Physics 231 Lecture 32 Problem and review

Size: px
Start display at page:

Download "Physics 231 Lecture 32 Problem and review"

Transcription

1 Physics 231 Lecture 32 Problem and review

2 Checking Understanding: Pressure and Forces The two identical cylinders contain samples of gas. Each cylinder has a lightweight piston on top that is free to move, so the pressure inside each cylinder is equal to atmospheric pressure. One cylinder contains hydrogen, the other nitrogen. The mass of gas in each cylinder is the same. The temperature of the hydrogen gas is A. greater than the temperature of the nitrogen. B. equal to the temperature of the nitrogen. C. less than the temperature of the nitrogen. PV = nrt PV T = nr m = n H i 2g = n N i 28g n H = n i 28g N 2g PV n H R PV n N R n H = 14n N T H = = T N T H /T N =? V H =V N =V P H =P N =P m H =m N =m 1 n H 1 n N = n N n H = 1 14 Slide 12-26

3 Example of equilibration and energy conservation At a fabrication plant, a hot metal forging has a mass of 75 kg and a specific heat capacity of 430 J/(kg C). To harden it, the forging is quenched by immersion in 710 kg of oil that has a temperature of 32 C and a specific heat capacity of 645 cal/(kg C). The final temperature of the oil and forging at thermal equilibrium is 47 C. Assuming that heat flows only between the forging and the oil, determine the initial temperature of the metal forging. Energy conservation: Q c m T T Δ Q = c m T T Δ Q +Δ Q = 0 metal oil Δ = ( ) oil oil oil ( f oil ) 4.19J cal metal metal metal f metal o o coil = 645cal/(kg C) = 2700kJ/(kg C) ( ) = ( ) c m T T c m T T T metal metal f metal oil oil f oil f T = metal T = T + metal f ( ) c m T T oil oil f oil c metal m metal ( ) c m T T oil oil f oil c metal m Δ Q metal metal = ΔQ oil m metal m oil c metal 75 kg 710 kg ( )( ) o C) ( 75kg) 430J/kg/ o C o o o 2700J / (kg C) 710kg C o 47 C 939 C c oil 645cal/kg/ o C = + = 430J / (kg T f T oil,0 T metal,0? 47 o C 32 o C

4 example Two moles of the monatomic gas helium (C V =3/2R) are initially at a temperature of 300K. The gas is cooled at constant volume. How much heat must be removed to decrease the temperature (in Kelvin) by a factor of two? a) 1.7 kj b) 2.7 kj c) 3.7 kj d) 4.7 kj e) 5.7 kj 3 Eth,i 2 E = E + Q th,f E 3 nrt 2 = nrt i th,f f th,i Q E E = th,f th,i = nrtf nrt i 3 Q nr Tf Ti 2 = = 3 2moles 8.31J / mole K 150K 2 = ( ) ( ) ( ) ( ) Q = 3.7kJ

5 m f X X RMS Speed revisited (3 gases) Gas X = 3 n N X X m Gas Y Temperatures, volumes, masses and number of moles all equal Differing degrees of freedom By the ideal gas law, PV=nRT or PV=Nk B T f Y Y = 5 n N Y Y m f Z Z = Gas Z 6 n N Y Z P X =P Y =P Z Same RMS speeds too, since Different Internal Energies: U=f/2 nrt v RMS 3kT B 3RT = = m M f Δ U = nrδ T = Q 2 Molar specific heat at constant volume C V = Q nδt ΔU = = nδt f R 2 Caution: If gas is heated at constant pressure, not constant volume, the heat capacity C p is larger, reflecting the work done during expansion.

6 Checking Understanding Rank the following in terms of the number of moles, from greatest number of moles to least: g of He (A = 4) g of Ne (A = 20) g of O 2 (atomic oxygen, O, has A = 16) g of Ar (A = 40) g of Pb (A = 207) A. 5 > 4 > 3 > 2 > 1 B. 5 > 4 > 2 > 3 > 1 C. 3 > 1 > 4 > 2 > 5 D. 1 > 4 > 3 > 2 > 5 n He = 20 / 4 = 5 n Ne = 60 / 20 = 3 N O2 = 120 / 32 = 3.75 N Ar = 160 / 40 = 4 N Pb = 207 / 208 =.995 Slide 12-14

7 Conceptual question The parameters that describe a gas are n: the number of moles, P: the pressure, T: the temperature, and V: the volume. An ideal gas is contained within a cylinder sealed at the top with an immovable plug. When heat flows into the gas, what are all the parameters that change? a) n, V b) n, T c) P, T d) T e) P, T, V n is constant, V is constant U increases by Q U=f/2nRT so T changes P=nRT/V so P changes

8 56 v rms,ne = 3RT M Ne v rms,he = 3RT M He 3RT / / / v rms,he v rms,ne = M He 3RT / / / = 1/ M He 1/ M Ne M He M Ne M He M Ne M Ne = M Ne M He = 20 4 = 2.2

9 mv 2 rms,0 = 3 2 k B T 0 If all velocities increase by 4, the rms velocity increases by mv 2 rms,f = 1 2 m(4v rms,0 )2 = mv 2 rms,0 = k B T 0 T f = 16T 0

10 1 2 mv 2 GmM 0 r 0 = 1 2 mv 2 GmM f 1 r f 2 v 2 = GM f r f GM r 0 = GM R GM 2.1R v f 2 = 2 2.1RGM RGM 2.1R 2 v f = 2.2GM 2.1R = 8.09km / s

11 4. T E 2 = 4π 2 3 M sun r E 2 T biggie = 4π 2 3 r M biggie sun 2 T biggie = 2 T E 4π 2 3 r M biggie sun 4π 2 3 r M E sun T 2 biggie 2 T E T biggie T E = r 3 biggie 3 r E = r 3/2 biggie = 2.86E11 3/2 r E 1.50E = 2.63

12 Buoyancy considerations Are there other forces active besides gravity and the buoyant force? If there are no other forces, Is the object s density less than that of the liquid? If so, it floats. If not, it sinks. If there are other forces, Do other forces pull the object partly out of the liquid decreasing the displaced volume? Do other forces push the object into the liquid increasing the displaced volume? If the object is submerged, the displaced volume is the volume of the object. If the object is not submerged, the displaced volume is determined by assuming that sum of the forces, including the buoyant force, equals zero to get the buoyant force and use that to get the displaced volume. If the displaced volume increases, the liquid level rises If the displaced volume decreases, the liquid level falls.

13 49 F B mg F down = 0 F down = 5500N F B = ρ w V elsie g mg = mg = 688.7kg g = 6749N F B = N = 1.221x10 4 N V elsie = F B ρ w g ρ elsie = m = ρ gm w V elsie F B = 1000kg / m3 6749N 1.221x10 4 N = 553kg / m 3

14 Conceptual question A 200-ton ship enters the lock of a canal. The fit between the sides of the lock and the ship is tight so that the weight of the water left in the lock after it closes is much less than 200 tons. Can the ship still float if the weight of the quantity of water left in the lock is much less than the ship s weight? a) Yes, as long as the water gets up to the ship s waterline. b) No, the ship touches bottom because it weighs more than the water in the lock. If the water lever reaches the waterline, the weight of displaced water is the weight of the water that would be need to occupy the volume that the boat displaces below the water line. When that occurs the buoyant force equals the weight of the boat, and the boat floats.

15 Conceptual question A lead weight is fastened on top of a large solid piece of Styrofoam that floats in a container of water. Because of the weight of the lead, the water line is flush with the top surface of the Styrofoam. If the piece of Styrofoam is turned upside down so that the weight is now suspended underneath it, a) the arrangement sinks. b) the water line is below the top surface of the Styrofoam. c) the water line is still flush with the top surface of the Styrofoam. Same displaced water in both figures!

16 Conceptual quiz A lead weight is fastened to a large solid piece of Styrofoam that floats in a container of water. Because of the weight of the lead, the water line is flush with the top surface of the Styrofoam. If the piece of Styrofoam is turned upside down, so that the weight is now suspended underneath it, the water level in the container a) rises. b) drops. c) remains the same. If an object floats: F B =ρ w gv displaced =weight of object. The weight doesn t change. V displaced doesn t change. The level doesn t change.

17 10.

18 11. P bottom = P top + ρgh ρgh = 1025*9.8*11000Pa = 1.105x10 8 Pa F = A P bottom = π (.15m) x10 8 Pa = 7.8e6N

19 47. An organ pipe, open at one end, produces the middle A note (440 Hz) when sustaining a standing wave at its third harmonic. What is the length of the pipe? 1) 0.22 m 6) 1.07 m 2) 0.37 m 7) 1.62 m 3) 0.58 m 8) 2.56 m 4) 0.78 m 9) 3.19 m 5) 0.97 m 10) 5.22 m L = 3 4 λ = 3 4 v f = m / s 440Hz =.58m

20

21

22 ƒ' = ƒ v + v o v v s 200Hz = 182Hz 340m / s + v 0 340m / s 340m / s + v o = *340m / s v o = *340m / s 340m / s = 33.6m / s

23 45. A wave has a frequency of 60 Hz and a speed of 120 m/s. What are its period and wavelength? 1) 60 s, 2.0 m 6) s, 0.50 m 2) 60 s, 0.50 m 7) s, 2.0 m 3) 2.0 s, 5.0 m 8) 7,200 s, m 4) 2.0 s, 6.0 m 9) 7,200 s, 60 m 5) s, 16 m 10) s, 6.0 m λ = 120m / s = 2m 60Hz 1 T = 60Hz = 16.6ms

24 44. If two people talk simultaneously and each creates an intensity level of 45 db at a certain point, what is the total intensity level at this point? 1) 46 db 6) 65 db 2) 48 db 7) 70 db 3) 51 db 8) 80 db 4) 55 db 9) 90 db 5) 60 db 10) 100 db β 1 = 10log 10 β 2 = 10log 10 β 2 = 10log 10 I I 0 2I I 0 2I I 0 = 45db = 10log 10 I I 0 = 45db +10log log 2 10 ( ) ( ) = 45db + 3db = 48db

1) Law of Orbits - all planets move in elliptical orbits with the Sun at one focus

1) Law of Orbits - all planets move in elliptical orbits with the Sun at one focus 1) Law of Orbits - all planets move in elliptical orbits with the Sun at one focus 2) Law of equal areas - ANGULAR MOMENTUM IS CONSERVED A line that connects a planet to the Sun sweeps out equal areas

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Unit 05 Kinetic Theory of Gases

Unit 05 Kinetic Theory of Gases Unit 05 Kinetic Theory of Gases Unit Concepts: A) A bit more about temperature B) Ideal Gas Law C) Molar specific heats D) Using them all Unit 05 Kinetic Theory, Slide 1 Temperature and Velocity Recall:

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision.

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision. 1 (a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision. State two more assumptions that are made in the kinetic

More information

Homework: 13, 14, 18, 20, 24 (p )

Homework: 13, 14, 18, 20, 24 (p ) Homework: 13, 14, 18, 0, 4 (p. 531-53) 13. A sample of an ideal gas is taken through the cyclic process abca shown in the figure below; at point a, T=00 K. (a) How many moles of gas are in the sample?

More information

Physics 4C Chapter 19: The Kinetic Theory of Gases

Physics 4C Chapter 19: The Kinetic Theory of Gases Physics 4C Chapter 19: The Kinetic Theory of Gases Whether you think you can or think you can t, you re usually right. Henry Ford The only thing in life that is achieved without effort is failure. Source

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES VERY SHORT ANSWER TYPE QUESTIONS ( MARK). Write two condition when real gases obey the ideal gas equation ( nrt). n number of mole.. If the number of molecule in a container is

More information

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation.

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation. 1 A kettle is rated as 2.3 kw. A mass of 750 g of water at 20 C is poured into the kettle. When the kettle is switched on, it takes 2.0 minutes for the water to start boiling. In a further 7.0 minutes,

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities Chapter 15 Density Often you will hear that fiberglass is used for racecars because it is lighter than steel. This is only true if we build two identical bodies, one made with steel and one with fiberglass.

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

L = I ω = const. I = 2 3 MR2. When the balloon shrinks (because the air inside it cools down), the moment of inertia decreases, R = 1. L = I ω = I ω.

L = I ω = const. I = 2 3 MR2. When the balloon shrinks (because the air inside it cools down), the moment of inertia decreases, R = 1. L = I ω = I ω. PHY 30 K. Solutions for mid-term test #3. Problem 1: Out in space, there are no forces acting on the balloon except gravity and hence no torques (with respect to an axis through the center of mass). Consequently,

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Lecture 25 Thermodynamics, Heat and Temp (cont.) Lecture 25 Thermodynamics, Heat and Temp (cont.) Heat and temperature Gases & Kinetic theory http://candidchatter.files.wordpress.com/2009/02/hell.jpg Specific Heat Specific Heat: heat capacity per unit

More information

Physics 111. Thursday, November 11, 2004

Physics 111. Thursday, November 11, 2004 ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 8-9 pm in NSC 118/119

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Temperature, Thermal Expansion and the Gas Laws

Temperature, Thermal Expansion and the Gas Laws Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases PHYS102 Previous Exam Problems CHAPTER 19 The Kinetic Theory of Gases Ideal gas RMS speed Internal energy Isothermal process Isobaric process Isochoric process Adiabatic process General process 1. Figure

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Ideal Gases Name: Class: Date: Time: 247 minutes Marks: 205 marks Comments: Page 1 of 48 1 Which one of the graphs below shows the relationship between the internal energy of an ideal gas (y-axis) and

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees First major ( 043 ) 1) The displacement of a string carrying a traveling sinusoidal wave is given by y(x,t) = y m sin( kx ωt ϕ ). At time t = 0 the point at x = 0 has a displacement of zero and is moving

More information

Physics 231 Lecture 31

Physics 231 Lecture 31 Physics 31 Lecture 31 Mi Main pints f tday s lecture: Heat and heat capacity: Q = cmδt Phase transitins and latent heat: Q = LΔm Mechanisms f heat flw. Cnductive heat flw ΔQ kat ( T1 ) H = = Δt L Examples

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

Winter 2017 PHYSICS 115 MIDTERM EXAM 1 Section X PRACTICE EXAM SOLUTION Seat No

Winter 2017 PHYSICS 115 MIDTERM EXAM 1 Section X PRACTICE EXAM SOLUTION Seat No Winter 2017 PHYSICS 115 MIDTERM EXAM 1 Section X PRACTICE EXAM SOLUTION Seat No Name (Print): Name (Print): Honor Pledge: All work presented here is my own. Signature: Student ID: READ THIS ENTIRE PAGE

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law:

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law: Physics 231 Lecture 30 Main points of today s lecture: Ideal gas law: PV = nrt = Nk BT 2 N 1 2 N 3 3 V 2 3 V 2 2 P = m v = KE ; KE KE = kbt Phases of Matter Slide 12-16 Ideal Gas: properties Approximate

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

Exam 4--PHYS 101--Fall 2016

Exam 4--PHYS 101--Fall 2016 Name: Exam 4--PHYS 101--Fall 2016 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A bus contains a 2000 kg flywheel (a disk that has a 0.500 m radius)

More information

12.1 Work in Thermodynamic Processes

12.1 Work in Thermodynamic Processes Name APPH7_Notes3key Page 1 of 6 AP Physics Date Notes: Thermodynamics 12.1 Work in Thermodynamic Processes First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy

More information

Compiled and rearranged by Sajit Chandra Shakya

Compiled and rearranged by Sajit Chandra Shakya 1 (a) (i) The kinetic theory of gases leads to the equation m = kt. (b) Explain the significance of the quantity m... the equation to suggest what is meant by the absolute zero of temperature...

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

1 Energy is supplied to a fixed mass of gas in a container and the absolute temperature of the gas doubles.

1 Energy is supplied to a fixed mass of gas in a container and the absolute temperature of the gas doubles. 1 Energy is supplied to a fixed mass of gas in a container and the absolute temperature of the gas doubles. The mean square speed of the gas molecules A remains constant. B increases by a factor of 2.

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. In an experiment to measure the temperature of the flame of a Bunsen burner, a lump of copper of mass 0.12 kg is heated in the flame for several minutes. The copper is then

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics E int = Q + W other state variables E int is a state variable, so only depends on condition (P, V, T, ) of system. Therefore, E int only depends on initial and final states

More information

Alternate Midterm Examination Physics 100 Feb. 20, 2014

Alternate Midterm Examination Physics 100 Feb. 20, 2014 Alternate Midterm Examination Physics 100 Feb. 20, 2014 Name/Student #: Instructions: Formulas at the back (you can rip that sheet o ). Questions are on both sides. Calculator permitted. Put your name

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

Phys 111 Exam 3 November 14, Name Section University ID

Phys 111 Exam 3 November 14, Name Section University ID Phys 111 Exam 3 November 14, 017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

E6 PROPERTIES OF GASES Flow-times, density, phase changes, solubility

E6 PROPERTIES OF GASES Flow-times, density, phase changes, solubility E6 PROPERTIES OF GASES Flow-times, density, phase changes, solubility Introduction Kinetic-Molecular Theory The kinetic energy of an object is dependent on its mass and its speed. The relationship, given

More information

PHYSICS 111 SPRING FINAL EXAM: April 30, 2018; 4:30pm - 6:30pm. Name (printed): Recitation Instructor: Section #

PHYSICS 111 SPRING FINAL EXAM: April 30, 2018; 4:30pm - 6:30pm. Name (printed): Recitation Instructor: Section # PHYSICS 111 SPRING 2018 FINAL EXAM: April 30, 2018; 4:30pm - 6:30pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 30 multiple-choice question, each worth 3 points, for

More information

All questions are of equal value. No marks are subtracted for wrong answers.

All questions are of equal value. No marks are subtracted for wrong answers. (1:30 PM 4:30 PM) Page 1 of 6 All questions are of equal value. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look

More information

Some Fundamental Definitions:

Some Fundamental Definitions: Lecture 2. The GAS LAWS Some Fundamental Definitions: SYSTEM: the part of the universe being the subject of study 1 Some Fundamental Definitions: State of the System: condition of a system at any given

More information

Properties of Gases. Gases have four main characteristics compared with solids and liquids:

Properties of Gases. Gases have four main characteristics compared with solids and liquids: 1 Properties of Gases Gases have four main characteristics compared with solids and liquids: Gases take the volume and shape of their containers. Mix completely (homogeneously) with any other gas. Compressible:

More information

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 A Gas fills any container. completely

More information

Lecture 2 PROPERTIES OF GASES

Lecture 2 PROPERTIES OF GASES Lecture 2 PROPERTIES OF GASES Reference: Principles of General Chemistry, Silberberg Chapter 6 SOME FUNDAMENTAL DEFINITIONS: SYSTEM: the part of the universe being the subject of study 1 SOME FUNDAMENTAL

More information

hapter 13 Archimedes Up-thrust

hapter 13 Archimedes Up-thrust hapter 13 Archimedes Up-thrust In science, buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed object. The buoyant force is also called Archimedes Up-thrust force. Proof

More information

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC C PROBLEMS 1) This problem is a straightforward application of the combined gas law. In this case, the temperature remains the same, so we can eliminate it from the

More information

HEAT- I Part - A C D A B. Te m p. Heat input

HEAT- I Part - A C D A B. Te m p. Heat input e m p HE- I Part -. solid material is supplied with heat at a constant rate. he temperature of the material is changing with heat input as shown in the graph. Study the graph carefully and answer the following

More information

Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d

Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d Quiz on Chapter 12 Quiz 10 1. C&J page 365 (top), Check Your Understanding #12: Consider an ob A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d Quiz 10 1. C&J page 365 (top), Check Your Understanding

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Chapter 18 Fluids Pearson Education, Inc. Slide 18-1

Chapter 18 Fluids Pearson Education, Inc. Slide 18-1 Chapter 18 Fluids Slide 18-1 Section 18.1: Forces in a fluid We dealt with solid objects in the previous chapters. We now turn our attention to liquids and gasses. Liquids and gasses are collectively called

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

Chapter 11 Ideal gases

Chapter 11 Ideal gases OCR (A) specifications: 5.4.10c,d,e,i,j,k Chapter 11 Ideal gases Worksheet Worked examples Practical: Determining absolute zero of temperature from the pressure law End-of-chapter test Marking scheme:

More information

Chapter 14 Thermal Physics: A Microscopic View

Chapter 14 Thermal Physics: A Microscopic View Chapter 14 Thermal Physics: Microscopic View The main focus of this chapter is the application of some of the basic principles we learned earlier to thermal physics. This will give us some important insights

More information

Physics 107 HOMEWORK ASSIGNMENT #9

Physics 107 HOMEWORK ASSIGNMENT #9 Physics 07 HOMEORK ASSIGNMENT #9 Cutnell & Johnson, 7 th edition Chapter : Problems 6, 8, 33, 40, 44 *6 A 58-kg skier is going down a slope oriented 35 above the horizontal. The area of each ski in contact

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 1 LIQUIDS VAPOURS - GASES SAE

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

PhysicsAndMathsTutor.com 1 2 (*) (1)

PhysicsAndMathsTutor.com 1 2 (*) (1) PhysicsAndMathsTutor.com 1 1. (a) pressure (*) Pa or N m volume m (*) (*) (not allow kpa) number of moles mol (or none) molar gas constant J K 1 mol 1 (mol 1 implies molar) temperature K 4 (b) (i) W(=

More information

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98)

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98) Coordinator: Dr. Kunwar S. Wednesday, May 24, 207 Page: Q. A hot-air balloon is ascending (going up) at the rate of 4 m/s and when the balloon is 98 m above the ground a package is dropped from it, vertically

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 11, 2016 Time: 90 minutes NAME: SOLUTIONS (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

People s Physics book 3e

People s Physics book 3e The Big Ideas Heat is a form of energy transfer. It can change the kinetic energy of a substance. For example, the average molecular kinetic energy of gas molecules is related to temperature. A heat engine

More information

Solutions. The cabin heat is lost by conduction through the walls. dq/dt = -KA/L ΔT = -A/R ΔT = -200 m 2 / 1.0 m 2 C /W 40 C = W

Solutions. The cabin heat is lost by conduction through the walls. dq/dt = -KA/L ΔT = -A/R ΔT = -200 m 2 / 1.0 m 2 C /W 40 C = W Department of Physics University of California, Berkeley Physics 7b Section 2 Spring semester 2007 Mid-term examination 1 Tuesday Feb. 20, 6:00 8:00 PM Solutions 1) (15 points) A cabin in the sierra mountains

More information

Some Vocabulary. Chapter 10. Zeroth Law of Thermodynamics. Thermometers

Some Vocabulary. Chapter 10. Zeroth Law of Thermodynamics. Thermometers Chapter 0 Some Vocabulary Thermal Physics, Temperature and Heat Thermodynamics: Study of energy transfers (engines) Changes of state (solid, liquid, gas...) Heat: Transfer of microscopic thermal energy

More information

Physics 117A Final Exam Fall 2006

Physics 117A Final Exam Fall 2006 Physics 117A Final Exam Fall 2006 Only calculators and pens/pencils are allowed on your desk. No cell phones or additional scrap paper. You have 1.5 hours to complete the exam. Name Section (Circle): Hutson

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

Thermodynamic Processes and Thermochemistry

Thermodynamic Processes and Thermochemistry General Chemistry Thermodynamic Processes and Thermochemistry 박준원교수 ( 포항공과대학교화학과 ) 이번시간에는! Systems, states, and processes The first law of thermodynamics: internal energy, work, and heat Heat capacity,

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter Gases Properties of Gases assume the volume and shape of their containers most compressible of the states of matter mix evenly and completely with other gases much lower density than other forms of matter

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT 30A5: MOLAR VOLUME OF A GAS Upon completion of this lab, the student will be able to: 1) Demonstrate a single replacement reaction. 2) Calculate the molar volume of a gas

More information

1. For a simple harmonic motion governed by Hooke s Law, F = kx, if T is the period then the quantity T/2π is equal to

1. For a simple harmonic motion governed by Hooke s Law, F = kx, if T is the period then the quantity T/2π is equal to 1. For a simple harmonic motion governed by Hooke s Law, F = kx, if T is the period then the quantity T/2π is equal to (a) m (b) (c) m k k k m (d) k m (e) the angular frequency ω 2. If the mass of a simple

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass

More information

Physics - Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density?

Physics - Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density? Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

What is Temperature?

What is Temperature? What is Temperature? Observation: When objects are placed near each other, they may change, even if no work is done. (Example: when you put water from the hot tap next to water from the cold tap, they

More information

, is placed in thermal contact with object B, with mass m, specific heat c B. and initially at temperature T B

, is placed in thermal contact with object B, with mass m, specific heat c B. and initially at temperature T B 4C_PLC http://www.cabrillo.edu/~jmccullough/physics4c/files/4c_plc/4c_plc.htm Page 1 of 8 /6/201 1. The heat capacity at constant volume and the heat capacity at constant pressure have different values

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

Tuesday April 18 Topics for this Lecture: Thermodynamics Kinetic Theory Ideal Gas Law Laws of Thermodynamics PV diagrams & state transitions

Tuesday April 18 Topics for this Lecture: Thermodynamics Kinetic Theory Ideal Gas Law Laws of Thermodynamics PV diagrams & state transitions Tuesday April 18 Topics for this Lecture: Thermodynamics Kinetic Theory Ideal Gas Law Laws of Thermodynamics PV diagrams & state transitions Assignment 14 due Friday Pre-class due 15min before class The

More information

Thermal Properties of Matter (Microscopic models)

Thermal Properties of Matter (Microscopic models) Chapter 18 Thermal Properties of Matter (Microscopic models) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_18_2012

More information

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V.

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V. Chem 101A Study Questions, Chapters 5 & 6 Name: Review Tues 10/25/16 Due 10/27/16 (Exam 3 date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach

More information