Modeling & Simulation 2018, Fö 1

Size: px
Start display at page:

Download "Modeling & Simulation 2018, Fö 1"

Transcription

1 Modeling & Simulation 2018, Fö 1 Claudio Altafini Automatic Control, ISY Linköping University, Sweden

2 Course information Lecturer & examiner Claudio Altafini Teaching assistants A. Måns Klingspor B. Fredrik Ljungberg Credits 6 HP = 4.5 (exam) (lab) Course home page slides, exercise and lab material link for lab sign-up old exams, tips for computer exam

3 Organization of the course 12 lectures 12 exercise sessions (5 in compute rooms) 3 labs: Identification lab (written report + peer-review) Modeling 1 & 2 Course literature Swedish English

4 Program of the course

5 Lab 1 (Identification): important dates lab in pairs max 8 students per session 8 sessions available report due: 2 weeks after lab peer review due: one week revised report due: one week

6 Feedback from students: lectures The first half of the lectures was very intense and quite hard to comprehend, not only because the subject is new but also because there weren t many headlines (on the blackboard) telling you what you were looking at. Need more structure on the lectures. This was only the first part of the course, the second parts lectures were great. Lectures must finish on time. NEVER go overtime! Hade varit bra med lite mer bakgrund till vissa saker, t.ex vad en stokastisk process är, AKF etc. är. Lite mycket handviftning alltså. Studenterna skulle vilja ha mer teori och härledning av matematiken [Y students] There could be more explaining of practice during the lectures, and not so much focus on theory. Indeed, theory is needed, but the fraction was too large. [I students]

7 Feedback from students: exercises and labs Eleverna tyckte att lärarna var bra, att exempel i början av lektionen var bra, att lektionerna innehöll lagom många uppgifter samt att datorlektionen var kul och givande med mycket fokus på laborationen. The report for lab 1 with peer review was a nice way of examining that part. The level of the peer review varied greatly between the students. We did not get any feedback on lab 1 before the exam, which is strange, especially since it contains problems central to the exam. Improve the integration with openconf or change system, it is not user friendly at all.

8 Feedback from students: exam Exam is a 4h computer exam (1/5 exercises to be solved with Matlab) Det var i min upplevelse lite tajt med tid. Det rådde stor förvirring kring tentan: -Vart man skulle befinna sig inför tentan -Hur inloggningen på datorn skulle ske -Hur utskrifter skulle göras (AID_Nummer mm.) Tycker det är onödigt att det är en data denta. Delen som dator behövs för examineras ändå med en laboration.

9 Feedback from students: overall evaluation

10 Feedback from students: students satisfaction

11 Lecture 1: Models and model building Why modeling? Approaches to modeling: examples Review of linear systems theory In the book: Chapter 1 3, Appendix A.

12 Why models and simulations? Aircraft performances photo: Stefan Kalm, Copyright: Saab AB Building a new airplane is a costly and lengthy process How to evaluate the performance of aircraft before it is built? Computer simulations & Mathematical models = project and prototype Project

13 Why models and simulation? Biology Drug development: computer models used to discover new drug molecules and their targets Post-genome sequencing era complexity has scaled up: = genes can be measured simultaneously need models to understand genome-wide data need models to understand behavior of complex networks Discovery photo: Nature publ.

14 Why models and simulation? Process industry Process control Optimization of production Monitoring, Control, Optimization

15 Why models and simulation? Climate Next day predictions: model-based Long term predictions: how much will the sea level rise by 2100 if a certain amount of CO 2 is released into the atmosphere? At the same time: beware of extrapolations! Foto: NASA Prediction

16 Course objectives Objectives of the course Provide the basis of the methods and principles needed to build mathematical models of dynamical systems from experimental data. Domains of application all engineering sciences physics, chemistry, biology, finance many industrial domains Approaches to modeling: 1. nonparametric modeling impulse response frequency function 2. parametric modeling modeling from measurement data: Black-box modeling modeling from basic physical principles: Physical modeling

17 Example: buffer tank Characteristics of the water tank: Inflow (input signal): u Outflow (measured output): y (and/or h) Internal variable (state): h Production of formic acid, Perstorp

18 Method 1: Black-box Identification Basic principle: enter an input, measure an output u Simple identification experiments Step response Impulse response Sinusoidal input y time time

19 Method 1: Black-box Identification Simple, linear first order model y(t) = k(1 e t/t ) Using the Laplace transform: u where Y (s) = G(s)U(s) = G(s) 1 s Parameters G(s) = k 1 + st k = static gain = 1 T = time constant = 1 y time 1 0 true model time

20 Method 2: Physical principles Basic principle: physical laws = dynamical model mass-balance for incompressible fluids d dt (Ah) = u y A = area of the cross-section of the tank (parameter) Bernoulli law: y = a 2gh a = area of the cross-section of the hole (parameter)

21 Method 2: Physical principles 2 Resulting (nonlinear) dynamical model for the tank system: dh dt = a u 2gh + A A y = a 2gh u y time 1 0 true lin. model physical model time... provided you get the right values of a and A!

22 Impulse response for mixing tanks 1. impulse response g(t) known experimentally = non-parametric model 2. parametric model (e.g. black-box): Litiumkoncentration (mg/liter) 1 x x x x x x x x x x x x 0.8 x x x x x x x x x 0.6 x x x x x 0.4 xxx xx 0.2 xxx xx 0xx tid (min) 4 x10-3 Impulssvar x x x x x x x x x x x x 3 x x x x x x x x x x x x x x 2 xxx xx 1 xxx xx 0xx tid (min) G(s) = ( 1 ) 3 st + 1

23 Example: pupil dynamics 0.4 Ljusflode (mlm) Tid (sek) 25 Pupillarea (kvadrat mm) Tid (sek)

24 Example: pupil dynamics To represent amplitude and phase of the response: frequency function (points on a Bode plot ) non-parametric model 10 0 Amplitud 10-1 * * * * * * * * Frekvens (rad/sek) 0 Fas * * * -200 * fit a black-box model: G(s) = e 0.28s 0.19 ( s) 3 * -400 * * * * * Frekvens (rad/sek)

25 An example from Ecology Example: Hare - Lynx cycles autonomous system: no external input system oscillates, without need of a sinusoidal input predator-prey

26 Population model N 1 = n. of linx, N 2 = n. of hare d dt N 1(t) = λ 1 N 1 (t) γ 1 N 1 (t) + α 1 N 1 (t)n 2 (t) d dt N 2(t) = λ 2 N 2 (t) γ 2 N 2 (t) α 2 N 1 (t)n 2 (t) tusental individer

27 Main characteristics of mathematical models Dynamic Continuos time ODE Deterministic Uncertainty is absent Lumped spatial distribution is not an issue Static Discrete time DAE Stochastic Uncertainty in model and/or measurements Distributed spatial distribution is important

28 Claudio Altafini

Modeling & Simulation 2017, Fö 1

Modeling & Simulation 2017, Fö 1 Modeling & Simulation 2017, Fö 1 Claudio Altafini Automatic Control, ISY Linköping University, Sweden Course information Lecturer & examiner Claudio Altafini (claudio.altafini@liu.se) Teaching assistants

More information

Modeling & Simulation 2018 Lecture 12. Simulations

Modeling & Simulation 2018 Lecture 12. Simulations Modeling & Simulation 2018 Lecture 12. Simulations Claudio Altafini Automatic Control, ISY Linköping University, Sweden Summary of lecture 7-11 1 / 32 Models of complex systems physical interconnections,

More information

Quantum physics 2016

Quantum physics 2016 Quantum physics 2016 Quantum Physics (53110VT16) Results of survey Startade: den 9 maj 2016 Avslutad: den 24 maj 2016 Svarsfrekvens: 31% ( 23 / 75 ) Elektroniskt utvärderingssystem Quantum physics 2016

More information

EXAM IN MODELING AND SIMULATION (TSRT62)

EXAM IN MODELING AND SIMULATION (TSRT62) EXAM IN MODELING AND SIMULATION (TSRT62) SAL: ISY:s datorsalar TID: Friday 5th January 2018, kl. 8.00 12.00 KURS: TSRT62 Modeling and Simulation PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL

More information

EXAM IN MODELING AND SIMULATION (TSRT62)

EXAM IN MODELING AND SIMULATION (TSRT62) EXAM IN MODELING AND SIMULATION (TSRT62) SAL: ISY:s datorsalar TID: Wednesday 4th January 2017, kl. 8.00 12.00 KURS: TSRT62 Modeling and Simulation PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL

More information

Automatic Control II: Summary and comments

Automatic Control II: Summary and comments Automatic Control II: Summary and comments Hints for what is essential to understand the course, and to perform well at the exam. You should be able to distinguish between continuous-time (c-t) and discrete-time

More information

Deskription. Exempel 1. Exempel 1 (lösning) Normalfördelningsmodellen (forts.)

Deskription. Exempel 1. Exempel 1 (lösning) Normalfördelningsmodellen (forts.) Deskription Normalfördelningsmodellen (forts.) 1 Exempel 1 En datorleverantör har en stödfunktion dit kunder med krånglande datorer kan ringa. Tiden det tar att svara på inkommande samtal varierar, och

More information

FRTN10 Multivariable Control Lecture 1

FRTN10 Multivariable Control Lecture 1 FRTN10 Multivariable Control Lecture 1 Anton Cervin Automatic Control LTH, Lund University Department of Automatic Control Founded 1965 by Karl Johan Åström (IEEE Medal of Honor) Approx. 50 employees Education

More information

EXAMINATION IN TSRT14 SENSOR FUSION

EXAMINATION IN TSRT14 SENSOR FUSION EXAMINATION IN TSRT14 SENSOR FUSION ROOM: ISY:s computer rooms TIME: 2015-06-03 at 14:00 18:00 COURSE: TSRT14 Sensor Fusion PROVKOD: DAT1 DEPARTMENT: ISY NUMBER OF EXERCISES: 4 RESPONSIBLE TEACHER: Gustaf

More information

Overview Lecture 1. Nonlinear Control and Servo systems Lecture 1. Course Material. Course Goal. Course Material, cont. Lectures and labs.

Overview Lecture 1. Nonlinear Control and Servo systems Lecture 1. Course Material. Course Goal. Course Material, cont. Lectures and labs. Overview Lecture Nonlinear Control and Servo sstems Lecture Anders Rantzer Practical information Course contents Nonlinear control sstems phenomena Nonlinear differential equations Automatic Control LTH

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab

More information

Räkneövningar Empirisk modellering

Räkneövningar Empirisk modellering Räkneövningar Empirisk modellering Bengt Carlsson Systems and Control Dept of Information Technology, Uppsala University 5th February 009 Abstract Räkneuppgifter samt lite kompletterande teori. Contents

More information

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano Advanced Aerospace Control Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano ICT for control systems engineering School of Industrial and Information Engineering Aeronautical Engineering

More information

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Lecture 1: Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification What is Mathematical Model? A set of mathematical equations (e.g., differential

More information

EET 3212 Control Systems. Control Systems Engineering, 6th Edition, Norman S. Nise December 2010, A. Goykadosh and M.

EET 3212 Control Systems. Control Systems Engineering, 6th Edition, Norman S. Nise December 2010, A. Goykadosh and M. NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York 300 Jay Street Brooklyn, NY 11201-2983 Department of Electrical and Telecommunications Engineering Technology TEL (718) 260-5300 - FAX:

More information

Exam in Systems Engineering/Process Control

Exam in Systems Engineering/Process Control Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 27-6-2 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 1. Intro, Hydrostatics and Stability Introduction OE4630d1 Offshore Hydromechanics Module 1 dr.ir. Pepijn de Jong Assistant Prof. at Ship Hydromechanics

More information

Introduction to Computer Control Systems

Introduction to Computer Control Systems Introduction to Computer Control Systems Lecture 1: Introduction Dave Zachariah Div. Systems and Control, Dept. Information Technology, Uppsala University October 28, 2014 (UU/Info Technology/SysCon) Intro.

More information

Multivariable Control Laboratory experiment 2 The Quadruple Tank 1

Multivariable Control Laboratory experiment 2 The Quadruple Tank 1 Multivariable Control Laboratory experiment 2 The Quadruple Tank 1 Department of Automatic Control Lund Institute of Technology 1. Introduction The aim of this laboratory exercise is to study some different

More information

Exam in Systems Engineering/Process Control

Exam in Systems Engineering/Process Control Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 7-6- Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total number

More information

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-08-20 Sal (1) ISY:s datorsalar (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report

More information

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-10-22 Sal (1) ISY:s datorsalar (Egypten) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal

More information

Lecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)

Lecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions) 232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop

More information

Math 215/255 Final Exam, December 2013

Math 215/255 Final Exam, December 2013 Math 215/255 Final Exam, December 2013 Last Name: Student Number: First Name: Signature: Instructions. The exam lasts 2.5 hours. No calculators or electronic devices of any kind are permitted. A formula

More information

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner EG4321/EG7040 Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear [System Analysis] and Control Dr. Matt

More information

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory Project TOUCAN A Study of a Two-Can System Prof. R.G. Longoria Update Fall 2009 Laboratory Goals Gain familiarity with building models that reflect reality. Show how a model can be used to guide physical

More information

Central European University Department of Economics

Central European University Department of Economics Central European University Department of Economics Fall 2018 1. Name of Course: Mathematical Methods 2. Lecturers: Imre Fekete (IF), Tamás Briglevics (TB), Dániel Molnár (DM, Teaching Assistant) 3. Number

More information

Fysik 1 Kompendium: Del 2 Standard Modellen samt Ljus

Fysik 1 Kompendium: Del 2 Standard Modellen samt Ljus Fysik 1 Kompendium: Del 2 Standard Modellen samt Ljus Klass: Na2 Lärare: VT14 Relativitet: Heureka Kapitel 13 (s.282-291) samt Ergo 393-401 Formel Skriv ner här alla formel som du kommer i kontakt med

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

Applied Reactor Technology and Nuclear Power Safety, 4A1627; 4 cp. Course Description

Applied Reactor Technology and Nuclear Power Safety, 4A1627; 4 cp. Course Description Applied Reactor Technology and Nuclear Power Safety, 4A1627; 4 cp Course Objectives Course Description The purpose of the course is to provide a general knowledge on the physical processes that take place

More information

FYSA01, Physics 1: General Physics, 30 credits Fysik 1: Allmän fysik, 30 högskolepoäng First Cycle / Grundnivå

FYSA01, Physics 1: General Physics, 30 credits Fysik 1: Allmän fysik, 30 högskolepoäng First Cycle / Grundnivå Faculty of Science FYSA01, Physics 1: General Physics, 30 credits Fysik 1: Allmän fysik, 30 högskolepoäng First Cycle / Grundnivå Details of approval The syllabus was approved by Study programmes board,

More information

AME 301: Differential Equations, Control and Vibrations

AME 301: Differential Equations, Control and Vibrations AME 301: Differential Equations, Control and Vibrations Introduction, Overview and Motivation Some boring catalog stuff: First of a two-course sequence, the course introduces methods of differential-equation

More information

Biological Systems Modeling & Simulation. Konstantinos P. Michmizos, PhD

Biological Systems Modeling & Simulation. Konstantinos P. Michmizos, PhD Biological Systems Modeling & Simulation 2 Konstantinos P. Michmizos, PhD June 25, 2012 Previous Lecture Biomedical Signal examples (1-d, 2-d, 3-d, ) Purpose of Signal Analysis Noise Frequency domain (1-d,

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 7

Classical Mechanics III (8.09) Fall 2014 Assignment 7 Classical Mechanics III (8.09) Fall 2014 Assignment 7 Massachusetts Institute of Technology Physics Department Due Wed. November 12, 2014 Mon. November 3, 2014 6:00pm (This assignment is due on the Wednesday

More information

Introduction to Modelling and Simulation

Introduction to Modelling and Simulation Introduction to Modelling and Simulation Prof. Cesar de Prada Dpt. Systems Engineering and Automatic Control EII, University of Valladolid, Spain prada@autom.uva.es Digital simulation Methods and tools

More information

Automatic Control (TSRT15): Lecture 1

Automatic Control (TSRT15): Lecture 1 Automatic Control (TSRT15): Lecture 1 Tianshi Chen* Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 * All lecture

More information

TSRT14: Sensor Fusion Lecture 1

TSRT14: Sensor Fusion Lecture 1 TSRT14: Sensor Fusion Lecture 1 Course overview Estimation theory for linear models Gustaf Hendeby gustaf.hendeby@liu.se Course Overview TSRT14 Lecture 1 Gustaf Hendeby Spring 2018 2 / 23 Course Goals:

More information

Econometrics I G (Part I) Fall 2004

Econometrics I G (Part I) Fall 2004 Econometrics I G31.2100 (Part I) Fall 2004 Instructor: Time: Professor Christopher Flinn 269 Mercer Street, Room 302 Phone: 998 8925 E-mail: christopher.flinn@nyu.edu Homepage: http://www.econ.nyu.edu/user/flinnc

More information

DYNAMICS and CONTROL

DYNAMICS and CONTROL DYNAMICS and CONTROL MODULE 1I (III) Models of Systems & Signals Formalism Presented by Pedro Albertos Professor of Systems Engineering and Control - UPV 1 Modules: Examples of systems and signals Models

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Outline of this module Instructors: A. Abate, P.J. Goulart, K. Margellos Teaching Assistants: A.

More information

Introduction to Model Order Reduction

Introduction to Model Order Reduction Introduction to Model Order Reduction Lecture 1: Introduction and overview Henrik Sandberg Kin Cheong Sou Automatic Control Lab, KTH ACCESS Specialized Course Graduate level Ht 2010, period 1 1 Overview

More information

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri C. Melchiorri (DEI) Automatic Control & System Theory 1 AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI)

More information

The syllabus was approved by Study programmes board, Faculty of Science on to be valid from , autumn semester 2016.

The syllabus was approved by Study programmes board, Faculty of Science on to be valid from , autumn semester 2016. Faculty of Science GEON05, Quaternary Geology: Glacial Sedimentology - Processes, Sediments and Landform Systems, 15 credits Kvartärgeologi: Glacial sedimentologi - processer, sediment och landformssystem,

More information

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 7 Modeling Modeling is the process of representing the behavior of a real

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 121 2. NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR NAME OF COURSE ENGINEERING PHYSICS 1 WITH LAB 3. CURRENT DATE: SUMMER

More information

Modeling and System Identification for a DC Servo

Modeling and System Identification for a DC Servo Modeling and System Identification for a DC Servo Kevin M. Passino and Nicanor Quijano Dept. Electrical Engineering, The Ohio State University 5 Neil Avenue, Columbus, OH 3-7 March 7, Abstract First, you

More information

Applied Computational Fluid Dynamics. in Marine Engineering

Applied Computational Fluid Dynamics. in Marine Engineering Applied Computational Fluid Dynamics in Marine Engineering Objectives Understand basic CFD theory Learn how to set up and run simulations in Star CCM+ and interpret results Learn about limitations and

More information

Exercises Automatic Control III 2015

Exercises Automatic Control III 2015 Exercises Automatic Control III 205 Foreword This exercise manual is designed for the course "Automatic Control III", given by the Division of Systems and Control. The numbering of the chapters follows

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

Computer Science prof. Jerzy Świątek System Analysis and Decision Support in Computer Sciences

Computer Science prof. Jerzy Świątek System Analysis and Decision Support in Computer Sciences Computer Science prof. Jerzy Świątek System Analysis and Decision Support in Computer Sciences modeleisystemy.pl/dla studenta L.1. Model in the systems research. Introduction basic concept Contact hours

More information

Tutorial 6 (week 6) Solutions

Tutorial 6 (week 6) Solutions THE UNIVERSITY OF SYDNEY PURE MATHEMATICS Linear Mathematics 9 Tutorial 6 week 6 s Suppose that A and P are defined as follows: A and P Define a sequence of numbers { u n n } by u, u, u and for all n,

More information

Umea University Report UMINF Department of Computing Science ISSN S Umea January 21, 1997 Sweden Algorithms and Software for th

Umea University Report UMINF Department of Computing Science ISSN S Umea January 21, 1997 Sweden Algorithms and Software for th Umea University Report UMINF 97.03 Department of Computing Science ISSN-0348-0542 S-901 87 Umea January 21, 1997 Sweden Algorithms and Software for the Computation of Parameters Occurring in ODE-models

More information

1 Mathematics. 1.1 Determine the one-sided Laplace transform of the following signals. + 2y = σ(t) dt 2 + 3dy dt. , where A is a constant.

1 Mathematics. 1.1 Determine the one-sided Laplace transform of the following signals. + 2y = σ(t) dt 2 + 3dy dt. , where A is a constant. Mathematics. Determine the one-sided Laplace transform of the following signals. {, t < a) u(t) =, where A is a constant. A, t {, t < b) u(t) =, where A is a constant. At, t c) u(t) = e 2t for t. d) u(t)

More information

Welcome to Physics 211! General Physics I

Welcome to Physics 211! General Physics I Welcome to Physics 211! General Physics I Physics 211 Fall 2015 Lecture 01-1 1 Physics 215 Honors & Majors Are you interested in becoming a physics major? Do you have a strong background in physics and

More information

Midterm 2 review. Day 15: Review

Midterm 2 review. Day 15: Review Midterm 2 review Physics 1010: Dr. Eleanor Hodby Day 15: Review Reminders: No new HW this week MIDTERM 2 ON THURSDAY Todays review Qs on website in full after class Reading quiz a week today: see website

More information

Experiment Flow Analysis

Experiment Flow Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.1X Fall Term 22 Handed out: November 26 Due: Dec 6 at 4 pm Experiment Flow Analysis Problem 1: Here is a summary of the measurements,

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland based on script from: Prof. Dr. Lino Guzzella 1/33 Outline 1

More information

Computer Science Jerzy Świątek Systems Modelling and Analysis. L.1. Model in the systems research. Introduction basic concept

Computer Science Jerzy Świątek Systems Modelling and Analysis. L.1. Model in the systems research. Introduction basic concept Computer Science Jerzy Świątek Systems Modelling and Analysis L.1. Model in the systems research. Introduction basic concept Model in the systems research. Introduction basic concept Model in the systems

More information

Physics 201, Lecture 26

Physics 201, Lecture 26 Physics 201, Lecture 26 Today s Topics n Fluid Mechanics (chapter 14) n Review: Pressure n Buoyancy, Archimedes s Principle (14.4) n Fluid Dynamics, Bernoulli s Equation (14.5,14.6) n Applications of Fluid

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

Project: Vibration Damping

Project: Vibration Damping Mekanik GK för I (FMEA10) 2018 Project: Vibration Damping Project team: Name: Personal id-number: Mekanik www.mek.lth.se. 1 Project: Vibration damping Project Specification 1. Introduction In this project

More information

Computational Modeling for Physical Sciences

Computational Modeling for Physical Sciences Computational Modeling for Physical Sciences Since the invention of computers the use of computational modeling and simulations have revolutionized the way we study physical systems. Their applications

More information

Computer Aided Control Design

Computer Aided Control Design Computer Aided Control Design Project-Lab 3 Automatic Control Basic Course, EL1000/EL1100/EL1120 Revised August 18, 2008 Modified version of laboration developed by Håkan Fortell and Svante Gunnarsson

More information

11/4/2003 PHY Lecture 16 1

11/4/2003 PHY Lecture 16 1 Announcements 1. Exams will be returned at the end of class. You may rework the exam for up to 1 extra credit points. Turn in your old exam and your new work (clearly indicated). Due 11/11/3. You may sign

More information

Problem Weight Score Total 100

Problem Weight Score Total 100 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

A NUMERICAL STUDY ON PREDATOR PREY MODEL

A NUMERICAL STUDY ON PREDATOR PREY MODEL International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) 347 353 World Scientific Publishing Company DOI: 10.1142/S2010194512005417

More information

Math 333 Exam 1. Name: On my honor, I have neither given nor received any unauthorized aid on this examination. Signature: Math 333: Diff Eq 1 Exam 1

Math 333 Exam 1. Name: On my honor, I have neither given nor received any unauthorized aid on this examination. Signature: Math 333: Diff Eq 1 Exam 1 Math 333 Exam 1 You have approximately one week to work on this exam. The exam is due at 5:00 pm on Thursday, February 28. No late exams will be accepted. During the exam, you are permitted to use your

More information

Differential Equations FMNN10 Graded Project #1 c G Söderlind 2017

Differential Equations FMNN10 Graded Project #1 c G Söderlind 2017 Differential Equations FMNN10 Graded Project #1 c G Söderlind 2017 Published 2017-10-30. Instruction in computer lab 2017-11-02/08/09. Project report due date: Monday 2017-11-13 at 10:00. Goals. The goal

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Section (circle one) Coombs (215:201) / Herrera (215:202) / Rahmani (255:201)

Section (circle one) Coombs (215:201) / Herrera (215:202) / Rahmani (255:201) The University of British Columbia Final Examination - April 12th, 2016 Mathematics 215/255 Time: 2 hours Last Name First Signature Student Number Section (circle one) Coombs (215:201) / Herrera (215:202)

More information

MAE143A Signals & Systems, Final Exam - Wednesday March 16, 2005

MAE143A Signals & Systems, Final Exam - Wednesday March 16, 2005 MAE13A Signals & Systems, Final Exam - Wednesday March 16, 5 Instructions This quiz is open book. You may use whatever written materials you choose including your class notes and the textbook. You may

More information

FAFA Föreläsning 4, läsvecka 2 7 november 2016

FAFA Föreläsning 4, läsvecka 2 7 november 2016 FAFA55 2016 Föreläsning 4, läsvecka 2 7 november 2016 Nya salar för gruppövningar F1.03 må 7/11 13-15: Byt K219 mot H222 F1.11 ti 8/11 8-10: Byt K219 mot H222 F1.03 ti 8/11 13-15: Byt K219 mot H222 F1.11

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, and Noise Modeling Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Emil Björnson Course Director

More information

Physics 111. Thursday, November 11, 2004

Physics 111. Thursday, November 11, 2004 ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 8-9 pm in NSC 118/119

More information

Seminar: Data Assimilation

Seminar: Data Assimilation Seminar: Data Assimilation Jonas Latz, Elisabeth Ullmann Chair of Numerical Mathematics (M2) Technical University of Munich Jonas Latz, Elisabeth Ullmann (TUM) Data Assimilation 1 / 28 Prerequisites Bachelor:

More information

Exam: 4 hour multiple choice. Agenda. Course Introduction to Statistics. Lecture 1: Introduction to Statistics. Per Bruun Brockhoff

Exam: 4 hour multiple choice. Agenda. Course Introduction to Statistics. Lecture 1: Introduction to Statistics. Per Bruun Brockhoff Course 02402 Lecture 1: Per Bruun Brockhoff DTU Informatics Building 305 - room 110 Danish Technical University 2800 Lyngby Denmark e-mail: pbb@imm.dtu.dk Agenda 1 2 3 4 Per Bruun Brockhoff (pbb@imm.dtu.dk),

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM WITH UNKNOWN PARAMETERS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus

MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus Course Description: Ordinary and Partial Differential Equations. First and second order equations; series solutions; Laplace

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

Final Exam December 20, 2011

Final Exam December 20, 2011 Final Exam December 20, 2011 Math 420 - Ordinary Differential Equations No credit will be given for answers without mathematical or logical justification. Simplify answers as much as possible. Leave solutions

More information

Computational Fluid Dynamics F7018T. Part II: Finite volume methods

Computational Fluid Dynamics F7018T. Part II: Finite volume methods Computational Fluid Dynamics F7018T Part II: Finite volume methods Questions to be answered Why numerical solutions of fluid mechanical problems? What is CFD? Why is it wrong to compare CFD with FEM? Can

More information

Introduction to Model Order Reduction

Introduction to Model Order Reduction KTH ROYAL INSTITUTE OF TECHNOLOGY Introduction to Model Order Reduction Lecture 1: Introduction and overview Henrik Sandberg, Bart Besselink, Madhu N. Belur Overview of Today s Lecture What is model (order)

More information

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written

More information

Optimeringslära för F (SF1811) / Optimization (SF1841)

Optimeringslära för F (SF1811) / Optimization (SF1841) Optimeringslära för F (SF1811) / Optimization (SF1841) 1. Information about the course 2. Examples of optimization problems 3. Introduction to linear programming Introduction - Per Enqvist 1 Linear programming

More information

M o d u l e B a s i c A e r o d y n a m i c s

M o d u l e B a s i c A e r o d y n a m i c s Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 8-0 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 08-01- 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s

More information

CHEM 1100 General Chemistry I: Summer 2019

CHEM 1100 General Chemistry I: Summer 2019 CHEM 1100 General Chemistry I: Summer 2019 Course Overview: This course provides an introduction to chemistry. We will explore the key concepts of the science of chemistry. Topics covered in this course

More information

Automatic control III. Homework assignment Deadline (for this assignment): Monday December 9, 24.00

Automatic control III. Homework assignment Deadline (for this assignment): Monday December 9, 24.00 Uppsala University Department of Information Technology Division of Systems and Control November 18, 2013 Automatic control III Homework assignment 2 2013 Deadline (for this assignment): Monday December

More information

Lecture 3 The energy equation

Lecture 3 The energy equation Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

More information

Filtering and Identification

Filtering and Identification Filtering and Identification Day 1 - Lecture 1: Introduction and refreshment LA Michel Verhaegen 1/42 Smart Optics Systems Star Telescope / Collimator Plane wavefront Turbulent Atmosphere Disturbed wavefront

More information

Lab Project 4a MATLAB Model of Oscillatory Flow

Lab Project 4a MATLAB Model of Oscillatory Flow Lab Project 4a MATLAB Model of Oscillatory Flow Goals Prepare analytical and computational solutions for transient flow between the two upright arms of a U-shaped tube Compare the theoretical solutions

More information

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Introduction Syllabus and teaching strategy Physics Introduction Mathematical review http://www.physics.wayne.edu/~apetrov/phy2130/ Chapter 1 Lecturer:, Room 358 Physics Building,

More information

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

More information

Computer lab for MAN460

Computer lab for MAN460 Computer lab for MAN460 (version 20th April 2006, corrected 20 May) Prerequisites Matlab is rather user friendly, and to do the first exercises, it is enough to write an m-file consisting of two lines,

More information

Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation

Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation 1 Physics 213 Waves, Fluids and Thermal Physics Summer 2007 Lecturer: Mike Kagan (mak411@psu.edu, 322 Whitmore) Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle

More information