# Lecture 4. Electric Potential

Size: px
Start display at page:

Transcription

1 Lectue 4 Electic Ptentil In this lectue yu will len: Electic Scl Ptentil Lplce s n Pissn s Eutin Ptentil f Sme Simple Chge Distibutins ECE 0 Fll 006 Fhn Rn Cnell Univesity Cnsevtive Ittinl Fiels Ittinl Cnsevtive Fiels: Vect fiels F f which F 0 e clle ittinl cnsevtive fiels F This implies tht the line integl f un ny clse lp is ze F. s 0 Eutins f Electsttics: Recll the eutins f electsttics fm pevius lectue:. ε E E 0 In electsttics electusisttics, the E-fiel is cnsevtive ittinl (But this is nt tue in electynmics) ECE 0 Fll 006 Fhn Rn Cnell Univesity

2 Cnsevtive Ittinl Fiels Me n Ittinl Cnsevtive Fiels: If the line integl f F un ny clse lp is ze.. F. s 0. then the line integl f F between ny tw pints is inepenent f ny specific Pth (i.e. the line integl is the sme f ll pssible pths between the tw pints) F. s 0 F. s + F. s 0 pth pth pth B F. s F. s 0 pth B pth pth B F. s F. s pth pth B ECE 0 Fll 006 Fhn Rn Cnell Univesity The scl ptentil: The Electic Scl Ptentil - I ny cnsevtive fiel cn lwys be witten (up t cnstnt) s the gient f sme scl untity. This hls becuse the cul f gient is lwys ze. If F ϕ Then F ϕ ( ) ( ) 0 F the cnsevtive E-fiel ne wites: (The ve sign is just cnventin) E φ Whee φ is the scl electic ptentil The scl ptentil is efine nly up t cnstnt If the scl ptentil φ( ) gives cetin electic fiel then the scl ptentil φ( ) + c will ls give the sme electic fiel (whee c is cnstnt) The bslute vlue f ptentil in pblem is genelly fixe by sme physicl esning tht essentilly fixes the vlue f the cnstnt c ECE 0 Fll 006 Fhn Rn Cnell Univesity

3 The Electic Scl Ptentil - II We knw tht: E φ This immeitely suggests tht: The line integl f E-fiel between ny tw pints is the iffeence f the ptentils t thse pints E. s ( φ ). s φ( ) φ( ) The line integl f E-fiel un clse lp is ze E. s ( φ ). s 0 ECE 0 Fll 006 Fhn Rn Cnell Univesity The Electic Scl Ptentil f Pint Chge ssumptin: The scl ptentil is ssume t hve vlue eul t ze t infinity f wy fm ny chges Pint Chge Ptentil s E ˆ 4πε D line integl fm infinity t the pint whee the ptentil nees t be etemine 0 E. s ( φ ). s φ( ) φ( ) φ( ) φ( ) E. s E s 4π ε φ( ) 4π ε. 4π ε φ( ) ECE 0 Fll 006 Fhn Rn Cnell Univesity

4 Electic Scl Ptentil n Electic Ptentil Enegy The electic scl ptentil is the ptentil enegy f unit psitive chge in n electic fiel Electic fce n chge f Culmbs E (Lentz Lw) Ptentil enegy f chge t ny pint in n electic fiel Wk ne by the fiel in mving the chge fm tht pint t infinity Wk ne F. s E. s φ Wk ne n unit chge P.E. f unit chge φ ( ) ( ) [ φ ( ) φ( ) ] φ( ) φ ( ) s Ptentil enegy f chge f Culmbs in electic fiel φ( ) ECE 0 Fll 006 Fhn Rn Cnell Univesity Stt fm:. ε E Use: E φ T get:. ε ( φ ) φ Pissn s n Lplce s Eutin It is nt lwys esy t iectly use Guss Lw n slve f the electic fiels Nee n eutin f the electic ptentil Pissn s Eutin ε If the vlume chge ensity is ze then Pissn s eutin becmes: φ 0 Lplce s Eutin Pissn s Lplce s eutin cn be slve t give the electic scl ptentil f chge istibutins ECE 0 Fll 006 Fhn Rn Cnell Univesity 4

5 Ptentil f Unifmly Chge Spheicl Shell - I Use the spheicl cinte system F : φ 0 0 φ( ) + F σ ssume slutin: Culmbs/m F must be 0 s tht the ptentil is 0 t F 0 : φ 0 0 ssume slutin: B φ( ) + D Ptentil must nt becme infinite t 0 s B must be 0 ECE 0 Fll 006 Fhn Rn Cnell Univesity Ptentil f Unifmly Chge Spheicl Shell - II Buny cnitins F 0 φ E ( ) D ( ) 0 F φ( ) E ( ) We nee tw itinl buny cnitins t etemine the tw unknwn cefficients n D () t the ptentil is cntinuus (i.e. it is the sme just insie n just utsie the chge sphee) D () t the electic fiel is NOT cntinuus. The jump in the cmpnent f the fiel nml t the shell (i.e. the il cmpnent) is elte t the sufce chge ensity ε ( E E ) ut in σ ε 0 σ ECE 0 Fll 006 Fhn Rn Cnell Univesity σ 5

6 Sufce Chge Density Buny Cnitin Suppse we knw the sufce nml electic fiel n just ne sie f chge plne with sufce chge ensity σ Questin: Wht is the sufce nml fiel n the the sie f the chge plne? E E?? σ Slutin: Dw Gussin sufce in the fm f cyline f e σ piecing the chge plne Ttl flux cming ut f the sufce ε ( E E) Ttl chge enclse by the sufce σ E E?? By Guss Lw: ε ( E E) σ ε ( E E) σ ( E E ) σ ε This n extemely imptnt esult tht eltes sufce nml electic fiels n the tw sies f chge plne with sufce chge ensity σ ECE 0 Fll 006 Fhn Rn Cnell Univesity Ptentil f Unifmly Chge Spheicl Shell - III F 0 F φ ( 4πσ ) ( ) 4π ε φ ( 4πσ ) ( ) 4π ε σ Sketch f the Ptentil: φ( ) ECE 0 Fll 006 Fhn Rn Cnell Univesity 6

7 Ptentil f Unifmly Chge Sphee l Pissn n Lplce In spheicl c-intes ptentil cn nly be functin f (nt f θ φ ) F : φ 0 F 0 : φ ε 0 ε ssume slutin: φ( ) + F F must be 0 s tht the ptentil is 0 t ssume slutin: B φ( ) + D + C hmgenus pts By substituting the slutin in the Pissn eutin fin C Culmbs/m pticul slutin Ptentil must nt becme infinite t 0 s B must be 0 Wk in spheicl c-intes C 6ε ECE 0 Fll 006 Fhn Rn Cnell Univesity Ptentil f Unifmly Chge Sphee l Pissn n Lplce F 0 φ( ) D 6 ε F φ( ) Buny cnitins We nee tw itinl buny cnitins t etemine the tw unknwn cefficients n D () t the ptentil is cntinuus (i.e. it is the sme just insie n just utsie the chge sphee) () t the il electic fiel is cntinuus (i.e. it is the sme just insie n just utsie the chge sphee) E () gives: () gives: D 6ε ε ε D ε ECE 0 Fll 006 Fhn Rn Cnell Univesity 7

8 Ptentil f Unifmly Chge Sphee l Pissn n Lplce F 0 F φ( ) ε 4 π 4π ε φ( ) Sketch f the Ptentil: φ( ) ECE 0 Fll 006 Fhn Rn Cnell Univesity The Pinciple f Supepsitin f the Electic Ptentil Pissn eutin is LINER n llws f the supepsitin pinciple t hl Suppse f sme chge ensity ne hs fun the ptentil φ Suppse f sme the chge ensity ne hs fun the ptentil φ The supepsitin pinciple sys tht the sum chge ensity + ( ) Simple Pf ( φ + φ ) is the slutin f the φ + ε φ ε ( + φ ) ( ) φ + ε ECE 0 Fll 006 Fhn Rn Cnell Univesity 8

9 Wk in spheicl c-intes Ptentil f Chge Diple Cnsie Tw Eul n Oppsite Chges z We e inteeste in the ptentil t istnce fm the cente f the pi in the plne f the chges, whee >> θ + + P + + cs( θ ) cs( θ ) Ptentil cntibutins fm the tw chges cn be e lgebiclly φ( ) 4π ε + 4π ε 4π ε cs θ cs( θ ) 4π ε ( ) 4π ε + cs( θ ) ECE 0 Fll 006 Fhn Rn Cnell Univesity cs( θ ) φ( ) cs( θ ) 4π ε Fiel f Chge Diple E φ( ) 4πε ( cs( θ ) ˆ + sin( θ ) ˆ θ ) + Sme esult f the E-fiel ws btine in the pevius lectue by supepsing the iniviul E-fiels (the thn the ptentils) f the tw chges ECE 0 Fll 006 Fhn Rn Cnell Univesity 9

10 Cnsie n infinite line chge cming ut f the plne f slie Ptentil f Line Chge The electic fiel, by symmety, hs nly il cmpnent λ Culmbs/m Dw Gussin sufce in the fm f cyline f ius n Length L pepenicul t the slie Using Guss Lw: ε E ( π L) λ L λ E π ε φ( ) But φ E λ π ε λ φ φ ln π ε Upn integting fm t we get: ( ) ( ) The pblem is tht this slutin becmes infinite t y x Wk in cylinicl c-intes Whee is cnstnt f integtin n is sme pint whee the ptentil is knwn ECE 0 Fll 006 Fhn Rn Cnell Univesity Ptentil f Line Diple Cnsie tw infinite eul n ppsite line chges cming ut f the plne f slie + λ Culmbs/m + y x λ Culmbs/m Using supepsitin, the ptentil cn be witten s: φ( ) λ ln π ε λ ln π ε + + λ ln π ε Questin: whee is the ze f ptentil? The finl nswe es nt epen n the pmete Pints f which + euls - hve ze ptentil. These pints cnstitute the entie y-z plne ECE 0 Fll 006 Fhn Rn Cnell Univesity 0

11 The D Supepsitin Integl f the Ptentil In the mst genel sceni, ne hs t slve the Pissn eutin: ( ) φ( ) ' ε We knw tht the slutin f pint chge ' sitting t the igin: φ( ) 4π ε T fin the ptentil t ny pint ne cn sum up the cntibutins fm iffeent ptins f chge istibutin teting ech s pint chge ( ') φ ( ) V ' V ' x' y' z' 4π ε ' Check: F pint chge t the igin ( ') δ ( ') δ ( x' ) δ ( y' ) δ ( z' ) ( ') δ ( ') V ' V ' 4π ε ' 4π ε ' 4π ε 4π ε φ( ) ECE 0 Fll 006 Fhn Rn Cnell Univesity ECE 0 Fll 006 Fhn Rn Cnell Univesity

### Electric Potential Energy

Electic Ptentil Enegy Ty Cnsevtive Fces n Enegy Cnsevtin Ttl enegy is cnstnt n is sum f kinetic n ptentil Electic Ptentil Enegy Electic Ptentil Cnsevtin f Enegy f pticle fm Phys 7 Kinetic Enegy (K) nn-eltivistic

### Lecture 3. Electrostatics

Lecue lecsics In his lecue yu will len: Thee wys slve pblems in elecsics: ) Applicin f he Supepsiin Pinciple (SP) b) Applicin f Guss Lw in Inegl Fm (GLIF) c) Applicin f Guss Lw in Diffeenil Fm (GLDF) C

### Electric Potential. and Equipotentials

Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

### Chapter 4. Energy and Potential

Chpte 4. Enegy nd Ptentil Hyt; 0/5/009; 4-4. Enegy Expended in Mving Pint Chge in n Electic Field The electic field intensity is defined s the fce n unit test chge. The fce exeted y the electic field n

### Chapter 25 Electric Potential

Chpte 5 lectic Potentil consevtive foces -> potentil enegy - Wht is consevtive foce? lectic potentil = U / : the potentil enegy U pe unit chge is function of the position in spce Gol:. estblish the eltionship

### Electric Charge. Electric charge is quantized. Electric charge is conserved

lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

### Charge in a Cavity of Conductor

Tdy s Pln Electic Ptentil Enegy (mesued in Jules Electic Ptentil Ptentil Enegy pe unit Chge (mesued in Vlts). Recll tht the electic field E is fce F pe unit chge. Cpcitnce BB Chge in Cvity f Cnduct A pticle

### Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

### CHAPTER 24 GAUSS LAW

CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

### ME 236 Engineering Mechanics I Test #4 Solution

ME 36 Enineein Mechnics I est #4 Slutin Dte: id, M 14, 4 ie: 8:-1: inutes Instuctins: vein hptes 1-13 f the tetbk, clsed-bk test, clcults llwed. 1 (4% blck ves utwd ln the slt in the pltf with speed f

### FI 2201 Electromagnetism

FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

### General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

### This immediately suggests an inverse-square law for a "piece" of current along the line.

Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

### Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

### Lecture 11: Potential Gradient and Capacitor Review:

Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

### U>, and is negative. Electric Potential Energy

Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

### MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES Nme Sectin Multiple Chice 1. (8 Pts). (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Ntes: 1. In the multiple chice questins, ech questin my hve me thn ne cect nswe; cicle

### Ch 26 - Capacitance! What s Next! Review! Lab this week!

Ch 26 - Cpcitnce! Wht s Next! Cpcitnce" One week unit tht hs oth theoeticl n pcticl pplictions! Cuent & Resistnce" Moving chges, finlly!! Diect Cuent Cicuits! Pcticl pplictions of ll the stuff tht we ve

### CHAPTER GAUSS'S LAW

lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

### DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

### School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

### A) N B) 0.0 N C) N D) N E) N

Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

### PH2200 Practice Exam I Summer 2003

PH00 Prctice Exm I Summer 003 INSTRUCTIONS. Write yur nme nd student identifictin number n the nswer sheet.. Plese cver yur nswer sheet t ll times. 3. This is clsed bk exm. Yu my use the PH00 frmul sheet

### ECE 307: Electricity and Magnetism Fall 2012

C 7: lecticity n Mgnetism Fll Instuct: J.. Willims, Assistnt Pfess lecticl n Cmpute ngineeing Uniesity f Alm in Huntsille 6 Optics Builing, Huntsille, Al 5899 Pne: (56 8-898, emil: jn.willims@u.eu Cuse

### Electricity & Magnetism Lecture 6: Electric Potential

Electicity & Mgnetism Lectue 6: Electic Potentil Tody s Concept: Electic Potenl (Defined in tems of Pth Integl of Electic Field) Electicity & Mgnesm Lectue 6, Slide Stuff you sked bout:! Explin moe why

### Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

. Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

### Chapter 4 Motion in Two and Three Dimensions

Chpte 4 Mtin in Tw nd Thee Dimensins In this chpte we will cntinue t stud the mtin f bjects withut the estictin we put in chpte t me ln stiht line. Insted we will cnside mtin in plne (tw dimensinl mtin)

### Physics 11b Lecture #11

Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

### Inductance and Energy of B Maxwell s Equations Mon Potential Formulation HW8

Wed. Fi. 7..3-7..5 Inductnce nd Enegy f 7.3.-.3.3 Mxwell s Equtins Mn. 0. -.. Ptentil Fmultin HW8 Whee we ve been Sttiny Chges pducing nd intecting vi Electic Fields Stedy Cuents pducing nd intecting vi

### Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9

Mesuement f Residul Stess/Stin (Using Stin Gges nd the Hle Dilling Methd) Summy f Discussin in Sectin 8.9 The Hle Dilling Methd Is Bsed On: () Stess tnsfmtin equtins τ x' x' y' y' x' y' xx xx cs sin sin

### (1) It increases the break down potential of the surrounding medium so that more potential can be applied and hence more charge can be stored.

Cpcito Cpcito: Cpcito ( o conense ) is evice fo stoing chge. It essentilly consists of two conucting sufces such s two pltes o two spheicl shell o two cylines etc. kept exctly pllel to ech othe septe y

### Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Chapte Tw ce System 35.4 α α 100 Rx cs 0.354 R 69.3 35.4 β β 100 Ry cs 0.354 R 111 Example 11: The man shwn in igue (a) pulls n the cd with a fce f 70 lb. Repesent this fce actin n the suppt A as Catesian

### Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

### School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

### Introduction. Electrostatics

UNIVESITY OF TECHNOLOGY, SYDNEY FACULTY OF ENGINEEING 4853 Electmechanical Systems Electstatics Tpics t cve:. Culmb's Law 5. Mateial Ppeties. Electic Field Stength 6. Gauss' Theem 3. Electic Ptential 7.

### 1 Using Integration to Find Arc Lengths and Surface Areas

Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

### Physics 1502: Lecture 2 Today s Agenda

1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

### Phy 213: General Physics III

Phy 1: Geneal Physics III Chapte : Gauss Law Lectue Ntes E Electic Flux 1. Cnside a electic field passing thugh a flat egin in space w/ aea=a. The aea vect ( A ) with a magnitude f A and is diected nmal

### Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

### Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P

ε µ0 N mp M G T Kuwit University hysics Deprtment hysics 0 Finl Exmintin Spring Semester (0-0) My, 0 Time: 5:00 M :00 M Nme.Student N Sectin N nstructrs: Drs. bdelkrim, frsheh, Dvis, Kkj, Ljk, Mrfi, ichler,

### Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr.

pecil Vect Clculus essin Engineeing Electmgnetics I Pfess et. cill J. pecil Vect Clculus essin f Engineeing Electmgnetics I. imple cmputtin f cul diegence nd gdient f ect. [peicl Cdinte stem] Cul Diegence

### Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

Ch. : Invee Kinemati Ch. : Velity Kinemati The Inteventinal Cente eap: kinemati eupling Apppiate f ytem that have an am a wit Suh that the wit jint ae ae aligne at a pint F uh ytem, we an plit the invee

### Radial geodesics in Schwarzschild spacetime

Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

### Energy Dissipation Gravitational Potential Energy Power

Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

### The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

The Gadient and Applicatins This unit is based n Sectins 9.5 and 9.6 Chapte 9. All assigned eadings and eecises ae fm the tetbk Objectives: Make cetain that u can define and use in cntet the tems cncepts

### Exam 1 September 21, 2012 Instructor: Timothy Martin

PHY 232 Exm 1 Sept 21, 212 Exm 1 September 21, 212 Instructor: Timothy Mrtin Stuent Informtion Nme n section: UK Stuent ID: Set #: Instructions Answer the questions in the spce provie. On the long form

### Experiment #4 Gauss s Law Prelab Hints

Eperiment #4 Gauss s Law Prela Hints This la an prela will make etensive use f Ptentials an Gauss s Law, an using calculus t recast the electric fiel in terms f ptential The intent f this is t prvie sme

### Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

### CHAPTER 2 ELECTRIC FIELD

lecticity-mgnetim Tutil (QU PROJCT) 9 CHAPTR LCTRIC FILD.. Intductin If we plce tet chge in the pce ne chged d, n electttic fce will ct n the chge. In thi ce we pek f n electic field in thi pce ( nlgy

### Solution: (a) C 4 1 AI IC 4. (b) IBC 4

C A C C R A C R C R C sin 9 sin. A cuent f is maintaine in a single cicula lp f cicumfeence C. A magnetic fiel f is iecte paallel t the plane f the lp. (a) Calculate the magnetic mment f the lp. (b) What

### A) (0.46 î ) N B) (0.17 î ) N

Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

### n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT

.. Cu-Pl, INE 45- Electmagnetics I Electstatic fields anda Cu-Pl, Ph.. INE 45 ch 4 ECE UPM Maagüe, P me applicatins n Pwe tansmissin, X as, lightning ptectin n lid-state Electnics: esists, capacits, FET

### Chapter 28 Sources of Magnetic Field

Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

### CHAPTER 29 ELECTRIC FIELD AND POTENTIAL EXERCISES

HPTER ELETRI FIELD ND POTENTIL EXERISES. oulob Newton l M L T 4 k F.. istnce between k so, foce k ( F ( The weight of boy 4 N 4 N wt of boy So,. foce between chges 4 So, foce between chges.6 weight of

### (A) 6.32 (B) 9.49 (C) (D) (E) 18.97

Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

### Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

### A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

### Last Time emphasis on E-field. Potential of spherical conductor. Quick quiz. Connected spheres. Varying E-fields on conductor.

Lst Time emphsis on Efiel Electric flux through surfce Guss lw: Totl electric flux through close surfce proportionl to chrge enclose Q " E = E = 4\$k e Q % o Chrge istribution on conuctors Chrge ccumultes

### CHAPTER? 29 ELECTRIC FIELD AND POTENTIAL EXERCISES = 2, N = (5.6) 1 = = = = = Newton

Downloe fo HPTER? ELETRI FIELD ND POTENTIL EXERISES. oulob Newton l M L T 4 k F.. istnce between k so, foce k ( F ( The weight of boy 4 N 4 N wt of boy.5 So, foce between chges 4 So, foce between chges

### Optimization. x = 22 corresponds to local maximum by second derivative test

Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

### MAT 1275: Introduction to Mathematical Analysis

MAT 75: Intrdutin t Mthemtil Anlysis Dr. A. Rzenlyum Trignmetri Funtins fr Aute Angles Definitin f six trignmetri funtins Cnsider the fllwing girffe prlem: A girffe s shdw is 8 meters. Hw tll is the girffe

### ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

LCTROSTATICS. Quntiztion of Chge: Any chged body, big o smll, hs totl chge which is n integl multile of e, i.e. = ± ne, whee n is n intege hving vlues,, etc, e is the chge of electon which is eul to.6

### MAT 1275: Introduction to Mathematical Analysis

1 MT 1275: Intrdutin t Mtemtil nlysis Dr Rzenlyum Slving Olique Tringles Lw f Sines Olique tringles tringles tt re nt neessry rigt tringles We re ging t slve tem It mens t find its si elements sides nd

### Answers to test yourself questions

Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

### Physics Lecture 14: MON 29 SEP

Physics 2113 Physics 2113 Lecture 14: MON 29 SEP CH25: Cpcitnce Von Kleist ws le to store electricity in the jr. Unknowingly, he h ctully invente novel evice to store potentil ifference. The wter in the

### WYSE Academic Challenge Regional Physics 2008 SOLUTION SET

WYSE cdemic Chllenge eginl 008 SOLUTION SET. Crrect nswer: E. Since the blck is mving lng circulr rc when it is t pint Y, it hs centripetl ccelertin which is in the directin lbeled c. Hwever, the blck

### 10 Statistical Distributions Solutions

Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

### ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

### SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

SPA7U/SPA7P: THE GALAXY Solutions fo Cousewok Questions distibuted on: 25 Jnuy 28. Solution. Assessed question] We e told tht this is fint glxy, so essentilly we hve to ty to clssify it bsed on its spectl

### Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

### 5. Differential Amplifiers

5. iffeential plifies eain: Sea & Sith: Chapte 8 MOS ptins an Chapte.. ECE, Winte, F. Najabai iffeential an Cn-Me Sinals Cnsie a linea iuit with TWO inputs By supepsitin: efine: iffeene iffeential Me Cn

### Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Physics 55 Fll 5 Midtem Solutions This midtem is two hou open ook, open notes exm. Do ll thee polems. [35 pts] 1. A ectngul ox hs sides of lengths, nd c z x c [1] ) Fo the Diichlet polem in the inteio

### Collection of Formulas

Collection of Fomuls Electomgnetic Fields EITF8 Deptment of Electicl nd Infomtion Technology Lund Univesity, Sweden August 8 / ELECTOSTATICS field point '' ' Oigin ' Souce point Coulomb s Lw The foce F

### A, Electromagnetic Fields Final Exam December 14, 2001 Solution

304-351, Electrognetic Fiels Finl Ex Deceer 14, 2001 Solution 1. e9.8. In chpter9.proles.extr.two loops, e of thin wire crry equl n opposite currents s shown in the figure elow. The rius of ech loop is

### 5.1 Moment of a Force Scalar Formation

Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

### Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions

Poblem 1: Electic Potential an Gauss s Law, Configuation Enegy Challenge Poblem Solutions Consie a vey long o, aius an chage to a unifom linea chage ensity λ a) Calculate the electic fiel eveywhee outsie

### Name Solutions to Test 3 November 8, 2017

Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

### ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

LCTRIC & MAGNTIC FILDS I (STATIC FILDS) LC 05A D. Hanna A. Kils Assciate Pfess lectnics & Cmmnicatins ngineeing Depatment Faclty f ngineeing Cai Univesity Fall 0 f Static lecticity lectic & Magnetic Fields

### Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

+ - Hmewrk 0 Slutin ) In the circuit belw: a. Find the magnitude and phase respnse. b. What kind f filter is it? c. At what frequency is the respnse 0.707 if the generatr has a ltage f? d. What is the

### 11.2. Infinite Series

.2 Infinite Series 76.2 Infinite Series An infinite series is the sum f n infinite seuence f numbers + 2 + 3 + Á + n + Á The gl f this sectin is t understnd the mening f such n infinite sum nd t develp

### Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW

Physics 10 Jonthn Dowling Physics 10 ecture 9 FIRST MIDTERM REVIEW A few concepts: electric force, field nd potentil Electric force: Wht is the force on chrge produced by other chrges? Wht is the force

### CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

### Solutions to Midterm Physics 201

Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

### Newton s Shell Theorem via Archimedes s Hat Box and Single-Variable Calculus

Newton s Shell Theoem vi Achimees s Ht Box n Single-Vible Clculus Pete McGth Pete McGth (pjmcgt@upenn.eu, MRID955520) eceive his Ph.D. fom Bown Univesity n is cuently Hns Remche Instucto t the Univesity

### A Revision Article of Oil Wells Performance Methods

A Revisin Aticle Oil Wells emnce Methds The ductivity inde well, dented y, is mesue the ility the well t duce. It is given y: Whee: Welle ductivity inde, STB/dy/sig Avege (sttic) esevi essue, sig Welle

### As we have already discussed, all the objects have the same absolute value of

Lecture 3 Prjectile Mtin Lst time we were tlkin but tw-dimensinl mtin nd intrduced ll imprtnt chrcteristics f this mtin, such s psitin, displcement, elcit nd ccelertin Nw let us see hw ll these thins re

### Lecture 35. Diffraction and Aperture Antennas

ctu 35 Dictin nd ptu ntnns In this lctu u will ln: Dictin f lctmgntic ditin Gin nd ditin pttn f ptu ntnns C 303 Fll 005 Fhn Rn Cnll Univsit Dictin nd ptu ntnns ptu ntnn usull fs t (mtllic) sht with hl

### OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4

OVRVIW Using Similrity nd Prving Tringle Therems G.SRT.4 G.SRT.4 Prve therems ut tringles. Therems include: line prllel t ne side f tringle divides the ther tw prprtinlly, nd cnversely; the Pythgren Therem

### Homework Assignment 5 Solution Set

Homework Assignment 5 Solution Set PHYCS 44 3 Februry, 4 Problem Griffiths 3.8 The first imge chrge gurntees potentil of zero on the surfce. The secon imge chrge won t chnge the contribution to the potentil

### The Wave Equation I. MA 436 Kurt Bryan

1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

### ES.181A Topic 8 Notes Jeremy Orloff

ES.8A Topic 8 Notes Jeremy Orloff 8 Integrtion: u-substitution, trig-substitution 8. Integrtion techniques Only prctice will mke perfect. These techniques re importnt, but not the intellectul hert of the

### The Area of a Triangle

The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

### 37 Maxwell s Equations

37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

### ( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

### ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

ALGEBRA /TRIGONMETRY TOPIC REVIEW QUARTER LOGS Cnverting frm Epnentil frm t Lgrithmic frm: E B N Lg BN E Americn Ben t French Lg Ben-n Lg Prperties: Lg Prperties lg (y) lg + lg y lg y lg lg y lg () lg

### ENGI 1313 Mechanics I

ENGI 1313 Mechanics I Lectue 05: Catesian Vects Shawn Kenny, Ph.D., P.Eng. ssistant Pfess Faculty f Engineeing and pplied Science Memial Univesity f Newfundland spkenny@eng.mun.ca Chapte Objectives t eview

### Physics 1402: Lecture 7 Today s Agenda

1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

### EMF 2005 Handout 5: Capacitance 1 CAPACITANCE. Q Coulombs. Volts

MF 005 Hanut 5: apacitance APAITAN Definitin f capacitance Recall: Fr a pint charge r a charge sphere V 4πε r In general, POTNTIAL HARG fr any size r shape f cnuctr. Definitin: The cnstant f prprtinality