CHAPTER 17. Exercises. Using the expressions given in the Exercise statement for the currents, we have

Size: px
Start display at page:

Download "CHAPTER 17. Exercises. Using the expressions given in the Exercise statement for the currents, we have"

Transcription

1 CHATER 7 Execie E7. F Equtin 7.5, we hve B gp Ki ( t ) c( θ) + Ki ( t ) c( θ 0 ) + Ki ( t ) c( θ 40 b c ) Uing the expein given in the Execie tteent f the cuent, we hve B gp K c( ωt )c( θ ) + K c( ωt 40 )c( θ 0 ) + K c( ωt 0 )c( θ 40 ) Then uing the identity f the pduct f cine, we btin B gp K [c( ωt θ ) + c( ωt + θ ) + c( ωt θ 0 + c( ωt + θ 360 ) + c( ωt θ + 0 ) + c( ωt + θ 360 )] ) Hweve we cn wite c( ωt θ) + c( ωt θ 0 ) + c( ωt θ + 0 ) 0 c( ω t + θ 360 ) c( ωt + θ) c( ω t + θ 360 ) c( ωt + θ) Thu we hve Bgp 3 K c( ω t + θ) which cn be ecgnized flux ptten tht tte clckwie. E7. At 60 Hz, ynchnu peed f fu-ple chine i: n ( ) 0f The lip i given by: n n n p.778% The fequency f the t cuent i the lip fequency. F Equtin 575

2 7.7, we hve ω ω. F fequencie in the Hz, thi bece: lip f f Hz lip n the nl nge f petin, lip i ppxitely pptinl t utput pwe nd tque. Thu t hlf pwe, we etite tht %. Thi cepnd t peed f 775 p. E7.3 Fllwing the lutin t Exple 7., we hve: 800 p n n n 800 n The pe phe equivlent cicuit i: 0.0 ( j 0.8) Z j j + j j j pwe fct c % V ( ) lgging A Z F delt-cnnected chine, the gnitude f the line cuent i line A nd the input pwe i 3 V cθ in 7.43 kw 576

3 Next, we cpute V nd. V x x ( j 0.8) j 50 j j j V Vx j A The cppe le in the tt nd t e: nd 3R 3(.)( 5.98) 99.3 W 3R ( ) 3( 0.6)( 3.54) W Finlly, the develped pwe i: ( ) dev 3 R 3( 9.4)( 3.54) 6.7 kw ut dev t 5.7 kw The utput tque i: ut Tut 8.66 newtn ete ω The efficiency i: ut η 00% in 87.6% 577

4 E7.4 The equivlent cicuit i: ( + j 0.8) j 50. Z eq Req + jxeq.6 + j j j 0.8 The ipednce een by the uce i: Z. + j + Z eq. + j j Thu, the tting phe cuent i V 440 0, tting Z , tting A nd f delt cnnectin, the line cuent i line,tting , tting A The pwe cing the i gp i (thee tie) the pwe deliveed t the ight f the dhed line in the equivlent cicuit hwn elie. ( ) R kw g 3 eq, tting 578

5 Finlly, the tting tque i fund uing Equtin g T dev, tting ω π newtn ete E7.5 Thi execie i iil t pt (c) f Exple 7.4. Thu, we hve in δ3 3 in δ in δ 3 00 in which yield the new tque ngle δ E ein cntnt in gnitude, thu we hve E V 3 V E A jx j.4 The pwe fct i c (.045 ) 99.98% lgging. E7.6 We fllw the ppch f Exple 7.5. Thu in the exple, we hve dev A cθ V θ ( ) ( 0.85) c A E V jx V The ph dig i hwn in Figue 7.4 F 90% leding pwe fct, the pwe ngle i θ The new vlue f the cuent gnitude i dev 5. 3 c( θ ) A V nd the ph cuent i A 3 Thu we hve E V jx V c (0.9)

6 The gnitude f E i pptinl t the field cuent, we hve: E A dc f 3 f E 46. E7.7 The ph dig f δ 90 i hwn in Figue 7.7. The develped pwe i given by x 3V c( θ) Hweve f the ph dig, we ee tht E c(θ ) X Subtituting, we hve VE 3 x X The tque i T ω x x 3V E ω X ble 7.* F Tble 7., we ee tht f peed f 850 p the next getet ynchnu peed i 900 p cepnding t 8 ple t. The lip i given by Equtin 7.6 : n n % n F Equtin 7.4, we hve: Synchnu Speed in p Nube f le 50 Hz 400 Hz The vltge induced in the t cnduct e given by Equtin 7.5 which tte v c Blu. When the t tun t ynchnu peed, the eltive peed between the field nd the cnduct i u 0, eulting 580

7 in v 0. Becue the induced vltge e ze, the t cuent e c ze. Thu, the fce cting n the t cnduct, given by f i l B, e ze. 7.4 At 60 Hz, ynchnu peed f ix-ple chine i: 0f 0( 60) n 00 p 6 The lip i given by: n n % n 00 f lip The fequency f the t cuent i the lip fequency. F Equtin 7.7, we hve ω ω. F fequencie in the Hz, thi bece: f lip Hz n the nl nge f petin, lip i ppxitely pptinl t utput pwe nd tque. Thu t hlf pwe, we etite tht %. Thi cepnd t peed f 80 p. 7.5 n thi ce the develped tque ppe the diectin f ttin. we i tken f the pie ve nd cnveted t electicl f. Thu the chine ct genet. 58

8 7.6 Fitcnide n i-gp flux given by B B c( ω t + θ ). F t 0, the flux i given by B c( θ ). Thu, the flux cplete tw cplete B cycle θ vie f 0 t 360 chnging diectin fu tie und the peiphey f the i gp. Cnequently, the t h fu ple. Siilly, t tht h B B c( ω t + 3θ ) i ix-ple t. The peed e 500 p nd 000 p, epectively. 7.7* Slip i given by: n n n n n F lip f 4% nd echnicl peed f n 500 p, the ynchnu peed i: n 500 n 604 p 0.96 Slving Equtin 7.4 f fequency, we hve: f n 86.8 Hz 0 0 The blck dig f the yte i hwn belw: The input pwe t the t i: ut, t 746 t η 0.80 in, t 865 W The input pwe t the cnvete i: ut, cnvete 865 in, cnvete 9 W η 0.88 cnvete Finlly, the cuent tken f the 400-V uce i: in, 5.98 A cnvete T cnvet peed in ph t evlutin f the tie pe inute, we hve: 580 n peed in ph 60 0 π 58

9 Thu the peed nge 5 t 70 ph iplie ttinl peed nge f 84.0 t 76 p. We ue negligible lip thi i the nge f ynchnu peed f the t. Slving Equtin 7.4 f fequency, we hve: n f 0 F thi ful, we find tht the nge f fequencie needed i f.8 t 39. Hz. The finl peed f 40 ph cnvet t 7.88 /. The cceletin f the vehicle i: u T The fce needed t ccelete the vehicle i: f newtn Velcity i cceletin tie tie. u. 788t The utput pwe needed f the t i: p t fu t 397t ( ) wtt The pwe equied f the bttey i lge becue f le. p( t ) p bttey 46t wtt Finlly, the cuent tken f the 48-V bttey i: pbttey i ( t ) 88.0t pee A in the lutin t pble 7.8, the nge f fequencie needed nge f.8 t 39. Hz nd the finl peed f 40 ph cnvet t 7.88 /. At peed f 40 ph the kinetic enegy f the vehicle i 3 W u J The vege pwe equied duing cceletin i: W 5.98 kw T Accunting f efficiencie, the pwe equied f the bttey i: ut bttey. kw Finlly, the bttey cuent i: bttey A 583

10 7.0* A fequency i educed, the ectnce X, X, nd X f the chine bece lle. (Recll tht X ωl.) Thu the pplied vltge ut be educed t keep the cuent f becing t lge, eulting in gnetic tutin nd veheting. 7. The ttl field in the chine i the u f the field pduced by the epte winding. Thu, B B + B Ki t c θ + Ki t c θ 90 b ( ) ( ) ( ) ( ) Subtituting the expein given f the cuent, we hve: B K c ωt c θ + K c ωt 90 c θ 90 b ( ) ( ) ( ) ( ) Uing the tignetic identity A c B [ c( A B ) + c( A + B )] we hve: c, K ( ωt θ) + [ c( ωt + θ) + c( ωt + 80 )] B K c θ c ωt + θ + c ωt + θ 80 becue the Hweve, we cn wite ( ) ( ) 0 tw te e ut f phe. Thu, we hve: B K c ωt θ ( ) Accding t thi eult, the xiu flux ccu f θ ωt, which iplie ttin f the field in the cunteclckwie diectin t n ngul peed f ω. The xiu flux denity i B K x. 7. With the cnnectin t the b-winding eveed the cuent bece i ( t ) c ωt nd ( ) ( ω t 90 ) c( ω + ) i ( t ) c t 90 b A befe, the ttl field in the chine i the u f the field pduced by the epte winding. Thu, B B + B Ki t c θ + Ki t c θ 90 b ( ) ( ) ( ) ( ) Subtituting the expein given f the cuent, we hve: b ( ωt ) c( θ) + K c( ωt + 90 ) c( 90 ) B K c θ c, Uing the tignetic identity A c B [ c( A B ) + c( A + B )] we hve: K ( ωt + θ) + [ c( ωt θ) + c( ωt 80 )] B K c θ + c ωt θ + c ωt θ + 80 becue the Hweve, we cn wite ( ) ( ) 0 584

11 tw te e ut f phe. Thu, we hve: B K c ω t + θ ( ) Accding t thi eult, the xiu flux ccu f θ ωt, which iplie ttin f the field in the clckwie diectin t n ngul peed f ω. Thi i the ppite t the diectin fund in ble 7.. Thu the diectin f ttin f tw-phe inductin t cn be eveed by eveing the cnnectin t ne f the tw winding. 7.3* The gnetic field i peidic with the e fequency the uce f ll chine. n tw-ple chine the gnetic field ke ne cycle und the i gp (f nth t uth nd bck t nth). n fuple chine the gnetic field ke tw cycle und the i gp. Siilly the field f the ix-ple chine h thee cycle. Thu the expein f the field e: B c ωt θ nd Bfu-ple Bix-ple B c t ( ) ( ω 3θ ) 7.4 With ze eitnce f the t cnduct, Equtin 7.9 f the t cuent bece Vc c jωl c Thu the t cuent c lg the induced t vltge V c by 90. Thu, δ bece ze (efe t Figue 7.9 in the bk), nd the t ple lie exctly unde the tt ple. Then the develped tque i ze t ll peed. Thu uing upecnduct f the t cnduct i nt gd ide. 7.5 The tw bic type f t cntuctin f inductin t e the quiel cge t in which the cnduct cnit f b f luinu tht e ct int lt cut int the t nd the wund t in which inulted wie e wund int lt in the t. Often extenl cnnectin e de t the winding f the wund t f pupe f peed cntl. The quiel cge i the e ugged f the tw type. 7.6* The ynchnu peed f the chine i given by: ω π60 0f ω 88.5 d by n 800 p 4 ( ) 585

12 Typiclly, lip i but 5% t full ld. Thu, the full-ld peed i: n p full -ld ω d, full-ld The full-ld tque i: T -ld ω full, full-ld 0.8 newtn ete Typiclly the tting tque i.5 tie the full-ld tque nd the pullut tque i tie the full-ld tque. Thu, ketch f the tque-peed chcteitic i hwn belw. We etite the efficiency f typicl chine uch thi 80%. Theefe, the input pwe t full ld i: ut in 466 W η 0.80 Typiclly the pwe fct i 75% nd the line cuent i in 466 line 6.3 A 3V cθ ( )( ) Typiclly the tting cuent i 5 t 7 tie the full-ld cuent, we etite: A tting 7.7 Beide lw ct, we uully wuld pefe n inductin t with:. High pwe fct.. High tting tque. 3. High efficiency. 4. Lw tting cuent. 5. High pull-ut tque. 586

13 7.8 Refe t Figue 7.3. Neglecting the tt eitnce R nd ttinl le, the nly l i t cppe l given by: ( ) R 3 The develped pwe nd the utput pwe e equl nd given by: ( ) ut dev 3 R Nw the efficiency i given by: ut ut η 0.60 in + ut + η 60% 7.9 Synchnu peed f n 8-ple 60-Hz t i 900 p. Thu, the lip i given by: ω ω n n ω n 900 Of cue, the fequency f the tt cuent i the line fequency 60-Hz. The fequency f the t cuent i the lip fequency given by: f f Hz lip Refe t Figue 7.3. The develped pwe i: W dev ut t Since we hve ( ) ( ) dev 3 R nd 3R we cn wite dev W * Fllwing Exple 7., we find V 0 0, tting Z , tting Becue the chine i delt cnnected, the gnitude f the tting line cuent i 587

14 line,tting A, tting T R ( ) g 3 eq, tting dev, tting kw g 7688 ω π newtn ete Cping thee eult t the f the exple, we ee tht the tting cuent i educed by fct f nd the tting tque i educed by fct f 4. Depending n the tque--peed chcteitic f the ld, the yte y nt tt. 7. F line cuent f 50 3 A, the phe cuent i 50 A. Equivlent cicuit f the chine unde tting cnditin e hwn in Figue 7.5. With the dded eitnce in eie, we hve the cicuit The ttl ipednce gnitude i equied t be: V 440 Z 8. 8Ω ttl 50 Hweve, the ipednce gnitude i Z ( ) + ( + 0. ) R 7943 ttl Slving f the dded eitnce R, we find R Ω A in Exple 7., the pwe cing the i gp i: R ( ) ( )( ) g 3 eq, tting W Finlly, the tting tque i fund uing Equtin g Tdev, tting ω 588

15 4359 π newtn ete Cping thee eult t the f the exple, we ee tht the tting tque i educed by fct f 63./ Depending n the tque--peed chcteitic f the ld, the yte y nt tt. 7. Fllwing the lutin t Exple 7., we hve: n 800 p n n n The pe phe equivlent cicuit i: ( j 0.8) Z j j.5 + j j j pwe fct c % 3 ( ) lgging V 40 0 Z V c θ.80 kw in Next, we cpute V x V nd. x ( j 0.8) j 40 j j j

16 Vx j The cppe le in the tt nd t e: R nd 3 3()( 8.) W 3R ( ) 3( 0.5)( 6.98) 43.5 W Finlly, the develped pwe i: ( ) dev 3 R ( )( ) 0.38 kw ut dev t 0.8 kw The utput tque i: ut Tut 56.5 newtn ete ω The efficiency i: η 00% ut in 86.9% 7.3* Neglecting ttinl le, the lip i ze with n ld, nd the t un t ynchnu peed which i 800 p. Then the equivlent cicuit bece: 590

17 Z R + jx + jx + j.5 j The pwe fct i: c The cuent i: V Z ( ) % Becue the chine i delt cnnected, the line cuent gnitude i line 3 0 A 7.4 Thi i iil t Exple 7.. The equivlent cicuit i: ( j 0.8) j 40 Z eq Req + jxeq j j j 0.8 The ipednce een by the uce i: Z.0 + j.5 + Z eq.0 + j j Thu, the tting cuent i: V 40 0, tting Z , tting Becue the chine i delt cnnected, the gnitude f the tting line cuent i lin,tting , tting A 59

18 The pwe cing the i gp i (thee tie) the pwe deliveed t the ight f the dhed line. R ( ) g 3 eq, tting.7 kw Finlly, the tting tque i fund uing Equtin g Tdev, tting ω 70 π newtn ete 7.5 Thi i iil t ble 7. nd Exple 7.. The pe phe equivlent cicuit i: ( j 0.5) Z j j j j j pwe fct c % Next, we cpute V x V Z ( ) lgging in 3 V cθ kw V nd. x ( j 0.5) j j j j

19 Vx j j.77 The cppe le in the tt nd t e: R nd kw 3 R ( ).70 kw Finlly, the develped pwe i: ( ) dev 3 R kw ut dev t 30.8 kw The utput tque i: ut Tut ω The efficiency i: η 00% 40 newtn ete ut in 90.7% 7.6* Neglecting ttinl le, the lip i ze with n ld, nd the t un t ynchnu peed which i 00 p. Then the equivlent cicuit bece: 593

20 Z R + jx + jx j j The pwe fct i: c The cuent i: V Z ( ) % Becue the chine i delt cnnected, the gnitude f the tting line cuent i line A 7.7 Thi i iil t Exple 7.. The equivlent cicuit i: ( + j 0.5) j Z eq Req + jx eq j j j 0.5 The ipednce een by the uce i: Z j Z Thu, the tting cuent i: V 440, tting Z , tting 778 eq Becue the chine i delt cnnected, the gnitude f the tting line cuent i 594

21 lin,tting A, tting The pwe cing the i gp i (thee tie) the pwe deliveed t the ight f the dhed line. R ( ) g 3 eq, tting 39.7 kw Finlly, the tting tque i fund uing Equtin g dev, tting ω π newtn ete Becue the chine i delt cnnected, the gnitude f the phe cuent i: / line 3 5.7/ A Then we hve 3V cθ ( ) ( ) W in ut W ut efficiency 00% 85.65% in 7.9* Becue the chine i wye cnnected the phe vltge i: V line / 3 440/ V Refe t Figue 7.3. in 3 V cθ kw g in dev g ( ) ( ) kw kw ut dev t kw ut η 00% 9.5% in 7.30 The n-ld peed i ppxitely 800 p. Thu, the ynchnu peed ppe t be 800 p, nd we hve fu-ple t. Stedy-tte petin i t the inteectin f the tque-peed 595

22 chcteitic f the t nd tht f the ld. Thu, we hve T ut 5 newtn ete nd n 400 p. The lip i: n n % n 800 π ω n 46.6 din 60 T ω 3665 W ut ut Since we e uing 0, we hve t dev ut 3 R Al, we hve R Thu, ( ) 3 ( ) ut 047 W 7.3 A n engineeing etite, we tke the diffeence between the t tque nd the ld tque ppxitely 5 newtn ete ve the peed nge f inteet. Thu, the ngul cceletin f the yte i: dω Tt Tld 5 5 din dt ttinl ineti 5 n 000 p cepnd t ω Thu, the tie equied i ppxitely: 04.7 T -up 5 un ecnd 7.3* Fit, the full-ld utput tque i: ut T ut 0.8 newtn ete 3500 π 60 ω ( ) We ue tht the develped tque i pptinl t lip in the nl peting nge. n n T T + T k K ( n n ) dev ut t n Thu t full ld, we hve: T t K (00) () 596

23 At n ld, we hve ut 0 t ( ) T nd ( n n ) T K () Slving Equtin () nd (), we btin: T newtn ete t t Tt ω 76. W. Thu, 7.33 Unde the cnditin given, we hve n n n 800 ut W ut 49 T 750 π 60 ut ω ( ) 8.4 newtn ete A n ppxitin, we ue tht the utput tque i pptinl t lip. Thu, we hve: T ut K Subtituting the bve vlue, we btin K Nw ccding t Equtin 7.34, we hve T g dev ω. Hweve, the i-gp pwe i pptinl t the que f the uce vltge. Thu, the develped tque i pptinl t uce vltge qued. Neglecting ttinl l, the utput tque i equl t the develped tque. Thu, utput tque i pptinl t the que f the uce vltge. Thu f petin t 0 V, we hve: K K ( ) 3 Then the lip i: T K n ut n nd the new peed i ( ) p Tw itutin in which ynchnu t i bette chice thn n inductin t e: 597

24 . A vey cntnt peed i equied the ld vie.. t i deible t tke dvntge f the pwe-fct cectin cpbility f the ynchnu t. 7.35*. Ue n electnic yte t cnvet 60-Hz pwe int thee-phe c f vible fequency. Stt with fequency f ne hetz le nd then gdully incee the fequency.. Ue pie ve t bing the t up t ynchnu peed befe cnnecting the uce. 3. Stt the t n inductin t elying n the tieu cnduct t pduce tque A ynchnu cpcit i n veexcited thee-phe ynchnu t peting with n ld. t ct uce f ective pwe nd cn cect the vell pwe fct f n indutil plnt, theeby educing enegy ct See Figue 7.3 in the text f the V cuve. The ph dig cepnding t the iniu pint f cuve i: 7.38* () Field cuent ein cntnt. The field cicuit i independent f the c uce nd the ld. (b) Mechnicl peed ein cntnt uing tht the pull-ut tque h nt been exceeded. (c) Output tque incee by fct f / (d) Atue cuent incee in gnitude. (e) we fct decee nd bece lgging. (f) Tque ngle incee. 598

25 7.39 () Output pwe ein cntnt. (b) Mechnicl peed ein cntnt. (c) Output tque ein cntnt. (d) Atue cuent incee in gnitude nd it phe led the uce vltge. (e) we fct decee nd bece leding. Rective pwe i pduced by the chine. (f) Tque ngle decee Synchnu peed f the chine i: ω π60 ω 5.7 d 6 n T dev ( ) 00 p ω dev 9.68 N Accding t Equtin 7.37, we hve: T KB in δ dev B ttl We define Kt KB B. Then f the initil peting cnditin, we ttl find: Tdev 9.68 K t in δ in 5 ( ) Nw when the tque duble, we hve Tdev 9.68 in δ K t which yield δ The pullut tque ccu f δ 90. Thu we hve: T in newtn x K t dev, x Tx ω ( ) ete 4.8 kw hp 7.4* T ω π60 ω d n 70 p 0 ( ) dev, ted dev, ted ω newtn ete 599

26 Accding t Equtin 7.37, we hve: T KB in δ dev B ttl We define Kt KB B. Then f the ted peting cnditin, we ttl find: Tdev K t 893 in δ in 0 ( ) The pullut tque ccu f δ 90. Thu we hve: T in newtn x K t ( ) ete The tque peed chcteitic i: 7.4 Refe t Figue 7. f the ph dig with cntnt develped pwe nd vible field cuent. The ph dig f the initil peting cnditin i: E X E V c δ E in δ. E 40 c 5 ( )

27 The ph dig f the ecnd petin cnditin i: Ntice tht the veticl cpnent f dig. Nw we cn wite: ( V tn ) ( ) ( ) + X θ + X E ( tnθ ) + ( 64.3) ( 98. ) 6 jx i the e in bth Slving, we find θ 38.5 nd the pwe fct i c θ 78.4% leding. Finlly, we hve: X 64.3 inδ E 98.6 which yield: δ The develped pwe i W. Neglecting le, thi i the input pwe. On pe phe bi, we hve in cθ 40 c 0. Thi yield 5.8 A The ph dig i: V. A ph V 40 E c δ c5 X V tn δ

28 X X Ω The ph dig with the ld eved i: Ntice tht E i cntnt in gnitude. Al with ze develped pwe, the tque ngle i ze. We hve X E V j.4 Thu, θ 90, nd the pwe fct i ze. 7.44* F ze develped pwe, the tque ngle i ze. The ph dig i: E ( 90 ) V jx j T chieve ze tue cuent, we ut hve E V The gnitude f E i pptinl t the field cuent. Thu we hve: E 480 f f A E

29 7.45 () ω π60 ω 5.66 d n 00 p 6 T ( ) dev dev ω 96.8 newtn ete (b) V cθ 3 40( 0.9) in dev Thu, ( ) θ c Thu, ( 5.) E V jx 40 j j j E 5.6 j Thu, the tque ngle i δ (c) T duble the pwe, we ut duble the tque. Accding t Equtin 7.37, the develped tque i pptinl t in δ. Thu, in δ in δ which yield the new tque ngle in gnitude, thu we hve E V E jx δ j 0.5. E ein cntnt The pwe fct i c ( 9.38 ) 98.66% leding Becue the develped pwe include the le, we hve: W 3 V cθ in dev Slving, we hve in V cθ ( 40) c ( 0.85) 3.79 θ.9 A Thu,

30 E V jx 07.9 j The ph dig i: F 00% pwe fct, the ph dig bece: Ntice tht (efe t Figue 7.) the iginy (i.e., veticl) cpnent f E i the e in bth dig. Thu we hve: X E in( 3.99 ) 5. 8 E ( V ) + ( X ) 40 + ( 5.8) The gnitude f E i pptinl t the field cuent, we hve: E 45.5 f f 0.46 A E * () The peed f ynchnu chine i elted t the fequency f the tue vltge by Equtin 7.4: 0f n The fequency f the vltge pplied t the -ple t i 60 Hz nd the peed i 600 p. Thu, the genet i diven t 600 p nd the vltge induced in it tue hve fequency f: ngen fgen 50 Hz

31 Thu, the tw chine cn be ued t cnvet 60-Hz pwe int 50-Hz pwe. (b) 000 p i nt the ynchnu peed f ny 60-Hz t. Thu, we will ty t cnvet 60-Hz int e the fequency f which 000 p i ynchnu peed. The blck dig f thi yte i: The peed f t nd the genet e the e, we hve: f n g The fequencie e the e f the genet nd t, we cn wite: n 000 f 0 0 Subtituting nd enging, we hve: 7 0 g Of cue, the nube f ple n ech chine ut be n even intege. One lutin i: g 0 nd 6 f which f 50 Hz. Anthe lutin i: g 0 6 nd f which f 00 Hz Refeing t the V-cuve hwn in Figue 7.3, we ee tht unity pwe fct ccu when the tue cuent i iniu. Thu, we wuld djut the hett in the field cicuit t btin iniu tue 605

32 cuent. The etting equied wuld chnge with ld The chine h cppe-le in the tue winding nd ttinl le. (We d nt cnide the pwe tht ut be upplied t the field cicuit.) With n ld nd cuent djuted f iniu tue cuent, the chine pete with unity pwe fct. F delt cnnectin, the phe cuent i the line cuent divided by 3. The input pwe i: ( ) kw in, n-ld The cppe l i: ( )( 9.5) 3.5 W cppe, n-ld Thu, the ttinl l i: t in, n-ld cppe, n-ld 3.68 kw We ue tht the ttinl l i independent f the ld. At fullld, we hve ut 00 + t + 3( ) R 3V c( θ) in ( 746) ( ) 3( 480) ( 0.9) Slving f, we hve The pppite t i 7.6 A. Thu, we hve: in 3V c( θ) 65.4 kw ut η 00% 90.% in 7.50* () ut 746 η 0.8 in pwe fct cθ V in 93.5 W ( ) 76.% Of cue, the pwe fct i lgging f n inductin t. (b) Z ( V ) c ( pwe fct) 0 0. c ( 0.76) Ω (c) Since the t un jut unde 800 p, evidently we hve fu-ple t. 606

33 7.5 At full ld, the lip i ( ) % full At n ld, the lip i ( ) % n Thu, we cn wite.0778k K K K 0.5 Slving, we find K 8.95 nd K Nw, f 0. hp ut Finlly, the peed f 0. hp ut i n ( ) p The phe ngle f i θ ctn Thu the phe f need t be θ The iginy pt f Z i 9 tnθ 9 ωc Of cue, ω π60, nd we find C 47.4 µ F 7.53* Unde full ld, the cuent f the t i A full ( ) We etite the tting cuent 6. A tt 6 full Neglecting the ld tht ight be cnnected, the equivlent cicuit i 607

34 Duing tting, the vltge c the t i V j θ ( ) tt t The phe ngle f the tting cuent i unknwn. Hweve, we cn nticipte tht the t ppe inductive nd θ i negtive. n the wt ce, we wuld hve θ tn tt ( ) 45 Then, vltge dp f 40 V t 40 - ( 0.) + ( 0.) 6..4 V when the t tt. The pecentge dp in vltge i 7.33%. Thi wuld cue nticeble enty diing f the light in the fhue T evee the diectin f ttin, evee the cnnectin t eithe the in winding the tting winding (but nt bth). tt 7.55 A univel t wuld be bette thn n inductin t in ptble vcuu clene becue the univel t give highe pwe t weight ti. An inductin t wuld be the bette chice f fn in heting yte becue the life f univel t i eltively ht cped t tht f n inductin t. The inductin t wuld be bette f efiget cpe, gin becue f lnge evice life. F vible peed hnd-held dill, we huld che the univel t becue it give highe pwe f given weight A ketch f teppe t c ectin with 6 tt ple nd 8 t ple i: 608

35 The ttin i 5 pe tep Mny ite deling with teppe t cn be fund n the intenet but the URL chnge ften Cped t cnventinl dc t, the dvntge f buhle dc t e lng evice life with little intnce, feed f di intefeence, bility t pete in explive envinent, nd cpbility f vey high peed. 609

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have CHATER 7 Slutin f Execie E7. F Equatin 7.5, we have B gap Ki ( t ) c( θ) + Ki ( t ) c( θ 0 ) + Ki ( t ) c( θ 40 a b c ) Uing the expein given in the Execie tateent f the cuent, we have B gap K c( ωt )c(

More information

Dr. Ali M Eltamaly. Increasing. Fig.1 Speed-torque characteristic for separately excited or shunt DC motors at different external armature resistance

Dr. Ali M Eltamaly. Increasing. Fig.1 Speed-torque characteristic for separately excited or shunt DC motors at different external armature resistance King Su Univeity t Seete 47-48H Cllege f Engineeing Finl Ex Electicl Engineeing Deptent ie: 3.0 h. EE435-Electic Dive.. Anwe All Quetin: Quetin () Explin with the i f equtin, cuve n tte the wbck f the

More information

ME 236 Engineering Mechanics I Test #4 Solution

ME 236 Engineering Mechanics I Test #4 Solution ME 36 Enineein Mechnics I est #4 Slutin Dte: id, M 14, 4 ie: 8:-1: inutes Instuctins: vein hptes 1-13 f the tetbk, clsed-bk test, clcults llwed. 1 (4% blck ves utwd ln the slt in the pltf with speed f

More information

CHAPTER 2 ELECTRIC FIELD

CHAPTER 2 ELECTRIC FIELD lecticity-mgnetim Tutil (QU PROJCT) 9 CHAPTR LCTRIC FILD.. Intductin If we plce tet chge in the pce ne chged d, n electttic fce will ct n the chge. In thi ce we pek f n electic field in thi pce ( nlgy

More information

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r Sufce e f ic lid Cue f ide R See f diu 6 Cuid c c Elliticl cectin c Cylinde, wit diu nd eigt Tu, wit cicul c ectin f diu R R Futum, ( tuncted ymid) f e eimete, t e eimete nd lnt eigt. nd e te eective e

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Nme Sectin Multiple Chice 1. (8 Pts). (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Ntes: 1. In the multiple chice questins, ech questin my hve me thn ne cect nswe; cicle

More information

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2 THE FNAL NVESTGATON ON TORS EXPERMENT N AQNO S SET P n the llwing invetigatin, we ae ging t exaine the equatin Syte G, accding t Pe Aquin clai. THE EQATONS FOR THE TORS EXPERMENT ARE THE FOLLOW: Velcity

More information

Inductance and Energy of B Maxwell s Equations Mon Potential Formulation HW8

Inductance and Energy of B Maxwell s Equations Mon Potential Formulation HW8 Wed. Fi. 7..3-7..5 Inductnce nd Enegy f 7.3.-.3.3 Mxwell s Equtins Mn. 0. -.. Ptentil Fmultin HW8 Whee we ve been Sttiny Chges pducing nd intecting vi Electic Fields Stedy Cuents pducing nd intecting vi

More information

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r 1 Intductin t Pe Unit Calculatins Cnside the simple cicuit f Figue 1 in which a lad impedance f L 60 + j70 Ω 9. 49 Ω is cnnected t a vltage suce. The n lad vltage f the suce is E 1000 0. The intenal esistance

More information

Measurement and Instrumentation Lecture Note: Strain Measurement

Measurement and Instrumentation Lecture Note: Strain Measurement 0-60 Meurement nd Intrumenttin Lecture Nte: Strin Meurement eview f Stre nd Strin Figure : Structure under tenin Frm Fig., xil tre σ, xil trin, trnvere trin t, Pin' rti ν, nd Yung mdulu E re σ F A, dl

More information

Lecture #2 : Impedance matching for narrowband block

Lecture #2 : Impedance matching for narrowband block Lectue # : Ipedance atching f nawband blck ichad Chi-Hsi Li Telephne : 817-788-848 (UA) Cellula phne: 13917441363 (C) Eail : chihsili@yah.c.cn 1. Ipedance atching indiffeent f bandwidth ne pat atching

More information

Electric Potential Energy

Electric Potential Energy Electic Ptentil Enegy Ty Cnsevtive Fces n Enegy Cnsevtin Ttl enegy is cnstnt n is sum f kinetic n ptentil Electic Ptentil Enegy Electic Ptentil Cnsevtin f Enegy f pticle fm Phys 7 Kinetic Enegy (K) nn-eltivistic

More information

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS P P Methd EECTOMAGNETIC INDUCTION PEVIOUS EAMCET BITS [ENGINEEING PAPE]. A cnduct d f length tates with angula speed ω in a unifm magnetic field f inductin B which is pependicula t its mtin. The induced

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

GUC (Dr. Hany Hammad) 9/19/2016

GUC (Dr. Hany Hammad) 9/19/2016 UC (Dr. Hny Hmmd) 9/9/6 ecture # ignl flw grph: Defitin. Rule f Reductin. Mn Rule. ignl-flw grph repreenttin f : ltge urce. ive gle-prt device. ignl Flw rph A ignl-flw grph i grphicl men f prtryg the reltinhip

More information

Chapter 3. Generator and Transformer Models; The Per-Unit System

Chapter 3. Generator and Transformer Models; The Per-Unit System 3.1 Introduction Chpter 3. Genertor nd Trnforer Model; The Per-Unit Syte 1. Ue of the "per phe" bi to repreent three-phe blnced yte.. Ue the π odel to decribe trniion line (ee Chpter 5). 3. Siple odel

More information

Chapter 4. Energy and Potential

Chapter 4. Energy and Potential Chpte 4. Enegy nd Ptentil Hyt; 0/5/009; 4-4. Enegy Expended in Mving Pint Chge in n Electic Field The electic field intensity is defined s the fce n unit test chge. The fce exeted y the electic field n

More information

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470 Assignment 7 Paallel Resnance OBJECTIVE T investigate the paallel cnnectin f R,, and C. EQUIPMENT REQUIRED Qty Appaatus 1 Electicity & Electnics Cnstuct EEC470 1 Basic Electicity and Electnics Kit EEC471-1

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st. Mth 2142 Homework 2 Solution Problem 1. Prove the following formul for Lplce trnform for >. L{1} = 1 L{t} = 1 2 L{in t} = 2 + 2 L{co t} = 2 + 2 Solution. For the firt Lplce trnform, we need to clculte:

More information

UNIT VII Central Force: Review Key

UNIT VII Central Force: Review Key UNIT VII Centl oce: Review Key. Which of the following tteent e tue of n object oving in cicle t contnt peed? Include ll tht pply.. The object expeience foce which h coponent diected pllel to the diection

More information

Charge in a Cavity of Conductor

Charge in a Cavity of Conductor Tdy s Pln Electic Ptentil Enegy (mesued in Jules Electic Ptentil Ptentil Enegy pe unit Chge (mesued in Vlts). Recll tht the electic field E is fce F pe unit chge. Cpcitnce BB Chge in Cvity f Cnduct A pticle

More information

LECTURE 23 SYNCHRONOUS MACHINES (3)

LECTURE 23 SYNCHRONOUS MACHINES (3) ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE 3 SYNCHRONOUS MACHINES (3) Acknowledgent-Thee hndout nd lecture note given in cl re bed on teril fro Prof. Peter Suer ECE 330 lecture note. Soe lide

More information

A Revision Article of Oil Wells Performance Methods

A Revision Article of Oil Wells Performance Methods A Revisin Aticle Oil Wells emnce Methds The ductivity inde well, dented y, is mesue the ility the well t duce. It is given y: Whee: Welle ductivity inde, STB/dy/sig Avege (sttic) esevi essue, sig Welle

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

Limitations for Op Amps due to input signal

Limitations for Op Amps due to input signal ECEN 607 (ESS) Liittin fr Op Ap due t input ignl TANSIENT ESPONSE.- Let u cnider vltge fllwer nd deterine it tep repne Then v in 0 v Thu fr i v (t) i u t r i t Tking the invere Lplce it yield t / v t e

More information

CHAPTER 9 FREQUENCY RESPONSE

CHAPTER 9 FREQUENCY RESPONSE TE 9 FEQUENY ESONSE hapte Outline 9. w Fequency epne the S and E pliie 9. ntenal apacitive Eect and the ih Fequency del 9. ih Fequency epne the S and E pliie 9.4 Tl the nalyi the ih Fequency epne pliie

More information

Section 4.2 Radians, Arc Length, and Area of a Sector

Section 4.2 Radians, Arc Length, and Area of a Sector Sectin 4.2 Radian, Ac Length, and Aea f a Sect An angle i fmed by tw ay that have a cmmn endpint (vetex). One ay i the initial ide and the the i the teminal ide. We typically will daw angle in the cdinate

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a D Motor Bic he D pernent-gnet otor i odeled reitor ( ) in erie with n inductnce ( ) nd voltge ource tht depend on the ngulr velocity of the otor oltge generted inide the rture K ω (ω i ngulr velocity)

More information

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70 Chapte Tw ce System 35.4 α α 100 Rx cs 0.354 R 69.3 35.4 β β 100 Ry cs 0.354 R 111 Example 11: The man shwn in igue (a) pulls n the cd with a fce f 70 lb. Repesent this fce actin n the suppt A as Catesian

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct

More information

The University of New South Wales FINAL EXAMINATION. Session ELEC4613 ELECTRIC DRIVE SYSTEMS. 1. Time allowed 3 hours

The University of New South Wales FINAL EXAMINATION. Session ELEC4613 ELECTRIC DRIVE SYSTEMS. 1. Time allowed 3 hours The University of New South Wles FINAL EXAMINATION Session 010 ELEC4613 ELECTRIC DRIVE SYSTEMS 1. Tie llowed 3 hours. Reding tie: 10 inutes 3. Totl nuber of questions in this pper = SIX 4. Answer ny FOUR

More information

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis 1 MT 1275: Intrdutin t Mtemtil nlysis Dr Rzenlyum Slving Olique Tringles Lw f Sines Olique tringles tringles tt re nt neessry rigt tringles We re ging t slve tem It mens t find its si elements sides nd

More information

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET WYSE cdemic Chllenge eginl 008 SOLUTION SET. Crrect nswer: E. Since the blck is mving lng circulr rc when it is t pint Y, it hs centripetl ccelertin which is in the directin lbeled c. Hwever, the blck

More information

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS ALGEBRA /TRIGONMETRY TOPIC REVIEW QUARTER LOGS Cnverting frm Epnentil frm t Lgrithmic frm: E B N Lg BN E Americn Ben t French Lg Ben-n Lg Prperties: Lg Prperties lg (y) lg + lg y lg y lg lg y lg () lg

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

March 15. Induction and Inductance Chapter 31

March 15. Induction and Inductance Chapter 31 Mach 15 Inductin and Inductance Chapte 31 > Fces due t B fields Lentz fce τ On a mving chage F B On a cuent F il B Cuent caying cil feels a tque = µ B Review > Cuents geneate B field Bit-Savat law = qv

More information

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9 Mesuement f Residul Stess/Stin (Using Stin Gges nd the Hle Dilling Methd) Summy f Discussin in Sectin 8.9 The Hle Dilling Methd Is Bsed On: () Stess tnsfmtin equtins τ x' x' y' y' x' y' xx xx cs sin sin

More information

which represents a straight line whose slope is C 1.

which represents a straight line whose slope is C 1. hapte, Slutin 5. Ye, thi claim i eanable ince in the abence any heat eatin the ate heat tane thugh a plain wall in teady peatin mut be cntant. But the value thi cntant mut be ze ince ne ide the wall i

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Solution: (a) C 4 1 AI IC 4. (b) IBC 4 C A C C R A C R C R C sin 9 sin. A cuent f is maintaine in a single cicula lp f cicumfeence C. A magnetic fiel f is iecte paallel t the plane f the lp. (a) Calculate the magnetic mment f the lp. (b) What

More information

SOLUTIONS TO CONCEPTS CHAPTER 11

SOLUTIONS TO CONCEPTS CHAPTER 11 SLUTINS T NEPTS HPTE. Gvittionl fce of ttction, F.7 0 0 0.7 0 7 N (0.). To clculte the gvittionl fce on t unline due to othe ouse. F D G 4 ( / ) 8G E F I F G ( / ) G ( / ) G 4G 4 D F F G ( / ) G esultnt

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit : TRANSFORMERS Definitin : Transfrmers can be defined as a static electric machine which cnverts electric energy frm ne ptential t anther at the same frequency. It can als be defined as cnsists f tw electric

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

Linear predictive coding

Linear predictive coding Liner predictive coding Thi ethod cobine liner proceing with clr quntiztion. The in ide of the ethod i to predict the vlue of the current ple by liner cobintion of previou lredy recontructed ple nd then

More information

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chpte 4 Mtin in Tw nd Thee Dimensins In this chpte we will cntinue t stud the mtin f bjects withut the estictin we put in chpte t me ln stiht line. Insted we will cnside mtin in plne (tw dimensinl mtin)

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes The Trnform nd it Invere 2.2 Introduction In thi Section we formlly introduce the Lplce trnform. The trnform i only pplied to cul function which were introduced in Section 2.1. We find the Lplce trnform

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

Chapter Direct Method of Interpolation More Examples Mechanical Engineering

Chapter Direct Method of Interpolation More Examples Mechanical Engineering Chpte 5 iect Method o Intepoltion Moe Exmples Mechnicl Engineeing Exmple Fo the pupose o shinking tunnion into hub, the eduction o dimete o tunnion sht by cooling it though tempetue chnge o is given by

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

The Peninsula Chittagong Limited

The Peninsula Chittagong Limited etiite n Sttu Rept n Utiiztin Peed niti Pubi eing (tp The Peninu hittgng Liited the Mnth Mh Z0Lg t S Rhn Mt A & G. hteed Auntnt etiite n Sttu Rept n Utiiztin Peed niti Pubi eing (P The Peninu hittgng Liited

More information

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where 6.55 Given: An inulated cylinder i initially divided int halve y a itn. On either ide the itn i a ga at a knwn tate. The itn i releaed and equiliriu i attained. Find: Deterine the inal reure, inal teerature,

More information

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating: Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

Lecture 4. Electric Potential

Lecture 4. Electric Potential Lectue 4 Electic Ptentil In this lectue yu will len: Electic Scl Ptentil Lplce s n Pissn s Eutin Ptentil f Sme Simple Chge Distibutins ECE 0 Fll 006 Fhn Rn Cnell Univesity Cnsevtive Ittinl Fiels Ittinl

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

ELE B7 Power Systems Engineering. Power System Components Modeling

ELE B7 Power Systems Engineering. Power System Components Modeling Power Systems Engineering Power System Components Modeling Section III : Trnsformer Model Power Trnsformers- CONSTRUCTION Primry windings, connected to the lternting voltge source; Secondry windings, connected

More information

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2 cte La ean S&S (5e: Sec. 7. S&S (6e: Sec. 8. In nteate ccuts, t s ffcult t fabcate essts. Instea, aplfe cnfuatns typcally use acte las (.e. las ae w acte eces. Ths can be ne usn a cuent suce cnfuatn,.e.

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s

Chapter 25: Current, Resistance and Electromotive Force. ~10-4 m/s Typical speeds ~ 10 6 m/s Chpte 5: Cuent, esistnce nd lectomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m q ndomizing Collisions (momentum, enegy) >esulting Motion http://phys3p.sl.psu.edu/phys_nim/m/ndom_wlk.vi

More information

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems Intrductin t Three-hse Circuits Blnced 3-hse systems Unblnced 3-hse systems 1 Intrductin t 3-hse systems Single-hse tw-wire system: Single surce cnnected t ld using tw-wire system Single-hse three-wire

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

HW #3: Conservation of Linear Momentum, Conservation of Energy, Conservation of Angular Momentum and Turbomachines, Bernoulli s Equation

HW #3: Conservation of Linear Momentum, Conservation of Energy, Conservation of Angular Momentum and Turbomachines, Bernoulli s Equation HW #: Cnevatin f Linea Mentu Cnevatin f Enegy Cnevatin f ngula Mentu and Tubachine Benulli Equatin Due: Mn pil 0 at the ISE bx. i Bunyajitadulya HW #: Cnevatin f Linea Mentu Cnevatin f Enegy Cnevatin f

More information

12781 Velp Avenue. West County B Rural Residential Development

12781 Velp Avenue. West County B Rural Residential Development U PL & EET E 28 Vel ee eded 2 P.. ) LL EET T E 2) PPVE E ) ET E ) e e e e eded eebe 2 Plg & g eeg b) Bldg Pe e: eebe ) PUBL FU ( -E TE): g be bg bee e Plg & g eel ll be de ll be e. 5) UEETFEEBK: ) be ll

More information

SOLUTIONS TO CONCEPTS CHAPTER

SOLUTIONS TO CONCEPTS CHAPTER 1. m = kg S = 10m Let, ccelertion =, Initil velocity u = 0. S= ut + 1/ t 10 = ½ ( ) 10 = = 5 m/s orce: = = 5 = 10N (ns) SOLUIONS O CONCEPS CHPE 5 40000. u = 40 km/hr = = 11.11 m/s. 3600 m = 000 kg ; v

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 EEN474/704: (Anal) LSI cut De S 08 Lectue 8: Fequency ene Sa Pale Anal & Mxed-Sal ente Texa A&M Unety Annunceent & Aenda HW Due Ma 6 ead aza hate 3 & 6 Annunceent & Aenda n-suce A Fequency ene Oen-cut

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts

Chapter 25: Current, Resistance and Electromotive Force. Charge carrier motion in a conductor in two parts Chpte 5: Cuent, esistnce nd Electomotive Foce Chge cie motion in conducto in two pts Constnt Acceletion F m qe ndomizing Collisions (momentum, enegy) =>esulting Motion Avege motion = Dift elocity = v d

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

Boise State University Department of Electrical and Computer Engineering ECE470 Electric Machines

Boise State University Department of Electrical and Computer Engineering ECE470 Electric Machines Boie State Univeity Depatment of Electical and Compute Engineeing ECE470 Electic Machine Deivation of the Pe-Phae Steady-State Equivalent Cicuit of a hee-phae Induction Machine Nomenclatue θ: oto haft

More information

Math Solutions to homework 1

Math Solutions to homework 1 Mth 75 - Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht

More information

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 Problem : For each of the following function do the following: (i) Write the function a a piecewie function and ketch it graph, (ii) Write the function a a combination

More information

Ch 26 - Capacitance! What s Next! Review! Lab this week!

Ch 26 - Capacitance! What s Next! Review! Lab this week! Ch 26 - Cpcitnce! Wht s Next! Cpcitnce" One week unit tht hs oth theoeticl n pcticl pplictions! Cuent & Resistnce" Moving chges, finlly!! Diect Cuent Cicuits! Pcticl pplictions of ll the stuff tht we ve

More information

Tutorial 5 Drive dynamics & control

Tutorial 5 Drive dynamics & control UNIVERSITY OF NEW SOUTH WALES Electic Dive Sytem School o Electical Engineeing & Telecommunication ELEC463 Electic Dive Sytem Tutoial 5 Dive dynamic & contol. The ollowing paamete ae known o two high peomance

More information

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre Ch. : Invee Kinemati Ch. : Velity Kinemati The Inteventinal Cente eap: kinemati eupling Apppiate f ytem that have an am a wit Suh that the wit jint ae ae aligne at a pint F uh ytem, we an plit the invee

More information

PH2200 Practice Exam I Summer 2003

PH2200 Practice Exam I Summer 2003 PH00 Prctice Exm I Summer 003 INSTRUCTIONS. Write yur nme nd student identifictin number n the nswer sheet.. Plese cver yur nswer sheet t ll times. 3. This is clsed bk exm. Yu my use the PH00 frmul sheet

More information

Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr.

Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr. pecil Vect Clculus essin Engineeing Electmgnetics I Pfess et. cill J. pecil Vect Clculus essin f Engineeing Electmgnetics I. imple cmputtin f cul diegence nd gdient f ect. [peicl Cdinte stem] Cul Diegence

More information

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form 5 Solving Kepler eqution Conider the Kepler eqution ωt = ψ e in ψ We wih to find Fourier expnion of e in ψ o tht the olution cn be written in the form ψωt = ωt + A n innωt, n= where A n re the Fourier

More information

IO Gender and natural history

IO Gender and natural history LNA HEBNGER Gede d tul hty The tylu f the fele [plt] the v hle the vulv d the Veu epd t the t Thu the uteu v d vulv ke up the ptl the e tht de btt ve t ll the fele pt f plt A f e e e eed quk lk euh f Ppu

More information

11.1 Balanced Three Phase Voltage Sources

11.1 Balanced Three Phase Voltage Sources BAANCED THREE- PHASE CIRCUITS C.T. Pn 1 CONTENT 11.1 Blnced Thee-Phse Voltge Souces 11.2 Blnced Thee-Phse ods 11.3 Anlysis of the Wye-WyeCicuits 11.4 Anlysis of the Wye-Delt Cicuits 11.5 Powe Clcultions

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

F subscript a, and defined as σ

F subscript a, and defined as σ Stre, Strin, nd Strin Gge, Pge 1 Stre, Strin, nd Strin Gge Authr: Jhn M Cimbl, Penn Stte Univerity Ltet reviin: 15 Octber 2009 Intrductin Stre nd trin re imprtnt pect f Mechnicl Engineering, epecilly in

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Important design issues and engineering applications of SDOF system Frequency response Functions

Important design issues and engineering applications of SDOF system Frequency response Functions Impotnt design issues nd engineeing pplictions of SDOF system Fequency esponse Functions The following desciptions show typicl questions elted to the design nd dynmic pefomnce of second-ode mechnicl system

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information