Existence, uniqueness and stability results for impulsive stochastic functional differential equations with infinite delay and poisson jumps

Size: px
Start display at page:

Download "Existence, uniqueness and stability results for impulsive stochastic functional differential equations with infinite delay and poisson jumps"

Transcription

1 Malaya Journal of Maaik, Vol. 5, No. 4, , 7 hp://doi.org/.6637/mjm54/7 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup A.Anguraj * and.banupriya Abrac In hi papr, w udy h xinc and uniqun of ild oluion of ipuliv ochaic funcional diffrnial quaion wih infini dlay and Poion jup undr non-lipchiz condiion wih Lipchiz condiion bing conidrd a a pcial ca by an of h ucciv approxiaion. Furhr, W udy h coninuou dpndnc of oluion on h iniial valu by an of a corollary of h Bihari inqualiy. yword: Sochaic diffrnial quaion, coninuou dpndnc, Poion proc, ipuliv y. AMS Subjc Claificaion 6H5, 34G, 6J65, 6J75 Dparn of Mahaic, PSG Collg of Ar and Scinc, Coibaor-4, Tail Nadu, India. of Mahaic wih CA, PSG Collg of Ar and Scinc, Coibaor-4, Tail Nadu, India. *Corrponding auhor: ı angurajpg@yahoo.co; ı banupriyapg3@gail.co Aricl Hiory: civd 3 Jun 7; Accpd 9 Spbr 7 Dparn Conn Inroducion Prliinari Exinc and niqun Sabiliy Concluion Acknowldgn frnc Inroducion Sochaic diffrnial quaion hav bn invigad a ahaical odl o dcrib h dynaical bhavior of a ral lif phnona. Th hory of ochaic diffrnial quaion ha aracd any rarchr du o i iporanc in any pracical applicaion. nil now, variou udi hav bn carrid ou on ochaic funcional diffrnial quaion(sfde) involving xinc and abiliy rul. ( rfrnc hr in [, 4 6, ]). cnly, In [], h auhor invigad h xinc and uniqun of oluion for SFDE and alo dicud adapiviy and coninuiy, an quar bounddn, and convrgnc of oluion ap fro diffrn iniial daa. c 7 MJM. On h ohr hand, ipuliv diffrnial quaion hriv o b a proiing ara and gaind uch anion aong h rarchr du o i ponial applicaion in variou fild uch a orbial ranfr of alli, doag upply in pharacokinic c. Ipuliv ffc provid a naural dcripion of y and dcrib h phnona which i ubjc o inananou prurbaion and in urn xprinc abrup chang a crain on of i. A larg nubr of rioriou rul abou h SFDE wih ipuliv ffc hav appard in h xiing liraur[3, 6,, ]. I i worh in nioning ha, any ral world y ar ubjcd o ochaic abrup chang and hrfor i i ncary o inviga h uing ipuliv ochaic funcional diffrnial quaion. Fw work hav bn rpord in h udy of SFDE wih ipuliv ffc. For xapl, Anguraj and Vinodkuar[6] ablihd xinc and abiliy rul uing ucciv approxiaion, Sakhivl and Luo [] udid h xinc and aypoical abiliy of ipuliv parial diffrnial quaion. Morovr, any pracical y (uch a uddn pric variaion (jup) du o ark crah, arhquak, hurrican, pidic and o on) ay undrgo o jup yp ochaic prurbaion. Th apl pah of uch y ar no coninuou. Thrfor, i i or appropria o conidr ochaic proc wih jup o dcrib uch odl.

2 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup 654/659 Th jup odl ar gnrally bad on h Poion rando aur, and ha h apl pah which ar righ coninuou and hav lf lii. Hnc, hr i a ral nd o dicu SFDE wih Poion Jup. cnly, any rarchr ar focuing hir anion oward h hory and applicaion of SFDE wih Poion Jup. For inanc, Pi and Xu [3] provd h xinc of ild oluion for ochaic voluion quaion wih jup and Tu.S al [3] obaind xinc and uniqun rul of adapd oluion for anicipad backward ochaic diffrnial quaion wih Poion jup undr o wak condiion. To b or prci, xinc and abiliy rul on SFDE wih jup proc can b found in [, 4, 5, ] and h rfrnc hr in. In addiion, non Lipchiz condiion i uch wakr bu ufficin condiion wih wid rang of ponial applicaion. Thrfor, I i nial o conidr SFDE wih non Lipchiz cofficin. Thr ar vral aricl xiing in h liraur ha ar dal wih non Lipchiz cofficin. frnc hr in([3, 7 ]). In [6] Yaada inroducd h hod of ucciv approxiaion undr non Lipchiz cofficin for a nonlinar ochaic diffrnial quaion. Taniguchi[4] ablihd gnralizaion of Yaada hor. Barbu[] and Jakubowki al [8] xndd h rul provd by Taniguch[4] o h infini dinional ca by uing aur of non copacn and fixd poin hor. Cao al[] alo udid Taniguchi yp ucciv approxiaion for a fini dinional SDE wih jup. Thr i uch currn inr in udying SDE wih jup undr non Lipchiz condiion ( [, 3 5]). In [3] and [6], h xinc and abiliy rul wr drivd undr non Lipchiz condiion and undr Lipchiz condiion. To h b of our knowldg, hr i only vry fw aricl in h xiing liraur ha rpor h udy of Ipuliv Sochaic funcional diffrnial quaion wih jup. Th ai of hi papr i o clo hi gap and w inviga h xinc and uniqun rul of ild oluion for Ipuliv SFDE wih infini dlay and Poion jup undr nonlipchiz condiion wih Lipchiz condiion bing conidrd a a pcial ca by an of h ucciv approxiaion. Furhror, w giv h coninuou dpndnc of oluion on h iniial daa by an of a corollary of h Bihari inqualiy. Conidr h following Ipuliv ochaic funcional diffrnial quaion wih jup in h for: dx() = [Ax() f (, x )]d σ (, x )dw () (.) h(, x, u)n(d,, T, 6= k, x(k ) = x(k ) x(k ) = Ik (x(k )), = k, k =,... x() = φ () DbB ((, ], X). fro (, ] o X. Th r of h papr i organizd a follow. In Scion, w giv o baic concp and prliinari. Scion 3 focu on h udy of xinc and uniqun of oluion o ipuliv ochaic funcional diffrnial quaion wih Poion proc by ucciv approxiaion hod. In Scion 4, w ablih h abiliy rul hrough coninuou dpndnc on h iniial valu.. Prliinari L X,Y b ral parabl Hilbr pac and L(Y, X) b h pac of boundd linar opraor apping Y ino X. L (Ω, B, P) b a copl probabiliy pac wih an incraing righ coninuou faily {B } of copl ub σ - algbra of B. L {W () : } dno a Y - valud Winr proc dfind on h probabiliy pac (Ω, B, P) wih covarianc opraor Q, ha i EhW (), xiy hw (), yiy = ( )hqx, yi, for all x, y Y, whr Q i a poiiv lf-adjoin, rac cla opraor on Y. In paricular, w dno W (),, a Y - valud Q- Winr proc wih rpc o {B }. In ordr o dfin ochaic ingral wih rpc o h QWinr proc W (), w inroduc h ubpac Y = Q/ (Y ) of Y which, ndowd wih h innr produc < u, v >Y =< Q / v >Y i a Hilbr pac. W au ha hr xi a copl orhonoral y {i }i in Y, a boundd qunc of nonngaiv ral nubr λi uch ha Qi = λi i, i =,,..., and a qunc {βi }i of indpndn Brownian oion uch ha p hw (), i = λi hi, iβi (), Y, n= B = Bw, and whr Bw i h σ - algbra gnrad by {W () : }. L L = L (Y, X) dno h pac of all Hilbr- Schid opraor fro Y ino X. I urn ou o b a parabl Hilbr pac quippd wih h nor kµkl = r((µq/ )(µq/ ) ) for any µ L. Clarly, for any boundd opraor µ L(Y, X) hi nor rduc o kµkl = r(µqµ ). Th pha pac D((, ], X) i aud o b quippd wih h nor kφ k = up <θ < φ (θ ). W alo au DbB ((, ], X) o dno h faily of alo urly boundd, B - aurabl quar ingrabl rando variabl wih valu in X. Furhr, l BT b a Banach pac BT ((, T ], L ), h faily of all BT - adapd proc φ (, w) wih alo urly coninuou in for fixd w Ω wih nor dfind for any φ BT (.) whr A i h infiniial gnraor of an analyic igroup of boundd linar opraor, (S()), dfind on X; f : [, ) D X, σ : [, ) D L(Y, X), h : [, ) X X. Hr D = D((, ], X) dno h faily of all righ picwi coninuou funcion wih lf hand lii φ 654 kφ kbt = ( up E kφ k )/. T L (, E, ν() b a σ -fini aurabl pac. Givn a aionary Poion poin proc (p )>, which i dfind on (Ω, B, P) wih valu in and wih characriic aur ν. W will dno by N(, b h couning aur of p

3 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup 655/659 uch ha N (, A)) = E(N(, A)) = ν(a) for A E. Dfin = N(, ν(, h Poion aringal aur N(, gnrad by p. Th ipuliv on j aify < <..., li j k =, x(k ) = x(k ) x(k ), whr x(k ) rprn h jup in h a x a i k wih Ik drining h iz of h jup and x(k ) and x(k ) ar rpcivly h righ and h lf lii of x() a k. L A : D(A) X b h infiniial gnraor of an analyic igroup,(s()), of boundd linar opraor on X. For dail, on can rfr[7] and []. I i wll known ha hr xi M and λ uch ha ks()k Mλ for vry. If (S()) i a uniforly boundd and analyic igroup uch ha ρ(a), whr ρ(a) i h rolvn of A, hn i i poibl o dfin h fracional powr ( A)α for < α, a a clod linar opraor on i doain D( A)α. Furhror, h ubpac D( A)α i dn in X, and khkα = k( A)α hk dfin a nor in D( A)α. If Xα rprn h pac D( A)α ndowd wih h nor k.kα, c(p, T ) > uch ha φ p E up WA T d () T kφ ()k p d. p Morovr, if E kφ ()k d <, hn hr xi a conφ inuou vrion of h proc {WA : }. If (S()) i a conracion igroup, hn h abov rul i ru for p. Dfiniion.5. A igroup S(), i aid o b uniforly boundd if ks()k M for all, whr M i o conan. Dfiniion.6. A ochaic proc {x() BT, (, T ]}, ( < T < ) i calld a ild oluion of h y (.) if, (i) x() X i aurabl and B adapd, (ii) x() ha ca dla g pah alo urly, (iii) La.. ( Bihari inqualiy[8]) L T > and u, u(), v() b a coninuou funcion on [, T ]. L : b a concav coninuou and non dcraing funcion uch ha (r) > for r >. If u() u v()(u())d, for all T, hn u() G G(u )) v()d for all uch [, T ] ha, G(u ) v()d Do(G ), d whr G(r) = r (), r and G i h invr funcion of G. In paricular, if, orovr,u = and u() = for all T. c(p; T ) up ks()k p E x() = S()φ () S( )σ (, x )dw S( ) f (, x )d S( )h(, x, u)n(d, S( k )Ik (x(k )) if [, T ], <k < x() = φ (), =, hn (, ]. (.) 3. Exinc and niqun In ordr o obain h abiliy of oluion, w giv h xndd Bihari inqualiy. La.. ([9])L h aupion of La (.) hold. if u() u T v()(u(())d, for all T, hn u() G G(u ) T v()d for all [, T ] ha In hi cion, w dicu h xinc and uniqun of ild oluion of h y (.). In ordr o prov h rul, w nd h following aupion: (A ) : A i h infiniial gnraor of a rongly coninuou igroup S(), who doain D(A) i dn in H. (A ) : Th funcion f (.), σ (.) and h(.) aify h following condiion G(u ) T v()d Do(G ), r d whr G(r) = (), r and G i h invr funcion of G. (a) For vry [, T ] and x, y H, uch ha k f (, x) f (, y)k kσ (, x) σ (, y)k (kx yk ). Corollary.3. ([9]) L h aupion of La (.) hold and v() for [, T ]. If for all ε >, hr xi d uch ha for u ε, T v()d uε () hold. Thn for vry [, T ], h ia u() ε hold. (b) (i) La.4. ([9]) Suppo ha φ (), i a L -valud φ prdicabl proc and l WA = S( )φ ()dw (), [, T ]. Thn, for any arbirary p > hr xi a conan whr (.) i concav non-dcraing funcion fro du o, () =, (u) >, for u > and (u) =. 655 kh(, x, u) h(, y, u)k ν(d / 4 kh(, x, u) h(, y, u)k ν(d kx yk, / (ii) kh(, x, u)k4 ν(d kxk d.

4 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup 656/659 (A3 ) For all [, T ], hr xi a conan κ > uch ha k f (, )k kσ (, )k kh(,, u)k kik ()k = κ. Thn E kxn k (A4 ) Th funcion Ik C(X, X) and hr xi o conan hk uch ha kik (x) Ik (y)k hk kx yk, for all x, y X and k =,... 5M E kφ ()k T M E M E 5M E x () = φ () for (, ], [ xn xn x () = S()φ () for [, T ]. (3.) κ ]d κ ]d d M hk [E xn κ ] ( xn )d M hk (E xn and, for n=,..., k= Q 5M (T 5)E [ xn κ ]d M E L u now inroduc h ucciv approxiaion o Eqn.(.) a follow [ xn ) k= xn () = φ () for (, ], xn () = S()φ () S( ) f (, xn )d S( )σ (, xn )dw whr Q = 5M (E kφ ()k (T (T ) k= hk )κ ). Givn ha (.) i concav and () =, w can find a pair of poiiv conan a and b uch ha (u) a bu, for all u. S( )h(, xn, u)n(d, S( k )Ik (xn (k )), w obain, for [, (3.) T] E kxn k <k < Q 5M (T 5)bE ), n M hk (E xn wih an arbirary non-ngaiv iniial approxiaion x BT. )d ( xn =,(3.3),... k= Thor 3.. Suppo ha (A ) (A4 ) hold. Thn, h y (.) ha a uniqu ild oluion in BT providd ha whr Q = Q 5M (T 5)Ta. Sinc M hk <. 8 k= E x M E kφ ()k = Q3 <. (3.4) Thu, whr M uch ha ks()k M. E kxn k Q4 <, for all n =,,,.. and [, T ].(3.5) Proof. L x BT b a fixd iniial approxiaion o Eqn.(3.). I i clar ha by (A ) (A4 ), ks()k M for o M Thi prov h bounddn of {xn (), n N}. and all [, T ]. Thn for n, w hav, L u nx how ha {xn ()} i Cauchy in BT. For hi, for n,, w hav E kxn ()k 5M E kφ ()k T M E M E M E [ f (, xn ) f (, ) [ a(, xn ) a(, ) xn () x () k= 8M hk (E xn ka(, )k ]d n () x () up E kx r n x kr Q6 up E kxn x k, ν(d kik ()k ] ). Thu k= up E x M E [ Ik (xn (k )) Ik () ( kxn () x ()k )d 4 4M (T 5)E k f (, )k ]d [ h(, xn, u) h(,, u) kh(,, u)k ]ν(d 5M E h(, xn, u) whr Q5 = 4M (T 5) and Q6 = 8M k= hk. Ingraing boh id of Eqn.(3.6) and applying Jnon 656 d (3.6)

5 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup 657/659 alo clai ha for [, T ] inqualiy giv ha up E x n l Q6 r l x kr E dld E up E kxn x kl dld S( ) σ (, xn ) σ (, x ) dw up E kxn x kr r l dld and E S( k ) Ik (xn (k )) Ik (x(k )) x() = S()φ ()! up E kxn x kr dl d r l up E kxn x kl dld S( ) f (, x )d S( )σ (, x )dw S( )h(, x, u)n(d, S( k )Ik (x(k )) <k < Thi crainly donra by h Dfiniion (.) ha x() i a ild oluion o Eqn. (.) on h inrval [, T ]. Nx, w prov h uniqun of h oluion of Eqn.(.). L x, x BT b wo oluion of Eqn.(.) on o inrval (, T ]. Thn, for (, ], w hav Thn,. Hnc, aking lii on boh id of Eqn.(3.), l Ψn, (), <k < up E kxn x kl dld, S( ) h(, xn,u ) h(, x, u) N(d, l,! Q6 n S( ) f (, xn ) f (, x ) d l Q6 up E kx E! x l d (Ψn, ()) d Q6 Ψn, (),(3.7) E kx x k Q6 E kx x k Q5 whr (E kx x k )d. Thu n up l E kx x kl d E kx x k Ψn, () =. Q5 Q6 (E kx x k )d. Thu, Bihari inqualiy yild ha Fro Eqn (3.5), i i ay o ha up E kx x k =, T. [,T ] up Ψn, () <. Thu x () = x (), for all T. Thrfor, for all < T, x () = x (). Thi prov our dird rul. n, So ling Ψ() = li upn, Ψn, () and aking ino accoun h Faou la, w yild ha b Ψ() = Q b= (Ψ()) d, whr Q 4. Sabiliy In hi cion, w udy h abiliy of h y (.) hrough h coninuou dpndnc of oluion on iniial condiion. Q5. Q6 Dfiniion 4.. A ild oluion x() of h y (.) wih iniial valu φ i aid o b abl in h an quar if for all ε >, hr xi δ > uch ha E kx() x ()k ε whn E φ φ < δ, for all [, T ], whr x i anohr ild oluion of h y (.) wih iniial valu φ. Now, applying h La(.) idialy rval Ψ() = for any [, T ]. Thi furhr an{xn (), n N} i a Cauchy qunc in BT. So hr i an x BT uch ha T li up E kxn xk d =. n E kxk In addiion, by Eqn(3.5), i i ay o follow ha Q4. Thu w clai ha x() i a ild oluion o Eqn.(.). On h ohr hand, by aupion (A ) and ling n, w can Thor 4.. L x() and y() b ild oluion of h y (.) wih iniial valu φ and φ rpcivly. If h aupion (A ) (A4 ) ar aifid hn h ild oluion of h y (.) i abl in h quadraic an. 657

6 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup 658/659 ark 4.4. If h y (4.) aifi h ark 4., hn by Thor 4., h ild oluion of h y (4.) i abl in h an quar. Proof. By h aupion, x() and y() ar wo ild oluion of h y (.) wih iniial valu φ and φ rpcivly, hn for T x() y() = S() [φ () φ ()] In hi papr, w hav udid h xinc and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and Poion jup undr non-lipchiz condiion wih Lipchiz condiion bing conidrd a a pcial ca by an of h ucciv approxiaion. Manwhil, W ablih h coninuou dpndnc of oluion on h iniial valu by an of a corollary of h Bihari inqualiy. S( ) [σ (, x ) σ (, y )] dw () 5. Concluion S( ) [ f (, x ) f (, y )] d S( )h(, x, u) h(, y, u)n(d, S( k ) [Ik (x(k )) Ik (y(k ))]. <k < Acknowldgn So, iaing a bfor, w g E kx yk 5M E kφ φ k 5M (T ) Thu, Th auhor would lik o xpr incr graiud o h rviwr for hi/hr valuabl uggion. Th cond auhor (E kx yk )d 5M hk E kx yk wih. o acknowldg h GC, India k= (F MP-58/5(SEO/GC)) for upporing h prn work. E kx yk 5M E kφ φ k 5M k= hk 5M (T ) 5M k= hk frnc [] (E kx yk )d. [] 5M (T ) L (u) = 5M h (u), whr i a concav incrak= k ing funcion fro o uch ha () =, (u) > for du u > and (u) =. So, (u) i obviouly, a concav funcion fro o uch ha () =, (u) (u), for u and du(u) =. Now for any ε >, ε = ε, [3] w hav li ε du(u) =. So, hr i a poiiv conan [4] δ < ε, uch ha δε du(u) T. L u = 5M 5M k= hk E kφ φ k [5] u() = E kx yk, v() =, whn u δ ε. Fro corollary.3 w hav ε u du(u) ε δ du(u) T = T v()d. So, for any [, T ], h ia u() ε hold. Thi copl h proof. [6] ark 4.3. If = in h y(.), hn h y bhav a ochaic parial funcional diffrnial quaion wih infini dlay of h for [7] dx() = [Ax() f (, x )]d σ (, x )dw () (4.) [8] h(, x, u)n(d,, T, 6= k, x() = φ () DbB ((, ], X). [9] (4.) By applying Thor 3. undr h hypoh (A ) (A3 ), h y (4.) guaran h xinc and uniqun of h ild oluion. 658 [] B.Boufoui and S.Hajji, Succiv approxiaion of nural funcional ochaic diffrnial quaion wih jup J. Sai. Probab. L.8() Bo Du, Succiv approxiaion of nural funcional ochaic diffrnial quaion wih variabl dlay, Appl.Mah.Copu. 68(5) A.Vinodkuar, Exinc, niqun and abiliy rul of ipuliv ochaic ilinar funcional diffrnial quaion wih infini dlay, J. Nonlinar Sci. Appl. 4(), no. 4, T.Taniguchi, Succiv approxiaion o oluion of ochaic diffrnial quaion, J. Diffr. Equ. 96(99)5-69. V.B.olanovkii and A.Myhki, 99, Applid hory of funcional diffrnial quaion, luwr Acadic publihr. A.Anguraj and A.Vinodkuar, Exinc,niqun and abiliy rul of ipuliv ochaic ilinar nural funcional diffrnial quaion wih infini dlay, Elcron.J.Qual.Thory Diffr.Eqn.67(9)-3. A.Goldin and Jro, Sigroup of linar opraor and applicaion.in: Oxford Mahaical Monograph. Th Clarndon Pr, Oxford nivriy pr, Nw York (985). I.Bihari, A gnralizaion of a la of Blan and i applicaion o uniqun probl of diffrnial quaion, Aca.Mah.Acad.Sci.Hungar.(956) 7,7-94. Da.Prao and J.abczyk, Sochaic quaion in infini dinion, Cabridg nivriy pr, 4..Sakhivl and J.Luo, Aypoic abiliy of nonlinar ipuliv ochaic parial diffrnial quaion wih infin dlay,j.mah.anal.appl. 356(9)-6.

7 Exinc, uniqun and abiliy rul for ipuliv ochaic funcional diffrnial quaion wih infini dlay and poion jup 659/659 [] [] [3] [4] [5] [6] [7] [8] [9] [] [] [] [3] A.Pazy, Sigroup of Linar Opraor and Applicaion o Parial Diffrnial Equaion In: Applid Mahaical Scinc.(983) vol. 44. Springr-Vrlag, Nw York. Y.ao,Q.hu and W.Qi Exponnial abiliy and inabiliy of ipuliv ochaic funcional diffrnial quaion wih Markovian wiching, Appl.Mah.Copu.7(5) B.Pi and Y.Xu Mild oluion of local non Lipchiz ochaic voluion quaion wih jup, Appl.Mah.Copu.5(6) J.Cui and L.Yan, Succiv approxiaion of nural ochaic voluion quaion wih infini dlay and Poion jup, Appl.Mah.Copu. 8 () C.Yu, Nural ochaic funcional diffrnial quaion wih infini dlay and Poion jup in h Cg pac, Appl.Mah.Copu. 37 (4) T.Yaada, On h ucciv approxiaion of oluion of ochaic diffrnial quaion, J. Mah. yoo niv. (98):5-55. A.Jakubowki, M.anki, and P.aynaud d Fi, Exinc of wak oluion o ochaic voluion incluion, Soch. Anal. Appl. (5) 3(4): A.E.odkina, On xinc and uniqun of oluion of ochaic diffrnial quaion wih hrdiy, Sochaic Monograph (984):87-. Y.n and N.Xia, Exinc, uniqun and abiliy of h oluion o nural ochaic funcional diffrnial quaion wih infini dlay, Appl. Mah. Copu. (9), D.Barbu, Local and global xinc for ild oluion of ochaic diffrnial quaion, Porugal. Mah.(998) 55(4):4-44. G.Cao,. H and X. hang, Succiv approxiaion of infini dinional SDE wih jup, Soch. Dyna. Vol. 5, No. 4 (5) F.Wu, G.Yin and H.Mi, Sochaic funcional diffrnial quaion wih infini dlay: Exinc and uniqun of oluion, oluion ap, Markov propri, and rgodiciy, J. Diffr. qu. (6), hp://dx.doi.org/.6/j.jd.6..6 (Aricl in pr). Tu. S, Hao.W and Chn.J, Th adapd oluion and copariion hor for anicipad backward ochaic diffrnial quaion wih Poion jup undr h wak condiion, Sa. Probabil. L. (7), hp://dx.doi.org/.6/j.pl.7.. (Aricl in pr).????????? ISSN(P): Malaya Journal of Maaik ISSN(O):????????? 659

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

PWM-Scheme and Current ripple of Switching Power Amplifiers

PWM-Scheme and Current ripple of Switching Power Amplifiers axon oor PWM-Sch and Currn rippl of Swiching Powr Aplifir Abrac In hi work currn rippl caud by wiching powr aplifir i analyd for h convnional PWM (pulwidh odulaion) ch and hr-lvl PWM-ch. Siplifid odl for

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Part 3 System Identification

Part 3 System Identification 2.6 Sy Idnificaion, Eiaion, and Larning Lcur o o. 5 Apri 2, 26 Par 3 Sy Idnificaion Prpci of Sy Idnificaion Tory u Tru Proc S y Exprin Dign Daa S Z { u, y } Conincy Mod S arg inv θ θ ˆ M θ ~ θ? Ky Quion:

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS

ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS MOSTAFA FAZLY AND JUNCHENG WEI Abrac. W claify fini Mor indx oluion of h following nonlocal Lan-Emdn quaion u u u for <

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Heat flow in composite rods an old problem reconsidered

Heat flow in composite rods an old problem reconsidered Ha flow in copoi ro an ol probl rconir. Kranjc a Dparn of Phyic an chnology Faculy of Eucaion Univriy of jubljana Karljva ploca 6 jubljana Slovnia an J. Prnlj Faculy of Civil an Goic Enginring Univriy

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning I) Til: Raional Expcaions and Adapiv Larning II) Conns: Inroducion o Adapiv Larning III) Documnaion: - Basdvan, Olivir. (2003). Larning procss and raional xpcaions: an analysis using a small macroconomic

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Impulsive Differential Equations. by using the Euler Method

Impulsive Differential Equations. by using the Euler Method Applid Mahmaical Scincs Vol. 4 1 no. 65 19 - Impulsiv Diffrnial Equaions by using h Eulr Mhod Nor Shamsidah B Amir Hamzah 1 Musafa bin Mama J. Kaviumar L Siaw Chong 4 and Noor ani B Ahmad 5 1 5 Dparmn

More information

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Lagrangian for RLC circuits using analogy with the classical mechanics concepts Lagrangian for RLC circuis using analogy wih h classical mchanics concps Albrus Hariwangsa Panuluh and Asan Damanik Dparmn of Physics Educaion, Sanaa Dharma Univrsiy Kampus III USD Paingan, Maguwoharjo,

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Optimal time-consistent investment in the dual risk model with diffusion

Optimal time-consistent investment in the dual risk model with diffusion Opimal im-conin invmn in h dual rik modl wih diffuion LIDONG ZHANG Tianjin Univriy of Scinc and Tchnology Collg of Scinc TEDA, Sr 3, Tianjin CHINA zhanglidong999@.com XIMIN RONG Tianjin Univriy School

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović FCT UNIVESITTIS Sri: chanic uomaic Conrol and oboic Vol. N o 7 5. 87-9 PEIODICL SOLUTION OF SOE DIFFEENTIL EQUTIONS UDC 57.95= Julka Knžvić-iljanović Facul o ahmaic Univri o lgrad E-mail: knzvic@oincar.ma.bg.ac.u

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

The Global and Pullback Attractors for a Strongly Damped Wave Equation with Delays *

The Global and Pullback Attractors for a Strongly Damped Wave Equation with Delays * Inrnaional Journal of Modrn Nonlinar Tory Applicaion 9-8 Publisd Onlin cbr (p://wwwscirporg/journal/ijna) p://dxdoiorg/6/ijna9 T Global Pullback Aracors for a Srongly apd Wav Equaion wi lays * Guoguang

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES * Iranian Journal of Scinc & Tchnology, Tranacion A, Vol, No A Prind in h Ilamic Rpublic of Iran, 009 Shiraz Univriy THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES E KASAP, S YUCE AND N KURUOGLU Ondokuz

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY*

A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY* 55(2) APPLICATIONS OF MATHEMATICS No., 47 75 A UNIFIED APPROACH TO SINGULAR PROBLEMS ARISING IN THE MEMBRANE THEORY* Irna Rachůnková, Olomouc, Grno Pulvrr, Win, Ewa B. Winmüllr, Win (Rcivd January 4, 28,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind World Applid Scincs Journal 9 (9): 8-, ISSN 88-495 IDOSI Publications, Lgndr Wavlts for Systs of Frdhol Intgral Equations of th Scond Kind a,b tb (t)= a, a,b a R, a. J. Biazar and H. Ebrahii Dpartnt of

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Estimation of Mean Time between Failures in Two Unit Parallel Repairable System

Estimation of Mean Time between Failures in Two Unit Parallel Repairable System Inrnaional Journal on Rcn Innovaion rnd in Comuing Communicaion ISSN: -869 Volum: Iu: 6 Eimaion of Man im bwn Failur in wo Uni Paralll Rairabl Sym Sma Sahu V.K. Paha Kamal Mha hih Namdo 4 ian Profor D.

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Circuit Transients time

Circuit Transients time Circui Tranin A Solp 3/29/0, 9/29/04. Inroducion Tranin: A ranin i a raniion from on a o anohr. If h volag and currn in a circui do no chang wih im, w call ha a "ady a". In fac, a long a h volag and currn

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

FOURIER TRANSFORM AND ITS APPLICATION

FOURIER TRANSFORM AND ITS APPLICATION FACULTY OF NATURAL SCIENCES CONSTANTINE THE PHILOSOPHER UNIVERSITY IN NITRA ACTA MATHEMATICA 7 FOURIER TRANSFORM AN ITS APPLICATION ARINA STACHOVÁ ABSTRACT By ans of Fourir sris can b dscribd various xapls

More information

Nonlocal Symmetries and Exact Solutions for PIB Equation

Nonlocal Symmetries and Exact Solutions for PIB Equation Commun. Thor. Phys. 58 01 331 337 Vol. 58 No. 3 Spmbr 15 01 Nonlocal Symmris and Exac Soluions for PIB Equaion XIN Xiang-Png 1 MIAO Qian 1 and CHEN Yong í 1 1 Shanghai Ky Laboraory of Trusworhy Compuing

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT Elc. Comm. in Proa. 6 (), 78 79 ELECTRONIC COMMUNICATIONS in PROBABILITY SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT MARTIN HUTZENTHALER ETH Zürich, Dparmn of Mahmaics, Rämisrass, 89 Zürich.

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER A THREE COPARTENT ATHEATICAL ODEL OF LIVER V. An N. Ch. Paabhi Ramacharyulu Faculy of ahmaics, R D collgs, Hanamonda, Warangal, India Dparmn of ahmaics, Naional Insiu of Tchnology, Warangal, India E-ail:

More information

PRELIMINARY DEFINITIONS AND RELATIONS

PRELIMINARY DEFINITIONS AND RELATIONS Prliinary Dfiniions and Rlaions 1 CHAPTER 2 PRELIMINARY DEFINITIONS AND RELATIONS يتكون حجم معيه مه التربة مه حبيبات صلببة هولواو هملاو اميلاي جوفيللة أه ميللاي (.للصدر همقلل ) ال للو فللي التربللة وللو

More information

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0) CHATER 6 inar Sysms of Diffrnial Equaions 6 Thory of inar DE Sysms! ullclin Skching = y = y y υ -nullclin Equilibrium (unsabl) a (, ) h nullclin y = υ nullclin = h-nullclin (S figur) = + y y = y Equilibrium

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA MTHEMTICL MODEL FOR NTURL COOLING OF CUP OF TE 1 Mrs.D.Kalpana, 2 Mr.S.Dhvarajan 1 Snior Lcurr, Dparmn of Chmisry, PSB Polychnic Collg, Chnnai, India. 2 ssisan Profssor, Dparmn of Mahmaics, Dr.M.G.R Educaional

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C3 Eponnials and logarihms - Eponnial quaions. Rabbis wr inroducd ono an island. Th numbr of rabbis, P, yars afr hy wr inroducd is modlld by h quaion P = 3 0, 0 (a) Wri down h numbr of rabbis ha wr inroducd

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Ratio-Product Type Exponential Estimator For Estimating Finite Population Mean Using Information On Auxiliary Attribute

Ratio-Product Type Exponential Estimator For Estimating Finite Population Mean Using Information On Auxiliary Attribute Raio-Produc T Exonnial Esimaor For Esimaing Fini Poulaion Man Using Informaion On Auxiliar Aribu Rajsh Singh, Pankaj hauhan, and Nirmala Sawan, School of Saisics, DAVV, Indor (M.P., India (rsinghsa@ahoo.com

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information