtions are H ' BP ( ) and H" BP ( ) The poles of H ' BP ( ) are at.3677 ± j and have a magnitude > 7

8 43 Thus, the poles of H ' BP ( ) are outside the unit irle making the transfer funtion unstable On the other hand, the poles of H" BP ( ) are at ± j and have a magnitude of Hene H" BP ( ) is BIBO stable Later we outline a simpler stability test 44 Figures below show the plots of the magnitude funtion and the group delay of " ( ) H BP Group delay, samples Bandstop IIR Digital Filters A nd-order bandstop digital filter has a transfer funtion given by + α β + H BS ( ) β( + α) + α The transfer funtion H BS () is a BR funtion if α < and β < Its magnitude response is plotted below α.8 α.5 α β.8 β.5 β Here, the magnitude funtion takes the maximum value of at ω and ω π It goes to at ω ω o, where ωo, alled the noth frequeny, is given by ωo os ( β) The digital transfer funtion H BS () is more ommonly alled a noth filter 48 ω The frequenies ω and where H BS ( e ) beomes / are alled the 3-dB utoff frequenies The differene between the two utoff frequenies, assuming ω > ω is alled the 3-dB noth bandwidth and is given by Bw ω ω os α + α 8

9 49 Higher-Order IIR Digital Filters By asading the simple digital filters disussed so far, we an implement digital filters with sharper magnitude responses Consider a asade of K first-order lowpass setions harateried by the transfer funtion α + ( ) α H LP 5 The overall struture has a transfer funtion given by K α + GLP( ) α The orresponding squared-magnitude funtion is given by j ω ( α) ( + osω) GLP( e ) ( + α αosω) K 5 To determine the relation between its 3-dB utoff frequeny ω and the parameter α, we set K ( α) ( + osω ) ( + α αosω ) whih when solved for α, yields for a stable G LP (): + ( C)osω sin ω C C α C + osω 5 where ( K )/ K C It should be noted that the expression for α given earlier redues to for K sin ω α osω 53 Example-Design a lowpass filter with a 3- db utoff frequeny at ω. 4π using a single first-order setion and a asade of 4 first-order setions, and ompare their gain responses For the single first-order lowpass filter we have + sin ω + sin(.4π) α.584 osω os(.4π) 54 For the asade of 4 first-order setions, we substitute K 4 and get ( K )/ K ( 4)/ 4 C. 688 Next we ompute + ( C)osω sin ω C C α C + osω + (.688)os(.4π) sin(.4π) (.688) (.688) os(.4π).5 9

10 The gain responses of the two filters are shown below As an be seen, asading has resulted in a sharper roll-off in the gain response 55 Gain, db K K Passband details Gain, db K K4

Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) Solutions to Final Exam

Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) Solutions to Final Exam Computer Engineering TL: Digital Signal Proessing (Fall 3) Solutions to Final Exam The step response ynof a ausal, stable LTI system is: n [ ] = [ yn ] un, [ ] where un [ ] is the unit step funtion a Find

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #24 Tuesday, November 4, 2003 6.8 IIR Filter Design Properties of IIR Filters: IIR filters may be unstable Causal IIR filters with rational system

More information

LINEAR-PHASE FIR FILTERS DESIGN

LINEAR-PHASE FIR FILTERS DESIGN LINEAR-PHASE FIR FILTERS DESIGN Prof. Siripong Potisuk inimum-phase Filters A digital filter is a minimum-phase filter if and only if all of its zeros lie inside or on the unit circle; otherwise, it is

More information

FINITE WORD LENGTH EFFECTS IN DSP

FINITE WORD LENGTH EFFECTS IN DSP FINITE WORD LENGTH EFFECTS IN DSP PREPARED BY GUIDED BY Snehal Gor Dr. Srianth T. ABSTRACT We now that omputers store numbers not with infinite preision but rather in some approximation that an be paed

More information

Tunable IIR Digital Filters

Tunable IIR Digital Filters Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

We have shown earlier that the 1st-order lowpass transfer function

We have shown earlier that the 1st-order lowpass transfer function Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

Chapter 7: Filter Design 7.1 Practical Filter Terminology

Chapter 7: Filter Design 7.1 Practical Filter Terminology hapter 7: Filter Design 7. Practical Filter Terminology Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing and communication systems. This is due

More information

EECS 120 Signals & Systems University of California, Berkeley: Fall 2005 Gastpar November 16, Solutions to Exam 2

EECS 120 Signals & Systems University of California, Berkeley: Fall 2005 Gastpar November 16, Solutions to Exam 2 EECS 0 Signals & Systems University of California, Berkeley: Fall 005 Gastpar November 6, 005 Solutions to Exam Last name First name SID You have hour and 45 minutes to omplete this exam. he exam is losed-book

More information

Theory. Coupled Rooms

Theory. Coupled Rooms Theory of Coupled Rooms For: nternal only Report No.: R/50/TCR Prepared by:. N. taey B.., MO Otober 00 .00 Objet.. The objet of this doument is present the theory alulations to estimate the reverberant

More information

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013 Ultrafast Pulses and GVD John O Hara Created: De. 6, 3 Introdution This doument overs the basi onepts of group veloity dispersion (GVD) and ultrafast pulse propagation in an optial fiber. Neessarily, it

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Speed-feedback Direct-drive Control of a Low-speed Transverse Flux-type Motor with Large Number of Poles for Ship Propulsion

Speed-feedback Direct-drive Control of a Low-speed Transverse Flux-type Motor with Large Number of Poles for Ship Propulsion Speed-feedbak Diret-drive Control of a Low-speed Transverse Flux-type Motor with Large Number of Poles for Ship Propulsion Y. Yamamoto, T. Nakamura 2, Y. Takada, T. Koseki, Y. Aoyama 3, and Y. Iwaji 3

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

Basic Design Approaches

Basic Design Approaches (Classic) IIR filter design: Basic Design Approaches. Convert the digital filter specifications into an analog prototype lowpass filter specifications. Determine the analog lowpass filter transfer function

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Directional Coupler. 4-port Network

Directional Coupler. 4-port Network Diretional Coupler 4-port Network 3 4 A diretional oupler is a 4-port network exhibiting: All ports mathed on the referene load (i.e. S =S =S 33 =S 44 =0) Two pair of ports unoupled (i.e. the orresponding

More information

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite.

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite. Leture Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the funtion V ( x ) to be positive definite. ost often, our interest will be to show that x( t) as t. For that we will need

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

EE 321 Project Spring 2018

EE 321 Project Spring 2018 EE 21 Projet Spring 2018 This ourse projet is intended to be an individual effort projet. The student is required to omplete the work individually, without help from anyone else. (The student may, however,

More information

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design COMM 60: Digital Signal Proeing Leture 8 Digital Filter Deign Remember: Filter Type Filter Band Pratial Filter peifiation Pratial Filter peifiation H ellipti H Pratial Filter peifiation p p IIR Filter

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

SIGNALS AND SIGNAL PROCESSING

SIGNALS AND SIGNAL PROCESSING SIGNALS AND SIGNAL PROCESSING Leture 2 (IR/IIR) Toomas Ruuben Contat data Toomas Ruuben e-mail: truuben@lr.ttu.ee Home page of the ourse: http://www.lr.ttu.ee/signals/ Toomas Ruuben (TTÜ RSTI) ilters with

More information

Maximum Entropy and Exponential Families

Maximum Entropy and Exponential Families Maximum Entropy and Exponential Families April 9, 209 Abstrat The goal of this note is to derive the exponential form of probability distribution from more basi onsiderations, in partiular Entropy. It

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 569 Second order section Ts () = s as + as+ a 2 2 1 ω + s+ ω Q 2 2 ω 1 p, p = ± 1 Q 4 Q 1 2 2 57 Second order section

More information

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information

9 Geophysics and Radio-Astronomy: VLBI VeryLongBaseInterferometry

9 Geophysics and Radio-Astronomy: VLBI VeryLongBaseInterferometry 9 Geophysis and Radio-Astronomy: VLBI VeryLongBaseInterferometry VLBI is an interferometry tehnique used in radio astronomy, in whih two or more signals, oming from the same astronomial objet, are reeived

More information

RIEMANN S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s) AND L(s, χ)

RIEMANN S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s) AND L(s, χ) RIEMANN S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s AND L(s, χ FELIX RUBIN SEMINAR ON MODULAR FORMS, WINTER TERM 6 Abstrat. In this hapter, we will see a proof of the analyti ontinuation of the Riemann

More information

ECSE First order low pass filter First order high pass filter. As ω : Z 0; v = 0. Let's look at this in the s-domain. V (s) Find H(s) = + AC + C

ECSE First order low pass filter First order high pass filter. As ω : Z 0; v = 0. Let's look at this in the s-domain. V (s) Find H(s) = + AC + C ESE- First order low pass filter First order high pass filter Leture 4 ontinued sawyes@rpi.edu www.rpi.edu/~sawyes A v in v A v in v As (D): Z ; v = vin As : Z ; v = Let's look at this in the s-domain

More information

Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation a

Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation a Seismi dip estimation based on the two-dimensional Hilbert transform and its appliation in random noise attenuation a a Published in Applied Geophysis, 1, 55-63 (Marh 015) Cai Liu, Changle Chen, Dian Wang,

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers A Queueing Model for Call Blending in Call Centers Sandjai Bhulai and Ger Koole Vrije Universiteit Amsterdam Faulty of Sienes De Boelelaan 1081a 1081 HV Amsterdam The Netherlands E-mail: {sbhulai, koole}@s.vu.nl

More information

INTRO VIDEOS. LESSON 9.5: The Doppler Effect

INTRO VIDEOS. LESSON 9.5: The Doppler Effect DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS INTRO VIDEOS Big Bang Theory of the Doppler Effet Doppler Effet LESSON 9.5: The Doppler Effet 1. Essential Idea: The Doppler Effet desribes the phenomenon

More information

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u Strauss PDEs e: Setion 3.4 - Exerise 3 Page 1 of 13 Exerise 3 Solve u tt = u xx + os x, u(x, ) = sin x, u t (x, ) = 1 + x. Solution Solution by Operator Fatorization Bring u xx to the other side. Write

More information

Complexity of Regularization RBF Networks

Complexity of Regularization RBF Networks Complexity of Regularization RBF Networks Mark A Kon Department of Mathematis and Statistis Boston University Boston, MA 02215 mkon@buedu Leszek Plaskota Institute of Applied Mathematis University of Warsaw

More information

Taste for variety and optimum product diversity in an open economy

Taste for variety and optimum product diversity in an open economy Taste for variety and optimum produt diversity in an open eonomy Javier Coto-Martínez City University Paul Levine University of Surrey Otober 0, 005 María D.C. Garía-Alonso University of Kent Abstrat We

More information

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM NETWORK SIMPLEX LGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM Cen Çalışan, Utah Valley University, 800 W. University Parway, Orem, UT 84058, 801-863-6487, en.alisan@uvu.edu BSTRCT The minimum

More information

Control Systems. Control Systems Design Lead-Lag Compensator.

Control Systems. Control Systems Design Lead-Lag Compensator. Design Lead-Lag Compensator hibum@seoulteh.a.kr Outline Lead ompensator design in frequeny domain Lead ompensator design steps. Example on lead ompensator design. Frequeny Domain Design Frequeny response

More information

CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS. Professor Dae Ryook Yang

CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS. Professor Dae Ryook Yang CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 208 Dept. of Chemial and Biologial Engineering 0- Road Map of the Leture X Stability of losed-loop ontrol system

More information

Lightning electromagnetic environment in the presence of a tall grounded strike object

Lightning electromagnetic environment in the presence of a tall grounded strike object JOURNAL OF GEOPHYSICAL RESEARCH, VOL.,, doi:.9/4jd555, 5 Lightning eletromagneti environment in the presene of a tall grounded strike objet Yoshihiro Baba Department of Eletrial Engineering, Doshisha University,

More information

11.1 Polynomial Least-Squares Curve Fit

11.1 Polynomial Least-Squares Curve Fit 11.1 Polynomial Least-Squares Curve Fit A. Purpose This subroutine determines a univariate polynomial that fits a given disrete set of data in the sense of minimizing the weighted sum of squares of residuals.

More information

Computer Engineering 4TL4: Digital Signal Processing

Computer Engineering 4TL4: Digital Signal Processing Computer Engineering 4TL4: Digital Signal Processing Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2003 This examination paper includes

More information

LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Phase Transfer Functions Linear Phase Transfer Functions

LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Phase Transfer Functions Linear Phase Transfer Functions LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Pase Transfer Functions Linear Pase Transfer Functions Tania Stataki 811b t.stataki@imperial.ac.uk Types of Transfer Functions Te time-domain

More information

Acoustic Waves in a Duct

Acoustic Waves in a Duct Aousti Waves in a Dut 1 One-Dimensional Waves The one-dimensional wave approximation is valid when the wavelength λ is muh larger than the diameter of the dut D, λ D. The aousti pressure disturbane p is

More information

arxiv: v2 [math.pr] 9 Dec 2016

arxiv: v2 [math.pr] 9 Dec 2016 Omnithermal Perfet Simulation for Multi-server Queues Stephen B. Connor 3th Deember 206 arxiv:60.0602v2 [math.pr] 9 De 206 Abstrat A number of perfet simulation algorithms for multi-server First Come First

More information

Quantum Theory of Two-Photon Wavepacket Interference in a Beam Splitter

Quantum Theory of Two-Photon Wavepacket Interference in a Beam Splitter Quantum Theory of Two-Photon Wavepaket Interferene in a Beam Splitter Kaige Wang CCAST (World Laboratory), P. O. Box 8730, Beijing 100080, and Department of Physis, Applied Optis Beijing Area Major Laboratory,

More information

MAC Calculus II Summer All you need to know on partial fractions and more

MAC Calculus II Summer All you need to know on partial fractions and more MC -75-Calulus II Summer 00 ll you need to know on partial frations and more What are partial frations? following forms:.... where, α are onstants. Partial frations are frations of one of the + α, ( +

More information

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED EE 33 Linear Signals & Systems (Fall 208) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED By: Mr. Houshang Salimian and Prof. Brian L. Evans Prolog for the Solution Set.

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

Phase Diffuser at the Transmitter for Lasercom Link: Effect of Partially Coherent Beam on the Bit-Error Rate.

Phase Diffuser at the Transmitter for Lasercom Link: Effect of Partially Coherent Beam on the Bit-Error Rate. Phase Diffuser at the Transmitter for Laserom Link: Effet of Partially Coherent Beam on the Bit-Error Rate. O. Korotkova* a, L. C. Andrews** a, R. L. Phillips*** b a Dept. of Mathematis, Univ. of Central

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

The simulation analysis of the bridge rectifier continuous operation in AC circuit

The simulation analysis of the bridge rectifier continuous operation in AC circuit Computer Appliations in Eletrial Engineering Vol. 4 6 DOI 8/j.8-448.6. The simulation analysis of the bridge retifier ontinuous operation in AC iruit Mirosław Wiślik, Paweł Strząbała Kiele University of

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

Danielle Maddix AA238 Final Project December 9, 2016

Danielle Maddix AA238 Final Project December 9, 2016 Struture and Parameter Learning in Bayesian Networks with Appliations to Prediting Breast Caner Tumor Malignany in a Lower Dimension Feature Spae Danielle Maddix AA238 Final Projet Deember 9, 2016 Abstrat

More information

Sensor management for PRF selection in the track-before-detect context

Sensor management for PRF selection in the track-before-detect context Sensor management for PRF seletion in the tra-before-detet ontext Fotios Katsilieris, Yvo Boers, and Hans Driessen Thales Nederland B.V. Haasbergerstraat 49, 7554 PA Hengelo, the Netherlands Email: {Fotios.Katsilieris,

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

Lecture 7: z-transform Properties, Sampling and Nyquist Sampling Theorem

Lecture 7: z-transform Properties, Sampling and Nyquist Sampling Theorem EE518 Digital Signal Proessing University of Washington Autumn 21 Dept. of Eletrial Engineering ure 7: z-ransform Properties, Sampling and Nyquist Sampling heorem Ot 22, 21 Prof: J. Bilmes

More information

13.Prandtl-Meyer Expansion Flow

13.Prandtl-Meyer Expansion Flow 3.Prandtl-eyer Expansion Flow This hapter will treat flow over a expansive orner, i.e., one that turns the flow outward. But before we onsider expansion flow, we will return to onsider the details of the

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2 Sensor and Simulation Notes Note 53 3 May 8 Combined Eletri and Magneti Dipoles for Mesoband Radiation, Part Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

Case I: 2 users In case of 2 users, the probability of error for user 1 was earlier derived to be 2 A1

Case I: 2 users In case of 2 users, the probability of error for user 1 was earlier derived to be 2 A1 MUTLIUSER DETECTION (Letures 9 and 0) 6:33:546 Wireless Communiations Tehnologies Instrutor: Dr. Narayan Mandayam Summary By Shweta Shrivastava (shwetash@winlab.rutgers.edu) bstrat This artile ontinues

More information

A Characterization of Wavelet Convergence in Sobolev Spaces

A Characterization of Wavelet Convergence in Sobolev Spaces A Charaterization of Wavelet Convergene in Sobolev Spaes Mark A. Kon 1 oston University Louise Arakelian Raphael Howard University Dediated to Prof. Robert Carroll on the oasion of his 70th birthday. Abstrat

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

Digital Signal Processing. Homework 2 Solution. Due Monday 4 October Following the method on page 38, the difference equation

Digital Signal Processing. Homework 2 Solution. Due Monday 4 October Following the method on page 38, the difference equation Digital Sigal Proessig Homework Solutio Due Moda 4 Otober 00. Problem.4 Followig the method o page, the differee equatio [] (/4[-] + (/[-] x[-] has oeffiiets a0, a -/4, a /, ad b. For these oeffiiets A(z

More information

Effects of Vane Sweep on Fan-Wake/Outlet-Guide-Vane Interaction Broadband Noise

Effects of Vane Sweep on Fan-Wake/Outlet-Guide-Vane Interaction Broadband Noise Effets of Vane Sweep on Fan-Wake/Outlet-Guide-Vane Interation Broadband Noise Hongbin Ju* GE Global Researh Center, One Researh Cirle, Niskayuna, NY. 09 A method is developed for prediting broadband noise

More information

Likelihood-confidence intervals for quantiles in Extreme Value Distributions

Likelihood-confidence intervals for quantiles in Extreme Value Distributions Likelihood-onfidene intervals for quantiles in Extreme Value Distributions A. Bolívar, E. Díaz-Franés, J. Ortega, and E. Vilhis. Centro de Investigaión en Matemátias; A.P. 42, Guanajuato, Gto. 36; Méxio

More information

Digital Signal Processing:

Digital Signal Processing: Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried

More information

Stabilization of the Precision Positioning Stage Working in the Vacuum Environment by Using the Disturbance Observer

Stabilization of the Precision Positioning Stage Working in the Vacuum Environment by Using the Disturbance Observer Proeedings of the 4th IIAE International Conferene on Industrial Appliation Engineering 216 Stabilization of the Preision Positioning Stage Working in the Vauum Environment by Using the Disturbane Observer

More information

An Adaptive Optimization Approach to Active Cancellation of Repeated Transient Vibration Disturbances

An Adaptive Optimization Approach to Active Cancellation of Repeated Transient Vibration Disturbances An aptive Optimization Approah to Ative Canellation of Repeated Transient Vibration Disturbanes David L. Bowen RH Lyon Corp / Aenteh, 33 Moulton St., Cambridge, MA 138, U.S.A., owen@lyonorp.om J. Gregory

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

DESIGN FOR DIGITAL COMMUNICATION SYSTEMS VIA SAMPLED-DATA H CONTROL

DESIGN FOR DIGITAL COMMUNICATION SYSTEMS VIA SAMPLED-DATA H CONTROL DESIG FOR DIGITAL COMMUICATIO SYSTEMS VIA SAMPLED-DATA H COTROL M agahara 1 Y Yamamoto 2 Department of Applied Analysis and Complex Dynamial Systems Graduate Shool of Informatis Kyoto University Kyoto

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12 . ECE 40 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter IIR Filter Design ) Based on Analog Prototype a) Impulse invariant design b) Bilinear transformation ( ) ~ widely used ) Computer-Aided

More information

Filter Design Problem

Filter Design Problem Filter Design Problem Design of frequency-selective filters usually starts with a specification of their frequency response function. Practical filters have passband and stopband ripples, while exhibiting

More information

Computer Science 786S - Statistical Methods in Natural Language Processing and Data Analysis Page 1

Computer Science 786S - Statistical Methods in Natural Language Processing and Data Analysis Page 1 Computer Siene 786S - Statistial Methods in Natural Language Proessing and Data Analysis Page 1 Hypothesis Testing A statistial hypothesis is a statement about the nature of the distribution of a random

More information

Simplified Buckling Analysis of Skeletal Structures

Simplified Buckling Analysis of Skeletal Structures Simplified Bukling Analysis of Skeletal Strutures B.A. Izzuddin 1 ABSRAC A simplified approah is proposed for bukling analysis of skeletal strutures, whih employs a rotational spring analogy for the formulation

More information

Second-order filters. EE 230 second-order filters 1

Second-order filters. EE 230 second-order filters 1 Second-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polynomials in the numerator. Use two

More information

UPPER-TRUNCATED POWER LAW DISTRIBUTIONS

UPPER-TRUNCATED POWER LAW DISTRIBUTIONS Fratals, Vol. 9, No. (00) 09 World Sientifi Publishing Company UPPER-TRUNCATED POWER LAW DISTRIBUTIONS STEPHEN M. BURROUGHS and SARAH F. TEBBENS College of Marine Siene, University of South Florida, St.

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

IDENTIFICATION AND CONTROL OF ACOUSTIC RADIATION MODES

IDENTIFICATION AND CONTROL OF ACOUSTIC RADIATION MODES IDENTIFICATION AND CONTROL OF ACOUSTIC RADIATION MODES Arthur P. Berkhoff University of Twente, Faulty of Eletrial Engineering, P.O. Box 217, 7 AE Enshede, The Netherlands email: a.p.berkhoff@el.utwente.nl

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

10.2 The Occurrence of Critical Flow; Controls

10.2 The Occurrence of Critical Flow; Controls 10. The Ourrene of Critial Flow; Controls In addition to the type of problem in whih both q and E are initially presribed; there is a problem whih is of pratial interest: Given a value of q, what fators

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Vibration and Radiation Behavior of Loudspeaker s Membrane

Vibration and Radiation Behavior of Loudspeaker s Membrane Hands-On Training 2 Vibration and Radiation Behavior of Loudspeaker s Membrane 1 Objetive of the Hands-on Training - Understanding the need for distributed parameters to model loudspeakers at higher frequenies

More information

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach Measuring & Induing Neural Ativity Using Extraellular Fields I: Inverse systems approah Keith Dillon Department of Eletrial and Computer Engineering University of California San Diego 9500 Gilman Dr. La

More information

John Vanderkooy Audio Research Group, Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

John Vanderkooy Audio Research Group, Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada An analyti seondary soure model of edge diffration impulse responses U. Peter Svensson a) and Roger I. Fred b) Department of Applied Aoustis, Chalmers University of Tehnology, SE-42 96 Göteborg, Sweden

More information

Chapter Review of of Random Processes

Chapter Review of of Random Processes Chapter.. Review of of Random Proesses Random Variables and Error Funtions Conepts of Random Proesses 3 Wide-sense Stationary Proesses and Transmission over LTI 4 White Gaussian Noise Proesses @G.Gong

More information

On Certain Singular Integral Equations Arising in the Analysis of Wellbore Recharge in Anisotropic Formations

On Certain Singular Integral Equations Arising in the Analysis of Wellbore Recharge in Anisotropic Formations On Certain Singular Integral Equations Arising in the Analysis of Wellbore Reharge in Anisotropi Formations C. Atkinson a, E. Sarris b, E. Gravanis b, P. Papanastasiou a Department of Mathematis, Imperial

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

3 Tidal systems modelling: ASMITA model

3 Tidal systems modelling: ASMITA model 3 Tidal systems modelling: ASMITA model 3.1 Introdution For many pratial appliations, simulation and predition of oastal behaviour (morphologial development of shorefae, beahes and dunes) at a ertain level

More information

Robust Flight Control Design for a Turn Coordination System with Parameter Uncertainties

Robust Flight Control Design for a Turn Coordination System with Parameter Uncertainties Amerian Journal of Applied Sienes 4 (7): 496-501, 007 ISSN 1546-939 007 Siene Publiations Robust Flight ontrol Design for a urn oordination System with Parameter Unertainties 1 Ari Legowo and Hiroshi Okubo

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Lecture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY

Lecture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Otober 1, 218 Prof. Alan Guth Leture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY THE AGE OF A FLAT UNIVERSE: We

More information

Wood Design. = theoretical allowed buckling stress

Wood Design. = theoretical allowed buckling stress Wood Design Notation: a = name for width dimension A = name for area A req d-adj = area required at allowable stress when shear is adjusted to inlude self weight b = width of a retangle = name for height

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM - Tehnial Paper - THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIE CAPACITY OF RC BEAM Patarapol TANTIPIDOK *, Koji MATSUMOTO *, Ken WATANABE *3 and Junihiro NIWA *4 ABSTRACT

More information