A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY*

Size: px
Start display at page:

Download "A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY*"

Transcription

1 55(2) APPLICATIONS OF MATHEMATICS No., A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY* Irna Rachůnková, Olomouc, Grno Pulvrr, Win, Ewa B. Winmüllr, Win (Rcivd January 4, 28, in rvid vrion Augu 9, 28) Abrac. W conidr h ingular boundary valu problm ( n u ()) + n f(, u())=, + n u ()=, a u()+a u ( )=A, whr f(, x)iagivnconinuoufunciondfindonh(,] (, )whichcanhav aimingulariya =andapacingulariya x=. Morovr, n Æ, n 2,and a, a, Aarralconanuchha a (, ),whra a, A [, ). Thmainaim ofhipapriodicuhxincofoluionohabovproblmandapplyh gnral rul o covr crain cla of ingular problm ariing in h hory of hallow mmbran cap, whr w ar pcially inrd in characrizing poiiv oluion. W illura h analyical finding by numrical imulaion bad on polynomial collocaion. Kyword: ingular mixd boundary valu problm, poiiv oluion, hallow mmbran, collocaion mhod, lowr and uppr funcion MSC2:34B6,34B8. Inroducion W inviga h olvabiliy of h ingular mixd boundary valu problm (.a) (.b) ( n u ()) + n f(, u()) =, < <, + n u () =, a u() + a u ( ) = A, *ThfirauhorwauppordbyhgranNo.A973ofhGranAgncyofh Acadmy of Scinc of h Czch Rpublic and by h Council of Czch Govrnmn MSM ; h cond and h hird auhor wr uppord by h Aurian Scinc Fund Projc P

2 whr n N, n 2, a (, ), a, A [, )andwdno u ()by u ( ). For h givn funcion f(, x) w mak h following aumpion: A:Thdaafuncion f(, x)iconinuouon (, ] (, )andcanhavaim ingulariya = andapacingulariya x =. Dfiniion.. Afuncion f(, x)haaimingulariya =,ifhrxi x (, )uchha ε f(, x) d =, ε (, ). Afuncion f(, x)haapacingulariya x =,if up f(, x) =, (, ). x + W focu our anion on h xinc of poiiv oluion of problm(.) which ar characrizd in h following dfiniion. Dfiniion.2. A funcion u i calld a poiiv oluion of problm(.) if u aifi h following condiion: (i) u C[, ] C 2 (, ), (ii) u() > for (, ), (iii) u aifi quaion(.a) and boundary condiion(.b). W wan o prov a gnral xinc horm for problm(.) which will nabl a unifid approach o h xinc and localizaion of poiiv oluion for crain cla of ingular problm, uch a (.2a) (.2b) ( ( 3 u ()) + 3 8u 2 () µ ) u() λ2 2 2γ 4 =, + 3 u () =, a u() + a u ( ) = A. Wih µ, λ >, γ > problm(.2)iapcialcaof(.). Boundaryvalu problm(.2) ari in h hory of hallow mmbran cap and ar invigad in[4],[5],[6],and[2].equaion (.3) u () + 3 u () + q() u 2 () =, whr qiconinuouon [, ]andpoiivon (, ),augmndbyboundarycondiion(.b) wa udid in[2]. I dcrib h bhavior of ymmric circular 48

3 mmbran and can b aily ranformd o h pcial ca of(.). Finally, h problm pod on a mi-infini inrval, (.4a) (.4b) z () + ( λ γ 2 32z 2 () + µ ) =, < <, 4 <, b z() b z ( ) = A, aloariinhmmbranhoryandfor A > iwadicudin[]and[8].i canbwrininhform(.2),whr a = b, a = 2b,byuinghubiuion (.5) = 2, = z ( 2 ) =: u(). 2. Exinc horm for problm(.) Our analyical approach i bad on h lowr and uppr funcion mhod which ihrxnddohgnralingularproblmofhform(.).inhqul,w hall u h following dfiniion: Dfiniion 2.. A funcion σ i calld a lowr funcion of quaion(.a), if σ aifi h following rquirmn: (i) σ C[, ] C 2 (, ), (ii) ( n σ ()) + n f(, σ()), (, ). Ifhinqualiyin(ii)irvrd, σicalldanupprfuncionofquaion(.a). If σaifi(i),(ii)and (iii) + n σ (), a σ() + a σ ( ) A, hn σicalldalowrfuncionofhboundaryvaluproblm(.).ifhinqualiiin(ii)and(iii)arrvrd,hn σicalldanupprfuncionofhboundary valu problm(.). Ingnral, σ ()canbcomunbounddahndpoinofhingraioninrval, = and =.Formorgnraldfiniionoflowrandupprfuncion,.g.[2],[7]or[22]. For h nx wo horm w nd h following aumpion: A2.: σ and σ 2 aralowrandanupprfuncionofproblm(.),rpcivly. A2.2: < σ () σ 2 ()for (, ). A2.3:Thrxi p < 2uchha + p h() <,whr h() = up{ f(, x) : σ () x σ 2 ()}. 49

4 Noha σ and σ 2 canvaniha = and =. Sinc f(, x)mayxhibi ingulariia = and x =,wailyha hcanbcomunboundd,i.. (2.) up h() =, + up h() =. Thorm 2.2. Aum ha A and A2. A2.3 hold. (i)l hbbounddon [, ].Thnproblm(.)haapoiivoluion uuch ha u C [, ]and u () =.Morovr, (2.2) σ () u() σ 2 (), [, ]. (ii) L h aify(2.). Furhrmor, l u aum ha hr xi a conan δ (, )uchha (2.3) ( n σ ()), ( n σ 2()), (, δ ), σ () = σ 2 (),andhrxi δ 2 (, ), K Ruchha (2.4) ( n σ ()) K, ( n σ 2 ()) K, ( δ 2, ). Thn problm(.) wih A = in(.b) ha a poiiv oluion u aifying(2.2). Proof. (i)for hbounddon [, ],(i)followbyarguingainhrgularca, whr ficoninuouoraifihcarahéodorycondiionon [, ] [, ),.g. Thorm 2.3 in[2]. (ii)l haify(2.)andl(2.3),(2.4),and σ () = σ 2 ()hold.nowhproof icarridouinfivp. Sp. Wfirhowha A = : Thcondiion up h() = anda imply σ () =. From σ () = σ 2 ()alo σ 2 () = follow. If a =,hn Dfiniion2.(iii)yild = a σ () Aand = a σ 2 () A. Thrfor, A =. If a >,Dfiniion2.(iii)yild σ 2 ( ) A/a. DuoA2.2, σ 2 () > for (, )andhnc, σ 2 ( ).Thrfor, A =. Sp2.Approximaoluion u k :Choo k N, /k min{δ, δ 2 },anddfin [,, ), k [ f k (, x) := f(, x), k k],, 5 K n, ( k, ].

5 Conidr h quaion (2.5) ( n u ()) + n f k (, u()) =. Wha σ and σ 2 arlowrandupprfuncion ofquaion(2.5)ubjc o(.b) and h k () := up{ f k (, x) : σ () x σ 2 ()} ibounddon [, ]. ByPar(i)ofhproof,problm(2.5),(.b)haaoluion u k C [, ] C 2 (, )aifying u k () = and (2.6) σ () u k () σ 2 (), [, ]. Sp3. Propriofhfuncion h: Wnowdrivomufulpropriof h whichwillbrquirdinhnxpofhproof.chooaninrval [, b] [, ). DuoAandA2.2,hfuncion n h()iconinuouon (, b].sinc p < 2 n,i follow from A2.3 ha + n h() = hold.thrfor, (2.7) b n h()d =: M b (, ). Thu, by d l Hopial rul and A2.3, + n p+ n h()d n h() = + (n p + ) n p = n p + + p h() =: c (, ). Thiyildhxincof ε (, )uchha n n h()d (c + ) p, [, ε]. Morovr, by(2.7), n n h()d ε n b n h()d = M b ε n for [ε, b]. Finally, imply h la wo inqualii (2.8) b n n h()d d <. 5

6 Sp4.Propriofhqunc {u k }:Conidrhquncofquaion(2.5) ubjco(.b)wih k N, /k min{δ, δ 2 },whr δ and δ 2 arpcifidby(2.3) and(2.4),rpcivly. FromSp2wobainhcorrpondingqunc {u k }of hir oluion which ar approximaion for u. L u fir dicu h convrgnc propriof {u k }. Chooaninrval [, b] [, ). Thnhrxianindx k N, /k min{δ, δ 2 },uchha [ [, b], ], k k. k Du o boundary condiion(.b) and quaion(2.5) w hav (2.9) n u k() + Th inqualiy (2.) f k (, u k ()) h(), condiion(2.7) and qualiy(2.9) yild (2.) n u k() n f k (, u k ())d =, [, b], k k. [, ], k k, k n h()d M b, [, b], k k. Accordingo(2.6)and(2.)hqunc {u k }and { n u k }arbounddon [, b]. Morovr,by(2.7)and(2.8),forach ε > hrxiaδ> uchhaforany, 2 [, b]wih 2 < δandany k k whav n u k ( ) n 2 u k ( 2 2) n h()d < ε and u k ( ) u k ( 2 ) 2 n n h()d d < ε hold. Hnc, hqunc {u k }and { n u k }arquiconinuouon [, b]. Th Arzlà-Acolihormnowimplihahrxiaubqunc {u l } {u k }uch ha u l = u, n u l = n u l l uniformlyon [, b].finally,byhdiagonalizaionprincipl,wfindaubqunc {u k }aifying (2.2) k u k = u, locally uniformly on [, ). k n u k = n u Forimpliciy,hprviounoaion {u k }forhiubqunciud. 52

7 Sp5.Propriofhfuncion u:wnowprovhahifuncion uia poiiv oluion of problm(.) aifying(2.2). Du o(2.6) and(2.2) w hav (2.3a) (2.3b) σ () u() σ 2 (), [, ), u C[, ), n u () C[, ), + n u () =. Choo (, ).Thnhrxi k k uchha andhnc,byaand(2.2), f(, u k ()) = f k (, u k ()), k k, f k(, u k ()) = f(, u k()) = f(, u()). k k Conqunly,hqunc {f k (, u k ())}ipoinwiconvrgingon (, ).Furhrmor,foranarbiraryinrval [, b] [, )whav,by(2.), n f k (, u k ()) n h(), [, b], k k. Thrfor, du o(2.7), w can u h Lbgu dominad convrgnc horm forhquncofqualii(2.9). Havinginmindha b (, )iarbiraryand ling k,wconcludha n u () + n f(, u())d =, [, ). Thu u C 2 (, )and uaifiquaion(.a)for (, ). BySp,whav σ () = σ 2 () = A = andconqunly,by(2.3a), u() = follow. For u() =,wcanha u C[, ]iapoiivoluionofproblm(.),which compl h proof. Thorm 2.3. Aum ha A and A2. A2.3 hold. (i)l hbboundda = andluaumha up h() = and condiion(2.4)hold.thnproblm(.)wih A = in(.b)haapoiivoluion u C [, )whichaifiima(2.2)and u () =. (ii)l hbboundda = andl up h() = andcondiion(2.3)hold. + Thnproblm(.)haapoiivoluion u C (, ]whichaifiima(2.2). Proof. WuargumnimilarohofromhproofofThorm

8 (i)sinc hiboundda =,wdfin f(, x), f k (, x) := [, ], k K n, ( k, ], whr k N, /k δ 2,and δ 2, Kargivnby(2.4).AinSp2 4,wconruc hqunc {u k }ofoluionofquaion(2.5)ubjco(.b)whichaify(2.6) and(2.2). BySp5,hifuncion uiapoiivoluionofproblm(.) aifying(2.2).sinc hiboundda =,whav and hrfor, u () n { [ up h() :, ]} =: M < 2 n h()d For u () =, u C [, )follow. (ii)sinc hiboundda =,w, f k (, x) := f(, x), M [, n +, ]. 2 [, ), k [ k, ], whr k N, /k δ,and δ ipcifidby(2.3). AinSp2wdrivh qunc {u k }ofoluionofquaion(2.5)ubjco(.b)andaifying(2.6). Morovr, imilarly o Sp 3, w obain n h()d <, andwdduc,ainsp4,ha n n h()d d <, u k = u, k k n u k = n u holduniformlyon [, ].Thrfor, u C[, ] C (, ]and uaifi(.b)and (2.2). By h Lbgu dominad convrgnc horm, a in Sp 5, w conclud ha u C 2 (, )aifiquaion(.a)for (, )andhrulfollow. No ha h xinc of nonngaiv oluion for mixd problm, whr f may bingularjua x =,waaloprovdin[3]. 54

9 3. Singular mmbran problm InhicionwuThorm2.2and2.3oprovholvabiliyofingular mmbran problm. W udy h boundary valu problm (3.a) (3.b) ( n u ()) + n( a u 2m () b u m () c2r) =, + n u () =, a u() + a u ( ) = A, whr a (, ), b, c [, ), r (, ), m, n N,and n 2. Problm(3.) covr h mmbran problm(.2) and, afr ubiuion(.5), alo h infini inrval problm(.4). InordrobablouilizhrulformuladinThorm2.2and2.3,i incaryohowhowofindproprlowrandupprfuncionofhabov problm. W bgin wih lowr and uppr funcion of quaion(3.a), h choic of whichdpndonhparamr a, b, c, r, n,and m. Lmma3.. Aumha c (, x /m ],whr x = 2 (b + b 2 + 4ac)/a.For [, ],wdfin { c, r, (3.2) σ () := c r/m, r (, ). Thn σ ialowrfuncionofquaion(3.a). Proof. Sinc c m x and x iapoiivoluionofhquaion ax 2 bx c =,whav (3.3) a c 2m b c m c. L r.thn σ () c and,by(3.3), ( n σ ()) + n( a σ 2m() b σ m() c2r) n( a c 2m b c m ) c, (, ). L r (, ).Thn σ () = c r/m and,by(3.3), ( n σ ()) + n( a σ 2m () b σ m() c2r) n+2r( a c 2m b c m ) c, (, ). Thiman σ aificondiion(i)and(ii)ofdfiniion2.. 55

10 Lmma 3.2. L u aum ha c 2 [x /m, ), whr x i dfind in Lmma3..For [, ]dfin c 2 + c ( ), r >, (3.4) σ 2 () := n c 2, r (, ]. Thn σ 2 ianupprfuncionofquaion(3.a). Proof. L r (, ].Thn σ 2 () c 2.Sinc < c m 2 x,whav ( n σ 2 ()) + n( a σ2 2m() b σ2 m() c2r) n( a 2 L r >.Thn σ 2 () = c 2 + c n ( )and whr c 2m b c m 2 ) c, (, ). ( n σ 2 ()) + n( a σ 2m 2 () b σ m 2 () c2r) n ( c + ψ()), (, ), a ψ() = [c 2 + c n ( b )]2m [c 2 + c. n ( )]m If ψ()ipoiivforom (, ),wcanconclud c + ψ() c + a c 2m b 2 c m 2 andhu,bydfiniion2.,hfuncion σ 2 ianupprfuncionof(3.a). Wnowpcifyh c and c 2 in σ and σ 2 fromlmma3.and3.2,rpcivly,inordroaifycondiiona2.2anddfiniion2.(iii). For σ 2 wak Dfiniion 2.(iii) wih h rvrd inqualii. Lmma3.3.L A > and x bainlmma3..s r := max{, r}and { c := min Am a m + a r, x /m } { (, c 2 := max a A + a c n ), x /m Thn σ and σ 2 givnby(3.2)and(3.4)ar,rpcivly,lowrandupprfuncion of problm(3.) and aify A2.2. Proof. ByLmma3.and3.2, σ and σ 2 arlowrandupprfuncionof quaion(3.a). W ha A2.2 hold and(3.2),(3.4) yild }. + n σ () =, + n σ 2() =. 56

11 Finally, a σ () + a σ ( ) = a σ 2 () + a σ 2( ) = a c A, r, ( r ) c a a A, r (, ), m a c 2 A, r (, ], c a c 2 a n A, r >. Lmma3.3dalwihhca A >.Inhnxwolmmawwilldicuh ca A =,whrconanlowrandupprfunciondonoxi. Lmma3.4. L A = and a >. S k := + a /(a a (r/m))andfor [, ]dfin ( ν a ), r, (3.5) σ () := a ν r/m (k ), r (, ), ( σ 2 () := β a ). a Thnhrxiconan ν, β (, )uchhaforach ν (, ν )and β β, hfuncion σ and σ 2 aralowrfuncionandanupprfuncionofproblm(3.) aifying A2.2. Proof. Bydirccalculaionwcanha σ and σ 2 aify + n σ i() =, a σ i () + a σ i( ) =, i =, 2. L r.thn σ () = ν( 2 + 2a /a )and whr ( n σ ()) + n( a σ 2m () b σ m () c2r) n ϕ (, ν), (, ), ϕ (, ν) = 2ν(n + ) + a [ν( 2 + 2a /a )] 2m b [ν( 2 + 2a /a )] m c. Sinc ν + ϕ (, ν) = uniformlyon [, ],wcanfind ν > uchhaforach ν (, ν ],hinqualiy ϕ (, ν) holdfor [, ]. L r (, ).Thn σ () = ν r/m (k )and ( n σ ()) + n( a σ 2m () b σ m () c2r) n r/m 2 ψ (, ν), (, ), 57

12 whr and ψ (, ν) = νl() + 2r+r/m+2 h(, ν), h(, ν) = (3.6) l() = rk m a [ν(k )] 2m b [ν(k )] m c, (n r ) ( m n r )( r ). m m Choo c > ainlmma3.andl ν (, c /k].thn,by(3.3), h(, ν) for ν (, ν ], [, ].Wnowdnohuniquzroof l()by andhav l() for [, ].Conqunly, Furhrmor, ψ (, ν), ν (, ν ], [, ]. ψ (, ν) = ν + uniformlyfor [, ]. Thrfor,wcanfind ν (, ν ]uchhaforach ν (, ν ],hinqualiy ψ (, ν) holdfor [, ]. Lunowconidr σ 2 () = β( 2 + 2a /a ).Whav whr ( n σ 2()) + n( a σ 2m 2 () b σ m 2 () c2r) n ϕ(β), (, ), ( ϕ(β) = 2(n + )β + a 2β a ) 2m. a Sinc ϕ(β) =,hrxi β β > ν uchhaforach β β whav ϕ(β) >. Lmma3.5.L A = and a =.For [, ]ludfin (3.7) σ () := { ν( 2 ), r, ν r/m ( ), r (, ), σ 2 () := β( 2 ) /2m. Thnhrxiconan ν, β (, )uchhaforach ν (, ν )and β β, hfuncion σ and σ 2 aralowrfuncionandanupprfuncionofproblm(3.) aifying A Proof. Wcanailychckha σ and σ 2 aify + n σ i() =, σ i () =, i =, 2.

13 L r.thn σ () = ν( 2 )and whr ( n σ ()) + n( a σ 2m () b σ m () c2r) n ϕ(, ν), (, ), ϕ(, ν) = 2ν(n + ) + a [ν( 2 )] 2m b [ν( 2 )] m c. Sinc ν + ϕ(, ν) = uniformlyon [, ],wcanfind ν > uchhaforach ν (, ν ],hinqualiy ϕ(, ν) holdfor [, ]. L r (, ). Thn σ () = ν r/m ( ) and imilarly o h proof of Lmma3.4wconcludhaforachufficinlymallpoiiv νhfuncion σ i a lowr funcion of problm(3.). Now,conidr σ 2 () = β( 2 ) /2m.Whav ( n σ 2()) + n( a σ 2m 2 () b σ m 2 () c2r) n ( 2 ) /2m 2 ϕ 2 (, β), (, ), whr ϕ 2 (, β) = 2β m ( ) + aβ 2m ( 2 ) /2m. 2m Sinc ϕ 2(, β) = uniformlyon [, ],wcanfindaβ > ν uchhafor β ach β β, ϕ 2 (, β) on (, )hold.thrfor, σ 2 ianupprfuncionof(3.) and A2.2 i aifid. Having drivd lowr and uppr funcion of problm(3.) for all valu of i paramr, w can prov h xinc of a poiiv oluion u o hi problm and dcribhow u bhavahingularpoin = and =. (3.8) Thorm 3.6. Problm(3.) ha a poiiv oluion u uch ha u() >, u (+) =, r > 2, u() >, u (+) = c n, r = 2, u(), u (+) =, r < 2, and (3.9) u ( ) R, A >, u ( ) R, A =, a >, u ( ) =, A =, a =. 59

14 Proof. Lowrandupprfuncion σ and σ 2 ofproblm(3.)aifyinga2.2 ar givn according o Lmma 3.3, 3.4, and 3.5. Th funcion f(, x) = a x 2m b x m c2r aifi A. Conidr h funcion h from A2.3. Thn w hav (3.) h() a σ 2m () + b σ m () + c2r, (, ). Ca.Waumha A > or A =, a >.Wfirfind c bylmma3.3, andhnchoo ν (, ν )in(3.5)uchha νk c. L r. Thn σ ipoiivon [, ]and(3.)impliha hiboundd on [, ]and h() =. Thu, haificondiiona2.3wih p = and,by + Thorm2.2(i),problm(3.)haapoiivoluion u C [, ]aifying u () = and(2.2).sinc σ () >,hinqualiy u() > follow. L r (, ).Thn(3.)yild (3.) h() 2r( a [ν(k )] 2m + b ) [ν(k )] m + c, (, ). Alo, h() a σ 2m () b σ m() c2r 2r( a c 2m b c m ) c >, (, ). By(3.)andhlainqualiywhav up h() =, + up h() <. Duo(3.),for p = 2rwcanhowA2.3,inc + p h() a [ν(k )] 2m + b [ν(k )] m + c <. Nowwprov(2.3). If A >, wulmma3.3andhav σ () = c r/m, σ 2 () c 2.Hnc, ( ( n σ ()) = c r )( n r ) n 2 r/m, ( n σ 2 m m ()) =, (, ). For A = and a > wulmma3.4andhav σ () = ν r/m (k ), σ 2 () = β( 2 + 2a /a ).Hnc, 6 ( n σ ()) = ν n 2 r/m l(), ( n σ 2 ()) = 2β(n + ) n, (, δ ),

15 whr l()igivnby(3.6)and δ = iiuniquzro.thrfor,condiion(2.3) hold. Conqunly, by Thorm 2.3(ii), problm(3.) ha a poiiv oluion u C (, ]aifying(2.2). Irmainoprov(3.8)for r (, ). Equaion(3.a)andcondiion(3.b) rul in (3.2) n u () = andconqunly,inc n 2and r >, (3.3) + n( a u 2m () b u m () c2r) d, (, ), n( b u m () a ) u 2m d =. () Aum u() =.Sinc σ () = and + σ () =,inqualiy(2.2)impli (3.4) + u () =. Onhohrhand,haumpion u() = guaranhxincof δ > uch ha u m () a/bfor [, δ].thn,by(3.2), u () = n n u 2m () (bum () a)d + c2r+ n + 2r + c2r+ n + 2r +, (, δ). If r [ 2, ),hn u () c/non (, δ),aconradiciono(3.4).thimanha w hav hown (3.5) r = u() >. 2 For r [ 2, ),uing(3.2),(3.3),(3.5)anddl Hopial rulwobain c 2r+ (3.6) + u () = + n + 2r + =, r ( 2, ), c n, r = 2. L r (, 2 ).If u() =,hn(3.4)hold.if u() >,hnby(3.2),(3.3), and d l Hopial rul w dduc a bfor, c 2r+ + u () = + n + 2r + =. Ca2.Now,wconidrhca A =, a =. 6

16 L r,hnbylmma3.5, σ () = ν( 2 ), σ 2 () = β( 2 ) /2m, whr < ν < βwihaufficinlymall νandaufficinlylarg β.for (, ) w hav < ( 2 ) 2m ( a ν 2m b ) ν m c h() ( 2 ) 2m ( a ν 2m + b ν m + c ) and conqunly, Hnc, A2.3 hold. Morovr, up h() <, + up h() =. σ () = σ 2 () = = A, ( n σ ()) = 2ν(n + ) n, and ( n σ 2()) = β m n ( 2 ) /2m 2( (n + )( 2 ) + 2 2( m )). Thimanhahrxi δ 2 (, )uchha(2.4)ivalidfor K = 2ν(n + ). Thrfor,byThorm2.3(i),problm(3.)haapoiivoluion u C [, ) aifying u () = and(2.2).sinc σ () >,whav u() >. L r (, ).ByLmma3.5, σ () = ν r/m ( ), σ 2 () = β( 2 ) /2m, whr < ν < βand νiufficinlymall,whil βiufficinlylarg. Thnfor (, ) < Conqunly, 2r ( ) 2m ( a ν 2m b ) ν m c h() up h() =, + 2r ( ) 2m ( a ν 2m + b ν m + c ). up h() =. For p = 2rwobain + p h() < andhnca2.3follow.morovr,whav 62 ( n σ ()) = ν n r/m 2( r (n r ) ( m m n r )( r ) ), (, ), m m ( n σ 2()) = β m n ( 2 ) /2m 2( (n + )( 2 ) + 2 2( )), (, ). m

17 Thu,wcanfind δ, δ 2 (, )whicharufficinlymalloguaran ( n σ ()), ( n σ 2()), (, δ ), ( n σ ()) K, ( n σ 2 ()) K, ( δ 2, ), whr K = ν(n r/m)( r/m).wcanha(2.3)and(2.4)holdanduing Thorm2.2(ii)wdduchaproblm(3.)haapoiivoluion u C (, ) aifying(2.2).for r (, ),propry(3.8)canbprovdinhamwayain Ca. Finally,whowhaif A = and a =,hn u ( ) =. Sinc u() =, hrxi ξ (, )uchha u m () a/2bfor [ξ, ].Morovr,whav ξ d u 2m () ξ d () σ 2m 2 2β 2m Thrfor, by ingraing(3.a), w obain ξ n u () = ξ n u n (ξ) + ξ u 2m () (bum () a)d + c ξ n u (ξ) + a ) d ( 2 ξn u 2m () ξ d = ln, (ξ, ). 2β2m ξ ξ n+2r d ξ n u (ξ) + aξn ln 4β2m ξ + c, (ξ, ). n + 2r + Hnc, n u () = u ( ) =. FromThorm3.6warnowablodrivhfollowingxincrulfor problm(.4). Thorm 3.7. Problm(.4) ha a poiiv oluion z uch ha >, γ z () = λ2 8γ, γ 3 2, (3.7), 3 z () =, γ < 3 2, and (3.8) z (+) R, A >, z (+) R, A =, b >, z (+) =, A =, b =. 63

18 Proof. Problm(3.)wih n = 3, a = 8, b = µ, c = λ2 /2, r = γ 2hah form(.2). ByLmma3.3,3.4,and3.5hrxilowrandupprfuncion σ and σ 2 ofproblm(.2)aifyinga2.2.bythorm3.6,hriapoiivoluion uof(.2)aifying(2.2),(3.8),and(3.9).l r 2 := max{ σ 2 () : [, ]}andl zbdfindby ( ) := z 2 = u(), (, ]. Thn < < r 2 for [, )and ziaoluionofproblm(.4).furhrmor, w hav 2 3 z () = u (). L γ 3 2.Thn,by(3.6), and λ 2 + u () = + 4γ 2γ 3, γ z () = γ 3/2 ( 3/2 z ()) = 3 2γ( ) + 2 u () = λ2 8γ. Conqunly, du o(3.8) and(3.9), z aifi(3.7) and(3.8). 4. Numrical approach Hr, w fir dcrib how w approxima oluion of wo-poin boundary valu problm for ym of ordinary diffrnial quaion of h form f(, u (), u()) =, [, ], g(u(), u()) =. W aum ha h analyical oluion u i approprialy mooh and amp o olv hi problm numrically uing h collocaion mhod implmnd in our Malabcod bvpui. IianwvrionofhgnralpurpoMalabcod bvp,cf.[4],[5],and[8],whichhaalradybnuccfullyapplidoavariyof problm, for xampl[9],[],[],[9], and[2]. Collocaion i a widly ud and wll-udid andard oluion mhod for wo-poin boundary valu problm, forxampl[23]andhrfrnchrin. Ialoprovdobrobuinh ca of ingular boundary valu problm. Th cod i dignd o olv ym of diffrnial quaion of arbirary ordr. For impliciy of noaion w formula blow a problm who ordr vari bwn 64

19 four and zro, which man ha algbraic conrain which do no involv drivaiv araloadmid.morovr,hproblmcanbgivninafullyimpliciform (4.a) (4.b) F(, u (4) (), u (3) (), u (), u (), u()) =, <, b(u (3) (), u (), u (), u(), u (3) (), u (), u (), u()) =. Thprogramcancopwihfrparamr, λ, λ 2,..., λ k,whichwillbcompud along wih h numrical approximaion for u, (4.2a) (4.2b) F(, u (4) (), u (3) (), u (), u (), u(), λ, λ 2,...,λ k ) =, <, b aug (u (3) (), u (), u (), u(), u (3) (), u (), u (), u()) =, providdhahboundarycondiion b aug includ kaddiionalrquirmnob aifid by u. Th numrical approximaion dfind by collocaion i compud a follow: On a mh := {τ i : i =,...,N}, = τ < τ... < τ N =, w approxima h analyical oluion by a collocaing funcion p() := p i (), [τ i, τ i+ ], i =,...,N, whrwrquir p C q [, ]inhcahahordrofhundrlyingdiffrnialquaioni q.hr p i arpolynomialofmaximaldgr m +qwhichaify h ym(4.a) a h collocaion poin { i,j = τ i + j(τ i+ τ i ), i =,...,N, j =,...,m}, < <... < m <, andhaociadboundarycondiion(4.b). For y R n, y = (y,...,y n ) T,w hav y := max k n y k. L y C[, ], y: [, ] R n.for [, ], and y() := max k n y k() y := max y(). Claical hory, cf.[23], prdic ha h convrgnc ordr for h global rror of hmhodiala O(h m ),whr hihmaximalpiz, h := max(τ i+ τ i ). i 65

20 Morprcily,forhglobalrrorof p, p u = O(h m )holduniformlyin. For crain choic of h collocaion poin h o-calld uprconvrgnc ordr can b obrvd. In h ca of Gauian poin hi man ha h approximaion i xcpionallyprciahmhpoin τ i, max τ i p(τ i) u(τ i ) = O(h 2m ). To mak h compuaion mor fficin, an adapiv mh lcion ragy bad on an a poriori ima for h global rror of h collocaion oluion may b uilizd. W u a claical rror ima bad on mh halving. In hi approach, wcompuhcollocaionoluion p ()onamh.subqunly,wchooa condmh 2 whrinvryinrval [τ i, τ i+ ]of winrwoubinrvalof quallngh. Onhinwmh,wcompuhnumricaloluionbadonh amcollocaionchmoobainhcollocaingfuncion p 2 (). Uinghwo quanii, w dfin (4.3) E() := 2m 2 m(p 2 () p ()) aanrrorimaforhapproximaion p (). Aumhahglobalrror δ() := p () u()ofhcollocaionoluioncanbxprdinrmofh principal rror funcion (), (4.4) δ() = () τ i+ τ i m + O( τ i+ τ i m+ ), [τ i, τ i+ ], whr () i indpndn of. Thn obviouly, h quaniy E() aifi E() δ() = O(h m+ )andhrrorimaiaympoicallycorrc. Ourmhadapaion i bad on h quidiribuion of h global rror of h numrical oluion. Thu,wdfinamoniorfuncion Θ() := m E()/h(),whr h() := τ i+ τ i for [τ i, τ i+ ].Now,hmhlcionragyaimahquidiribuionof τi+ τ i Θ()d onhmhconiingofhpoin τ i obdrmindaccordingly,whrah am im maur ar akn o nur ha h variaion of h piz i rricd and olranc rquirmn ar aifid wih mall compuaional ffor. Dail of hmhlcionalgorihmandaproofofhfachaourragyimpliha h global rror of h numrical oluion i aympoically quidiribud ar givn in[7]. W now dicu h numrical oluion of problm(3.) who analyical propri ar formulad in Thorm 3.6. For h numrical xprimn w pcify h following paramr ing: 66 n = 3, m =, a = λ2, b = µ =, c = 8 2 =, λ =, r = γ 2, 2

21 Thorm3.6. Inordrobabloformulahfirboundarycondiion in(3.b),winroducanwvariabl v() := 3 u ()andranformhcalarboundary valu problm(3.) o an aociad boundary valu problm for h following ym of wo implici diffrnial quaion of fir ordr: (4.5a) (4.5b) (4.5c) v () + 3( 8u 2 () µ u() λ2 2 2γ 4) =, v() 3 u () =, v() =, a u() + 2 a u () = A, wih [, ]. For numrical imulaion, problm(4.5) ha bn rarrangd o (4.6a) (4.6b) (4.6c) v ()u 2 () + 3( 8 µu() λ2 u 2 () 2γ 4) =, 2 v() 3 u () =, v() =, a u() + 2 a v() = A. 4.. Numrical rul In hi cion w illura h horical finding of Thorm 3.6 by appropria numrical xprimn which hav bn carrid ou uing collocaion a 4 Gauian collocaion poin. Th numrical oluion ha bn calculad on a fixd quidianmhwihpoin. Thrahrdngridwrncaryforagood viualizaion of approximaion whn ranforming hm from h andard inrval [, ]backohinfiniinrval [, ). Thrrorimaandhridualwr alo rcordd a indicaor for h accuracy of h numrical oluion. Th rror ima wa compud from(4.3) by coupling oluion rlad o mh wih and 2 mhpoin. Th ridual wa obaind by ubiuing h numrical oluion p ino h ym of diffrnial quaion(4.6a),(4.6b). Fir,w a =, a = and A =. AccordingoThorm3.6himan ha u ( ) R.Thcorrpondingnumricalrulforwodiffrnvaluof γ, bohcovringhca r > 2,canbfoundinFig.and Soluion Error Eima 2 Ridual.996 u() r Figur. Problm(4.6), γ = 2.5: Th numrical approximaion for h oluion componn u(), h rror ima and h ridual. 67

22 u() Soluion.955 Error Eima r Ridual 4 6 Figur 2. Problm(4.6), γ = 2: Th numrical approximaion for h oluion componn u(), h rror ima and h ridual. Inbohhfigur u() > and u (+) =,awaprdicdbythorm3.6. Morovr, boh h rror ima and h ridual ar vry mall hu indicaing anxcllnaccuracyofhapproximaion. InFig.3hrulfor r = 2 ar dpicd. Again, u() > iclarlyviibl. Hrwhav n = 3, c = 2 and hrfor, u (+) = c/n.67whichiinagoodagrmnwihthorm3.6. Soluion Error Eima Ridual u().92 r Figur 3. Problm(4.6), γ =.5: Th numrical approximaion for h oluion componn u(), h rror ima and h ridual. Finally,Fig.4and5howhlaca r < 2. Soluion Error Eima Ridual u().85 r Figur 4. Problm(4.6), γ =.3: Th numrical approximaion for h oluion componn u(), h rror ima and h ridual. 68

23 Soluion Error Eima Ridual u() r 2 4 Figur 5. Problm(4.6), γ =.2: Th numrical approximaion for h oluion componn u(), h rror ima and h ridual. Forbohing, u() and u (+) =. Wnow A = andlavallhohrparamrunchangd. Accordingo Thorm3.6hirulin u ( ) =. Fig.6ohowhcorrponding numricalrunfor γ = 2.5, 2,.5,.3,.2,rpcivly..3 Soluion 5 Error Eima Ridual.25 u().2.5 r Figur6. Problm(4.6), A=, γ=2.5: Thnumricalapproximaionforholuion componn u(), h rror ima and h ridual..25 Soluion 5 Error Eima Ridual u().2.5 r Figur7. Problm(4.6), A =, γ =2: Thnumricalapproximaionforholuion componn u(), h rror ima and h ridual. 69

24 .25 Soluion 5 Error Eima Ridual.2 u().5 r Figur8. Problm(4.6), A=, γ=.5: Thnumricalapproximaionforholuion componn u(), h rror ima and h ridual. Again, u (+) Soluion 5 Error Eima Ridual.5 5 u(). r.5 5 Figur9. Problm(4.6), A=, γ=.3: Thnumricalapproximaionforholuion componn u(), h rror ima and h ridual..2 Soluion 5 Error Eima Ridual u().5. r Figur. Problm(4.6), A=, γ=.2: Thnumricalapproximaionforholuion componn u(), h rror ima and h ridual. ThlaingdicudinThorm3.6i A = and a >. Wu a = 2, all h ohr paramr rmain unchangd, Fig. o 5 for h numrical imulaion corrponding o h abov valu of γ. 7

25 Soluion Error Eima Ridual u() r Figur. Problm(4.6), A=, a >, γ=2.5: Thnumricalapproximaionforh oluion componn u(), h rror ima and h ridual. u() Soluion Error Eima r Ridual Figur2. Problm(4.6), A=, a >, γ=2: Thnumricalapproximaionforh oluion componn u(), h rror ima and h ridual Soluion 5 Error Eima 7 Ridual.28 8 u() r Figur3. Problm(4.6), A=, a >, γ=.5: Thnumricalapproximaionforh oluion componn u(), h rror ima and h ridual. Soluion Error Eima Ridual u().22 r Figur4. Problm(4.6), A=, a >, γ=.3: Thnumricalapproximaionforh oluion componn u(), h rror ima and h ridual. 7

26 Soluion Error Eima Ridual u() r Figur5. Problm(4.6), A=, a >, γ=.2: Thnumricalapproximaionforh oluion componn u(), h rror ima and h ridual. All numrical rul how a good agrmn wih Thorm 3.6. Boh h rror ima 2 andhridualhowhaholuionaccuracyixclln.toviualiz oluion of problm(.4) pod on h mi-infini inrval, w hav o ranform hnumricaloluionobaindon [, ]backohoriginalinrval [, ).Tohi ndwu ( ) := z 2 = u(), [, ), (, ], oobainhvalufor. Wagaindicuhrdiffrning,whrforallxprimn b = a =. For A = and b = 2 a =,Fig.6howhnumricaloluionof(.4)diplayd onahorandalonginrval. Soluion Soluion Soluion Soluion Soluion Soluion Figur6. Problm(.4), A=, b =: Soluion onhinrval[,](abov)and inrval[,](blow)forvaluof γ=2.5, γ=.5and γ=.3(fromlfo righ). 2 OfnwihinhlvlofhmachinaccuracyofMalab. 72

27 Forabrilluraionofholuionbhaviorfor γ = 2.5diplaydonhlong inrvalinfig.6,wdpichioluioninfig.7onhrfurhrinrvalof mallr lngh, alo Fig.. Soluion Soluion Soluion Figur7. Problm(.4), A=, b =, γ=2.5: Soluion onhinrval[,2], [,5],and[,](fromlforigh). For γ 3 2, z (+) Rholdandwknowhaholuionof(4.6)ipoiiv wih >. Alo,for λ =, γ z () = 8 γ. Inprincipl,whould bablovrifyhilariuinghvaluofhnumricaloluionah mhpoin approaching zro and h rlaion (4.7) γ z () = v()/(2 2γ ) =: w(), cf.(4.6b). For γ =.5(and γ =.6)whavplod w()uingivaluah mhpoinandfoundouha w() ( 8 γ ) 5. InFig.8hnumricaloluionof(.4)for A = and b = ihown. Soluion.25 Soluion Soluion Soluion.25 Soluion Soluion Figur8. Problm(.4), A=, b =: Soluion onhinrval[,](abov)and inrval[,](blow)forvaluof γ=2.5, γ=.5and γ=.3(fromlfo righ). 73

28 Hr,axpcd, z (+) = holdforallvaluof γ.alo,. Finally,wconidr A = and b =.Thnumricalrulforhiingand habovfivvaluof γargivninfig.9. Wih z (+) R, γ z () 8 γ for γ =.5,and hnumricaloluionagainvrywllrflc h propri of h analyical oluion. Soluion.3 Soluion.285 Soluion Soluion.3 Soluion.28 Soluion Figur9. Problm(.4), A=, b =: Soluion onhinrval[,](abov)and inrval[,](blow)forvaluof γ=2.5, γ=.5and γ=.3(fromlfo righ). Rfrnc [] R. P. Agarwal, D. O Rgan: An infini inrval problm ariing in circularly ymmric dformaion of halow mmbran cap. In. J. Non-Linar Mch. 39(24), zbl [2] R. P. Agarwal, D. O Rgan: Singular problm ariing in circular mmbran hory. Dyn. Conin. Dicr Impul. Sy., Sr. A, Mah. Anal. (23), zbl [3] R. P. Agarwal, S. Saněk: Nonngaiv oluion of ingular boundary valu problm wih ign changing nonlinarii. Compu. Mah. Appl. 46(23), zbl [4] W. Auzingr, O. Koch, E. Winmüllr: Efficin collocaion chm for ingular boundary valu problm. Numr. Algorihm 3(22), zbl [5] W. Auzingr, G. Knil, O. Koch, E. Winmüllr: A collocaion cod for boundary valu problm in ordinary diffrnial quaion. Numr. Algorihm 33(23), zbl [6] W. Auzingr, O. Koch, E. Winmüllr: Analyi of a nw rror ima for collocaion mhod applid o ingular boundary valu problm. SIAM J. Numr. Anal. 42(25), zbl [7] W. Auzingr, O. Koch, E. Winmüllr: Efficin mh lcion for collocaion mhod applid o ingular BVP. J. Compu. Appl. Mah. 8(25), zbl [8] J. V. Baxly, S. B. Robinon: Nonlinar boundary valu problm for hallow mmbran cap. II. J. Compu. Appl. Mah. 88(998), zbl [9] C. J. Budd, O. Koch, E. Winmüllr: Slf-Similar Blow-Up in Nonlinar PDE. AU- RORA TR Iniu for Analyi and Scinific Compuing, Vinna Univ. 74

29 of Tchnology, Auria, 24, availabl a hp:// publicaion/. [] C. J. Budd, O. Koch, E. Winmüllr: Compuaion of lf-imilar oluion profil for h nonlinar Schrödingr quaion. Compuing 77(26), zbl [] C.J.Budd,O.Koch,E.Winmüllr:FromnonlinarPDEoingularODE.Appl. Numr. Mah. 56(26), zbl [2] C. D Cor, P. Hab: Th lowr and uppr oluion mhod for boundary valu problm. Handbook of Diffrnial Equaion, Ordinary Diffrnial Equaion, Vol. I (A. Caňada, P. Drábk, A. Fonda, d.). Elvir/Norh Holland, Amrdam, 24, pp zbl [3] F. d Hoog, R. Wi: Collocaion mhod for ingular boundary valu problm. SIAM J. Numr. Anal. 5(978), zbl [4] R. W. Dicky: Roaionally ymmric oluion for hallow mmbran cap. Q. Appl. Mah. 47(989), zbl [5] K. N. Johnon: Circularly ymmric dformaion of hallow laic mmbran cap. Q. Appl. Mah. 55(997), zbl [6] R. Kannan, D. O Rgan: Singular and noningular boundary valu problm wih ign changing nonlinarii. J. Inqual. Appl. 5(2), zbl [7] I. T. Kiguradz, B. L. Shkhr: Singular boundary valu problm for cond ordr ordinary diffrnial quaion. Iogi Nauki Tkh., Sr. Sovrm. Probl. Ma. 3(987), 5 2.(In Ruian.) zbl [8] G. Kizhofr: Numrical ramn of implici ingular BVP. PhD. Thi. Iniu for Analyi and Scinific Compuing, Vinna Univ. of Tchnology, Auria. In prparaion. [9] G. Kizhofr, O. Koch, E. Winmüllr: Collocaion mhod for h compuaion of bubbl-yp oluion of a ingular boundary valu problm in hydrodynamic. J. Sci. Compu. To appar. Availabl a hp:// [2] O. Koch: Aympoically corrc rror imaion for collocaion mhod applid o ingular boundary valu problm. Numr. Mah. (25), zbl [2] I. Rachůnková, O. Koch, G. Pulvrr, E. Winmüllr: On a ingular boundary valu problm ariing in h hory of hallow mmbran cap. J. Mah. Anal. Appl. 332 (27), zbl [22] I. Rachůnková, S. Saněk, M. Tvrdý: Singularii and Laplacian in Boundary Valu Problm for Nonlinar Ordinary Diffrnial Equaion. Handbook of Diffrnial Equaion. Ordinary Diffrnial Equaion, Vol. 3(A. Caňada, P. Drábk, A. Fonda, d.). Elvir, Amrdam, 26. [23] U.M.Achr,R.M.M.Mahij,R.D.Rull:NumricalSoluionofBoundaryValu Problm for Ordinary Diffrnial Equaion. Prnic-Hall, Englwood Cliff, 988. zbl [24] E. Winmüllr: Collocaion for ingular boundary valu problm of cond ordr. SIAM J. Numr. Anal. 23(986), zbl Auhor addr: I. Rachůnková, Dparmn of Mahmaical Analyi, Faculy of Scinc, Palacký Univriy, ř. 7. liopadu 2, Olomouc, Czch Rpublic, -mail: rachunko@inf.upol.cz; G. Pulvrr, Iniu for Analyi and Scinific Compuing, Vinna Univriy of Tchnology, Widnr Haupra 6-, A-4 Vinna, Auria, -mail: grnopulvrr@gmail.com; E. B. Winmüllr, Iniu for Analyi and Scinific Compuing, Vinna Univriy of Tchnology, Widnr Haupra 6-, A-4 Vinna, Auria, -mail:.winmullr@uwin.ac.a. 75

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES * Iranian Journal of Scinc & Tchnology, Tranacion A, Vol, No A Prind in h Ilamic Rpublic of Iran, 009 Shiraz Univriy THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES E KASAP, S YUCE AND N KURUOGLU Ondokuz

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS

ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS MOSTAFA FAZLY AND JUNCHENG WEI Abrac. W claify fini Mor indx oluion of h following nonlocal Lan-Emdn quaion u u u for <

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Impulsive Differential Equations. by using the Euler Method

Impulsive Differential Equations. by using the Euler Method Applid Mahmaical Scincs Vol. 4 1 no. 65 19 - Impulsiv Diffrnial Equaions by using h Eulr Mhod Nor Shamsidah B Amir Hamzah 1 Musafa bin Mama J. Kaviumar L Siaw Chong 4 and Noor ani B Ahmad 5 1 5 Dparmn

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Optimal time-consistent investment in the dual risk model with diffusion

Optimal time-consistent investment in the dual risk model with diffusion Opimal im-conin invmn in h dual rik modl wih diffuion LIDONG ZHANG Tianjin Univriy of Scinc and Tchnology Collg of Scinc TEDA, Sr 3, Tianjin CHINA zhanglidong999@.com XIMIN RONG Tianjin Univriy School

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER A THREE COPARTENT ATHEATICAL ODEL OF LIVER V. An N. Ch. Paabhi Ramacharyulu Faculy of ahmaics, R D collgs, Hanamonda, Warangal, India Dparmn of ahmaics, Naional Insiu of Tchnology, Warangal, India E-ail:

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct Qus Journals Journal of Rsarch in Applid Mahmaics Volum ~ Issu (5 pp: -5 ISSN(Onlin : 94-74 ISSN (Prin:94-75 www.usjournals.org Rsarch Papr Asympoic Soluions of Fifh Ordr Criically Dampd Nonlinar Sysms

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Lagrangian for RLC circuits using analogy with the classical mechanics concepts Lagrangian for RLC circuis using analogy wih h classical mchanics concps Albrus Hariwangsa Panuluh and Asan Damanik Dparmn of Physics Educaion, Sanaa Dharma Univrsiy Kampus III USD Paingan, Maguwoharjo,

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Estimation of Mean Time between Failures in Two Unit Parallel Repairable System

Estimation of Mean Time between Failures in Two Unit Parallel Repairable System Inrnaional Journal on Rcn Innovaion rnd in Comuing Communicaion ISSN: -869 Volum: Iu: 6 Eimaion of Man im bwn Failur in wo Uni Paralll Rairabl Sym Sma Sahu V.K. Paha Kamal Mha hih Namdo 4 ian Profor D.

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Circuit Transients time

Circuit Transients time Circui Tranin A Solp 3/29/0, 9/29/04. Inroducion Tranin: A ranin i a raniion from on a o anohr. If h volag and currn in a circui do no chang wih im, w call ha a "ady a". In fac, a long a h volag and currn

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

PWM-Scheme and Current ripple of Switching Power Amplifiers

PWM-Scheme and Current ripple of Switching Power Amplifiers axon oor PWM-Sch and Currn rippl of Swiching Powr Aplifir Abrac In hi work currn rippl caud by wiching powr aplifir i analyd for h convnional PWM (pulwidh odulaion) ch and hr-lvl PWM-ch. Siplifid odl for

More information

The structure of a set of positive solutions to Dirichlet BVPs with time and space singularities

The structure of a set of positive solutions to Dirichlet BVPs with time and space singularities The rucure of a e of poiive oluion o Dirichle BVP wih ime and pace ingulariie Irena Rachůnková a, Alexander Spielauer b, Svaolav Saněk a and Ewa B. Weinmüller b a Deparmen of Mahemaical Analyi, Faculy

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning I) Til: Raional Expcaions and Adapiv Larning II) Conns: Inroducion o Adapiv Larning III) Documnaion: - Basdvan, Olivir. (2003). Larning procss and raional xpcaions: an analysis using a small macroconomic

More information

Heat flow in composite rods an old problem reconsidered

Heat flow in composite rods an old problem reconsidered Ha flow in copoi ro an ol probl rconir. Kranjc a Dparn of Phyic an chnology Faculy of Eucaion Univriy of jubljana Karljva ploca 6 jubljana Slovnia an J. Prnlj Faculy of Civil an Goic Enginring Univriy

More information

PFC Predictive Functional Control

PFC Predictive Functional Control PFC Prdiciv Funcional Conrol Prof. Car d Prada D. of Sm Enginring and Auomaic Conrol Univri of Valladolid, Sain rada@auom.uva. Oulin A iml a oibl Moivaion PFC main ida An inroducor xaml Moivaion Prdiciv

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA MTHEMTICL MODEL FOR NTURL COOLING OF CUP OF TE 1 Mrs.D.Kalpana, 2 Mr.S.Dhvarajan 1 Snior Lcurr, Dparmn of Chmisry, PSB Polychnic Collg, Chnnai, India. 2 ssisan Profssor, Dparmn of Mahmaics, Dr.M.G.R Educaional

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0) CHATER 6 inar Sysms of Diffrnial Equaions 6 Thory of inar DE Sysms! ullclin Skching = y = y y υ -nullclin Equilibrium (unsabl) a (, ) h nullclin y = υ nullclin = h-nullclin (S figur) = + y y = y Equilibrium

More information

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS *

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS * Andri Tokmakoff, MIT Dparmn of Chmisry, 5/19/5 7-11 7.4 QUANTUM MECANICAL TREATMENT OF FLUCTUATIONS * Inroducion and Prviw Now h origin of frquncy flucuaions is inracions of our molcul (or mor approprialy

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

On a singular boundary value problem arising in the theory of shallow membrane caps

On a singular boundary value problem arising in the theory of shallow membrane caps On a singular boundary value problem arising in he heory of shallow membrane caps Irena Rachůnková, Ohmar Koch, Gerno Pulverer, and Ewa Weinmüller Deparmen of Mahemaics, Palacký Universiy, Tomkova 4, 779

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Feedback Control and Synchronization of Chaos for the Coupled Dynamos Dynamical System *

Feedback Control and Synchronization of Chaos for the Coupled Dynamos Dynamical System * ISSN 746-7659 England UK Jornal of Informaion and Comping Scinc Vol. No. 6 pp. 9- Fdbac Conrol and Snchroniaion of Chaos for h Copld Dnamos Dnamical Ssm * Xdi Wang Liin Tian Shmin Jiang Liqin Y Nonlinar

More information

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard.

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard. CSCE 990: Ral-Tim Sym Mixing Ral-Tim and Non-Ral-Tim goddard@c.unl.du hp://www.c.unl.du/~goddard/cour/raltimsym 1 Ral-Tim Sym Mixd Job - 1 Mixing Ral-Tim and Non-Ral-Tim in Prioriy-Drivn Sym (Chapr 7 of

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

INTRODUCTION TO INERTIAL CONFINEMENT FUSION

INTRODUCTION TO INERTIAL CONFINEMENT FUSION INTODUCTION TO INETIAL CONFINEMENT FUSION. Bei Lecure 7 Soluion of he imple dynamic igniion model ecap from previou lecure: imple dynamic model ecap: 1D model dynamic model ρ P() T enhalpy flux ino ho

More information

A Tutorial of The Context Tree Weighting Method: Basic Properties

A Tutorial of The Context Tree Weighting Method: Basic Properties A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM THE LAPLACE TRANSFORM LEARNING GOALS Diniion Th ranorm map a ncion o im ino a ncion o a complx variabl Two imporan inglariy ncion Th ni p and h ni impl Tranorm pair Baic abl wih commonly d ranorm Propri

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Existence, uniqueness and stability results for impulsive stochastic functional differential equations with infinite delay and poisson jumps

Existence, uniqueness and stability results for impulsive stochastic functional differential equations with infinite delay and poisson jumps Malaya Journal of Maaik, Vol. 5, No. 4, 653-659, 7 hp://doi.org/.6637/mjm54/7 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup A.Anguraj * and.banupriya

More information