FAFA Föreläsning 4, läsvecka 2 7 november 2016

Size: px
Start display at page:

Download "FAFA Föreläsning 4, läsvecka 2 7 november 2016"

Transcription

1 FAFA Föreläsning 4, läsvecka 2 7 november 2016

2 Nya salar för gruppövningar F1.03 må 7/ : Byt K219 mot H222 F1.11 ti 8/ : Byt K219 mot H222 F1.03 ti 8/ : Byt K219 mot H222 F1.11 må 14/ : Byt K219 mot H222 Kolla uppdateringar på TimeEdit Learning log uppgift

3 Bragg reflektion: kristaller som multispalt

4 Dubbelspalt-experiment med enstaka elektroner Tonomura

5 Elektronmikroskop: att titta med elektronvågor Scanning electron microscope (SEM) Elektronvåglängden bestämmer hur små saker man kan se.

6 SEM bilder Ögat hos en fluga Nanotråd med elektriska kontakter

7 Counts in 1 s in a futu C60 molekyl ferometer 200 ( Bucky ball ) b be a parti 200 up to 1 m much larg 150 case, the through should th 100 controlle internal 50 environm the inter 0 gases. The Montreal Biosphère by Buckminster An im Fuller, Photo: Ryan Mallard. Position (µm) example, which we Figure 2 Interference pattern produced by C60 molecules. a, Experimental recording whole spe (open circles) and fit using Kirchhoff diffraction theory (continuous line). The expected study the zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in 1 nm and wav the text. b, The molecular beam profile without the grating in the path of the molecules. NATURE VOL OCTOBER Macmillan Magaz

8 energies. Our good quantitative agreement between experiment and blackb absorbed light then ionized the C 60 fullerenes via heating and shown in Fig. 2a, but does not fit the wings of th theory indicates that the latter do not influence the observed sured subsequent thermal emission of electrons Interferensexperiment 12. The detection region coherence. All Agreement these observations with support the experimental the view that each data, C med C60 molekyler 60 includin a typic 200 ferometer molecule interferes with itself only. time b be a parti corres 200 l 1 up to 1influe m 100 nm diffraction Scanning photoionization stage Figure 1,2001 Diagram a of the experimental set-up (not to scale). molec Hot, n grating leave the oven through a nozzle of 0:33 mm 1:3 much mm 0: larg m 1,000 be neg 150 (width height depth), pass through two collimating slits of As 0: s Oven case, (width800 height) separated by 1.04 m, traverse a SiN x the grating photo (perio the second slit, and are detected via thermal ionization through by ainduc laser 600 intern grating. The ions are then accelerated and directed towards a conv 100 shouldinterfe th Ion ejected 400 electrons are subsequently counted by a Channeltron elec A va 10 µ m 10 µ m detection laser focus can be reproducibly scanned transversely controlle to the beam in a fu unit 200 ferom Collimation slits b be a p 200 internal 50 up to Laser environm much 150 case, the inter throug Figure 1 Diagram of the experimental set-up (not to scale). Hot, neutral C 60 molecules 1999 Macmillan Magazines Ltd NATURE VOL OCTOBER should 1 leave the oven through a nozzle of 0:33 0 mm 1:3 mm 0:25 mm gases. contro (width height depth), pass through 100 two collimating slits 50 of 0:01 mm 5 mm 0 50 intern (width height) separated by 1.04 m, traverse a SiN x An grating (period 100 nm) 0.1 m after enviro im Position (µm) the second slit, and are detected via thermal ionization by a laser 1.25 m behind the the in 0 example, gases. grating. The ions are then accelerated and directed towards a conversion electrode. The An ejected Figure electrons 2 Interference are subsequently counted pattern by a Channeltron produced electronby multiplier. C 60 The molecules. a, Experimental Position recording (µm) whichexamp we laser focus can be reproducibly scanned transversely to the beam with 1- m resolution. Figure 2 Interference pattern produced by C 60 molecules. a, Experimental recording which (open circles) and fit using Kirchhoff diffraction theory (open (continuous circles) and fit using Kirchhoff line). diffraction The expected whole theory (continuous line). The expected whole spe zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in study zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in study the text. b, The molecular beam profile without the grating in the path of the molecules. and thew Counts in 1 s the text. b, The molecular beam profile without the grating in the path of the molecules. Counts in 1 s Counts in 50 s NATURE VOL OCTOBER in a futu and wav 1999 Macmillan Ma NATURE VOL OCTOBER Macmillan Magaz

9 ... Wave particle duality of C 60 molecules Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw & Anton Zeilinger Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria Quantum superposition lies at the heart of quantum mechanics and gives rise to many of its paradoxes. Superposition of de Broglie matter waves 1 has been observed for massive particles such as electrons 2, atoms and dimers 3, small van der Waals clusters 4, and neutrons 5. But matter wave interferometry with larger objects has remained experimentally challenging, despite the development of powerful atom interferometric techniques for experiments in fundamental quantum mechanics, metrology and lithography 6. Here we report the observation of de Broglie wave interference of C 60 molecules by diffraction at a material absorption grating. This molecule is the most massive and complex object in which wave behaviour has been observed. Of particular interest is the fact that C 60 is almost a classical body, because of its many excited internal degrees of freedom and their possible couplings to the environment. Such couplings are essential for the appearance of decoherence 7,8, suggesting that interference experiments with large molecules should facilitate detailed studies of this process. NATURE VOL OCTOBER

10

11

12 En partikel har en en-dimensionell (1D) sannolikhetstäthet ρ(x,t). Vilken enhet har ρ? 1) [ ρ ] = 1 2) [ ρ ] = m 3) [ ρ ] = 1/m 4) [ ρ ] = 1/s 5) [ ρ ] = 1/m s 6) Något annat

13 En partikel har en en-dimensionell (1D) sannolikhetstäthet ρ(x,t). Vilken enhet har ρ? 1) [ ρ ] = 1 2) [ ρ ] = m 3) [ ρ ] = 1/m 4) [ ρ ] = 1/s 5) [ ρ ] = 1/m s 6) Något annat Integralen P =!! ρ!,!!"!! behöver ha enhet 1 (sannolikhet). dx leder till multiplikation med m ( [dx] = m ).

14 En partikel har en normerad, en-dimensionell sannolikhetsfördelning som är symmetrisk kring noll. Sannolikheten att hitta partikeln mellan x = 0 och x = 5 nm beräknas vara 0,3. Vad är sannolikheten att hitta partikeln i intervallet (5 nm < x < )? 1) 0 2) 0,7 3) 0,3 4) 0,2 5) Man behöver mer information för att kunna svara.

15 En partikel har en normerad, en-dimensionell sannolikhetsfördelning som är symmetrisk kring noll. Sannolikheten att hitta partikeln mellan x = 0 och x = 5 nm beräknas vara 0,3. Vad är sannolikheten att hitta partikeln i intervallet (5 nm < x < )? 1) 0 2) 0,7 3) 0,3 4) 0,2 Den totala sannolikheten att hitta partikeln mellan - och + måste vara lika med 1. På grund av symmetrin måste sannolikheten att hitta partikeln i intervallet 0 < x < + vara 0,5. Därmed ligger sannolikheten 0,5-0,3 = 0,2 i intervallet 5 nm < x < + 5) Man behöver mer information för att kunna svara.

16 e ikx 2 = A) e 2ikx B) e -2ikx C) 0 D) -1 E) 1

17 e ikx 2 = A) e 2ikx B) e -2ikx C) 0 D) -1 E) 1 z 2 = z z* e ikx 2 = e ikx e -ikx = 1

Decoherence in QM physics 491 fall 2009 friday feature M. Gold updated Oct. 1, 2015

Decoherence in QM physics 491 fall 2009 friday feature M. Gold updated Oct. 1, 2015 diffraction experiment Decoherence in QM physics 491 fall 2009 friday feature M. Gold updated Oct. 1, 2015 In reality, it contains the only mystery, the basic peculiarities of all of quantum mechanics.

More information

FOUNDATIONAL EXPERIMENTS IN QUANTUM MECHANICS

FOUNDATIONAL EXPERIMENTS IN QUANTUM MECHANICS FOUNDATIONAL EXPERIMENTS IN QUANTUM MECHANICS Matter Optics and Shelving Effect Bassano Vacchini DIPARTIMENTO DI FISICA - UNIVERSITÀ DI MILANO ISTITUZIONI DI FISICA TEORICA 30 MAGGIO 2003 FOUNDATIONAL

More information

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy)

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy) Light matter interaction Hydrogen atom Ground state spherical electron cloud Excited state : 4 quantum numbers n principal (energy) L angular momentum, 2,3... L L z projection of angular momentum S z projection

More information

E 3 (t) Z 1. t 1 = t Z 1 c t 2 = t Z 2 c

E 3 (t) Z 1. t 1 = t Z 1 c t 2 = t Z 2 c RE 0 E 3 (t) E 0 TE 0 Z 2 E 4 (t) R E (t) Z 1 T R 2 + T 2 = 1 E(t)=E 0 e iφ(r) ωt E 4 (t)=rt E (t 2 )+TRE(t 1 ) Z 1 /c t 1 = t Z 1 c t 2 = t Z 2 c I Ī 4 (t)= 1 2 ɛ 0c E 4 (t) 2 = 1 2 ɛ 0c R 2 T 2 [ E (t

More information

WAVE PARTICLE DUALITY

WAVE PARTICLE DUALITY WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle PHOTOELECTRIC

More information

Chapter 5 Particles and Waves. Particle wave dualism for objects primarily known as particles Introduction to Schrödinger equation

Chapter 5 Particles and Waves. Particle wave dualism for objects primarily known as particles Introduction to Schrödinger equation Chapter 5 Particles and Waves Particle wave dualism for objects primarily known as particles Introduction to Schrödinger equation Recall: Summary wave particle dualism Electromagnetic waves have particle

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Matter waves in time-modulated complex light potentials

Matter waves in time-modulated complex light potentials Matter waves in time-modulated complex light potentials S. Bernet, 1 R. Abfalterer, 2 C. Keller, 3 M. K. Oberthaler, 4 J. Schmiedmayer, 2 and A. Zeilinger 3 1 Institut für Medizinische Physik, Universität

More information

Requirements for coherent atom channeling 1

Requirements for coherent atom channeling 1 25 May 2000 Ž. Optics Communications 179 2000 129 135 www.elsevier.comrlocateroptcom Requirements for coherent atom channeling 1 Claudia Keller a,b,), Jorg Schmiedmayer b, Anton Zeilinger a,b a Institut

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION An atomically thin matter-wave beam splitter Christian Brand, Michele Sclafani, Christian Knobloch, Yigal Lilach, Thomas Juffmann, Jani Kotakoski, Clemens Mangler, Andreas Winter, Andrey Turchanin, Jannik

More information

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord Diffraction Interferometry Conclusion Laboratoire de physique des lasers, CNRS-Université Paris Nord Quantum metrology and fundamental constants Diffraction Interferometry Conclusion Introduction Why using

More information

The Quantum Theory of Atoms and Molecules

The Quantum Theory of Atoms and Molecules The Quantum Theory of Atoms and Molecules Breakdown of classical physics: Wave-particle duality Dr Grant Ritchie Electromagnetic waves Remember: The speed of a wave, v, is related to its wavelength, λ,

More information

Chapter 25. Modern Optics and Matter Waves

Chapter 25. Modern Optics and Matter Waves Chapter 25. Modern Optics and Matter Waves This image of the individual atoms in a silicon crystal was made by exploiting the wave properties of electrons. Matter and light behave like particle and waves.

More information

Heavy Atom Quantum Diffraction by Scattering from. Surfaces. Eli Pollak Chemical Physics Department Weizmann Institute of Science

Heavy Atom Quantum Diffraction by Scattering from. Surfaces. Eli Pollak Chemical Physics Department Weizmann Institute of Science Heavy Atom Quantum Diffraction by Scattering from Coworkers: Dr. Jeremy M. Moix Surfaces Eli Pollak Chemical Physics Department Weizmann Institute of Science Grants: Israel Science Foundation Weizmann-UK

More information

Lecture PowerPoint. Chapter 28 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 28 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 28 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Part 3: HANDS-ON ACTIVITIES

Part 3: HANDS-ON ACTIVITIES 1 Quantum Physics The physics of the very small with great applications Part 3: HANDS-ON ACTIVITIES Electron diffraction Quantum Spin-Off is funded by the European Union under the LLP Comenius programme

More information

Quantum interference experiments with large molecules

Quantum interference experiments with large molecules Quantum interference experiments with large molecules Olaf Nairz, a) Markus Arndt, and Anton Zeilinger b) Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria Received

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics The University of Hong Kong Department of Physics Physics Laboratory PHYS3551 Introductory Solid State Physics Experiment No. 3551-2: Electron and Optical Diffraction Name: University No: This experiment

More information

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Section7: The Bohr Atom Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Continuous Spectrum Everyone has seen the spectrum produced when white

More information

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 30 Physics, 4 th Edition James S. Walker Chapter 30 Quantum Physics Units of Chapter 30 Blackbody Radiation and Planck s Hypothesis of Quantized Energy Photons and the Photoelectric

More information

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 18 August 2017, 08:00-12:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 18 August 2017, 08:00-12:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 18 August 2017, 08:00-12:00 Examiner: Zhenxia Liu (Tel: 070 0895208). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the

More information

Neutron interferometry. Hofer Joachim

Neutron interferometry. Hofer Joachim 20.01.2011 Contents 1 Introduction 2 1.1 Foundations of neutron optics...................................... 2 1.2 Fundamental techniques......................................... 2 1.2.1 Superposition

More information

Atomic Models. 1) Students will be able to describe the evolution of atomic models.

Atomic Models. 1) Students will be able to describe the evolution of atomic models. Atomic Models 1) Students will be able to describe the evolution of atomic models. 2) Students will be able to describe the role of experimental evidence in changing models of the atom. 3) Students will

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Wave nature of particles

Wave nature of particles Wave nature of particles We have thus far developed a model of atomic structure based on the particle nature of matter: Atoms have a dense nucleus of positive charge with electrons orbiting the nucleus

More information

New Journal of Physics

New Journal of Physics New Journal of Physics The open access journal for physics A scalable optical detection scheme for matter wave interferometry Alexander Stibor 1, André Stefanov 1, Fabienne Goldfarb 2, Elisabeth Reiger

More information

Fisica Generale 3. Bassano Vacchini.

Fisica Generale 3. Bassano Vacchini. Fisica Generale 3 Bassano Vacchini bassano.vacchini@mi.infn.it Overview Ø Interference experiments Ø Diffraction and interference with light Ø Interference with light in the limit of low intensity Ø The

More information

arxiv: v1 [quant-ph] 9 Mar 2009

arxiv: v1 [quant-ph] 9 Mar 2009 Quantum interferometry with complex molecules Markus Arndt Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria arxiv:0903.1614v1 [quant-ph] 9 Mar 2009 Klaus Hornberger Department

More information

LECTURE # 17 Modern Optics Matter Waves

LECTURE # 17 Modern Optics Matter Waves PHYS 270-SPRING 2011 LECTURE # 17 Modern Optics Matter Waves April 5, 2011 1 Spectroscopy: Unlocking the Structure of Atoms There are two types of spectra, continuous spectra and discrete spectra: Hot,

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Electromagnetic waves

Electromagnetic waves Electromagnetic waves University of Pécs, Faculty of Medicines, Dept. Biophysics Scientists physicists, chemists, astronomers Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer

More information

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference?

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference? Course essay Friday, Nov 3: Due in class essay topic(review article, operating experiment, noble prize) short description - one paragraph http://www.hep.wisc.edu/~herndon/107-0609/essay.htm Friday, Nov

More information

Lecture 36 Chapter 31 Light Quanta Matter Waves Uncertainty Principle

Lecture 36 Chapter 31 Light Quanta Matter Waves Uncertainty Principle Lecture 36 Chapter 31 Light Quanta Matter Waves Uncertainty Principle 24-Nov-10 Birth of Quantum Theory There has been a long historical debate about the nature of light: Some believed it to be particle-like.

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

A matter wave thought experiment concerning Galilean transformations

A matter wave thought experiment concerning Galilean transformations A matter wave thought experiment concerning Galilean transformations Takeshi Yamaguchi Quantum Nano Electronics Research Center, Tokyo Institute of Technology, 5-1,O- Okayama,Meguro-ku,Tokyo 15-855, Japan

More information

Maxwell s Ekvationer

Maxwell s Ekvationer Fö10 Maxwell s Ekvationer Gauss Lag för Elektriska Fältet E d A = q enc ε 0 Gauss Lag för Magnetiska Fältet Faraday s Lag Ampere Maxwell s Lag B d A = 0 E d s = dφ dt dφ dt E B d s = μ 0 ε 0 + μ0 B i enc

More information

Slide 1. Quantum Mechanics, and Shakespeare

Slide 1. Quantum Mechanics, and Shakespeare Slide 1 Quantum Mechanics, and Shakespeare Slide 2 Slide 3 Calculation and Design of Material Properties From First Principles The STANDARD MODEL of matter: look at your hands everything, from your biopolymers

More information

PHYS 4 CONCEPT PACKET Complete

PHYS 4 CONCEPT PACKET Complete PHYS 4 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

Wave Nature of Matter

Wave Nature of Matter Wave Nature of Matter Wave-Particle Duality de Broglie proposed that particles with momentum could have an associated wavelength (converse of photons having momentum) de Broglie wavelength h λ = p or p

More information

Gravitationsfält. Uppdaterad: [1] Gravitation ett märkligt fenomen [2] Gravitationsfält [3] Gravitationsfält

Gravitationsfält. Uppdaterad: [1] Gravitation ett märkligt fenomen [2] Gravitationsfält [3] Gravitationsfält Gravitationsfält Uppdaterad: 180112 [1] Gravitation ett märkligt fenomen [2] Gravitationsfält [3] Gravitationsfält Har jag använt någon bild som jag inte får använda? Låt mig veta så tar jag bort den.

More information

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova Exam 4 P202 Spring 2004 Instructor: Prof. Sinova Name: Date: 4/22/04 Section: All work must be shown to get credit for the answer marked. You must show or state your reasoning. If the answer marked does

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

Dynamical diffraction of atomic matter waves by crystals of light

Dynamical diffraction of atomic matter waves by crystals of light PHYSICAL REVIEW A VOLUME 60, NUMBER 1 JULY 1999 Dynamical diffraction of atomic matter waves by crystals of light M. K. Oberthaler, 1,2 R. Abfalterer, 1 S. Bernet, 1 C. Keller, 1 J. Schmiedmayer, 1 and

More information

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty.

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty. Richard Feynman: Electron waves are probability waves in the ocean of uncertainty. Last Time We Solved some of the Problems with Classical Physics Discrete Spectra? Bohr Model but not complete. Blackbody

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Blazed Nanostructure Gratings for Electron and Atom Diffraction

Blazed Nanostructure Gratings for Electron and Atom Diffraction Blazed Nanostructure Gratings for Electron and Atom Diffraction Alexander D. Cronin, Ben McMorran, Mark Robertson-Tessi Department of Physics, University of Arizona, 1118 E th St. Tucson, Arizona 8571

More information

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name:

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name: Physics 214 Midterm Exam Spring 215 Last Name: First Name NetID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Keep your calculator on your own desk. Calculators

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 15: QUANTUM THEORY This lecture will help you understand: The Photoelectric Effect Absorption Spectra Fluorescence Incandescence Lasers Wave-Particle Duality Particles

More information

Wave properties of matter & Quantum mechanics I. Chapter 5

Wave properties of matter & Quantum mechanics I. Chapter 5 Wave properties of matter & Quantum mechanics I Chapter 5 X-ray diffraction Max von Laue suggested that if x-rays were a form of electromagnetic radiation, interference effects should be observed. Crystals

More information

H2 Physics Set A Paper 3 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3.

H2 Physics Set A Paper 3  H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3. H2 PHYSICS Exam papers with worked solutions (Selected from Top JC) SET A PAPER 3 Compiled by THE PHYSICS CAFE 1 P a g e Candidates answer on the Question Paper. No Additional Materials are required. READ

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 1-1B: THE INTERACTION OF MATTER WITH RADIATION Introductory Video Quantum Mechanics Essential Idea: The microscopic quantum world offers

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

Recall: The Importance of Light

Recall: The Importance of Light Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Measurement of the He-McKellar-Wilkens and Aharonov-Casher phases by atom interferometry

Measurement of the He-McKellar-Wilkens and Aharonov-Casher phases by atom interferometry Measurement of the He-McKellar-Wilkens and Aharonov-Casher phases by atom interferometry J. Gillot, S. Lepoutre, A. Gauguet, M.Büchner, G. Trénec and J. Vigué LCAR/IRSAMC Université de Toulouse UPS et

More information

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x 10-19 C and mass 9.1x 10-31 kg... Work function. The minimum amount of energy required

More information

The Grating Spectrometer and Atomic Spectra

The Grating Spectrometer and Atomic Spectra PHY 192 Grating Spectrometer 1 The Grating Spectrometer and Atomic Spectra Introduction In the previous experiment diffraction and interference were discussed and at the end a diffraction grating was introduced.

More information

Quantum Mechanics. A Physics joke. Q: What's the difference between a quantum mechanic and an auto mechanic?

Quantum Mechanics. A Physics joke. Q: What's the difference between a quantum mechanic and an auto mechanic? Quantum Mechanics A Physics joke. Q: What's the difference between a quantum mechanic and an auto mechanic? A: A quantum mechanic can get his car into the garage without opening the door! 1 Quantum Mechanics

More information

Atomic Diffraction Microscope of the de Broglie Waves

Atomic Diffraction Microscope of the de Broglie Waves ISSN 5-66X, Laser Physics,, Vol., No., pp. 7 5. Pleiades Publishing, Ltd.,. Original Russian Text Astro, Ltd.,. PAPERS Atomic Diffraction Microscope of the de Broglie Waves V. I. Balykin Institute of Spectroscopy,

More information

Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P )

Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P ) Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P2230100) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Licht und Optik Experiment:

More information

1 Photoelectric effect - Classical treatment. 2 Photoelectric effect - Quantum treatment

1 Photoelectric effect - Classical treatment. 2 Photoelectric effect - Quantum treatment 1 OF 5 NOTE: This problem set is to be handed in to my mail slot (SMITH) located in the Clarendon Laboratory by 5:00 PM Tuesday, 10 May. 1 Photoelectric effect - Classical treatment A laser beam with an

More information

Visit for more fantastic resources. OCR. A Level. A Level Physics. Astrophysics 1 (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. OCR. A Level. A Level Physics. Astrophysics 1 (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. OCR A Level A Level Physics Astrophysics 1 (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Amongst all

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Salters Horners AS/A level Physics 1

Salters Horners AS/A level Physics 1 GING UP THE PAST Overview of chapter Table 5.1 summarises the content and skills covered in this chapter, and Table 5.2 lists the learning outcomes required by the exam specification. The latter are also

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Chemistry 1A, Fall 2004 Midterm Exam I, Version 1 Sept 21, 2004 (90 min, closed book)

Chemistry 1A, Fall 2004 Midterm Exam I, Version 1 Sept 21, 2004 (90 min, closed book) Chemistry 1A, Fall 2004 Midterm Exam I, Version 1 Sept 21, 2004 (90 min, closed book) Name: SID: Identification Sticker TA Name: Write your name on every page of this exam. This exam has 40 multiple choice

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

Chapter 1 Early Quantum Phenomena

Chapter 1 Early Quantum Phenomena Chapter Early Quantum Phenomena... 8 Early Quantum Phenomena... 8 Photo- electric effect... Emission Spectrum of Hydrogen... 3 Bohr s Model of the atom... 4 De Broglie Waves... 7 Double slit experiment...

More information

Quantum Interference and Duality

Quantum Interference and Duality Quantum Interference and Duality Kiyohide NOMURA Department of Physics December 21, 2016 1 / 49 Quantum Physics(Mechanics) Basic notion of Quantum Physics: Wave-Particle Duality Light (electromagnetic

More information

WHAT DOES THE ATOM REALLY LOOK LIKE? THE THOMSON MODEL

WHAT DOES THE ATOM REALLY LOOK LIKE? THE THOMSON MODEL WHAT DOES THE ATOM REALLY LOOK LIKE? THE THOMSON MODEL RUTHERFORD SCATTERING RUTHERFORD SCATTERING: SOME DETAILS RUTHERFORD SCATTERING: FINAL RESULTS N() = no. scattered into interval to +d N i = total

More information

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them.

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them. NAME: SPECTROSCOPY PRELAB 1) What is a spectrum? 2) Name the 3 types of spectra and, in 1 sentence each, describe them. a. b. c. 3) Use Wien s law to calculate the surface temperature of the star Alnilam

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY CHEM 330 B. O. Owaga Classical physics Classical physics is based on three assumptions i. Predicts precise trajectory for particles with precisely specified

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

Maxwell s Ekvationer

Maxwell s Ekvationer Fö9 2017 Maxwell s Ekvationer Gauss Lag för Elektriska Fältet E d A q enc 0 Gauss Lag för Magnetiska Fältet Faraday s Lag Ampere Maxwell s Lag B d A 0 E d s d dt d dt E B ds 0 0 0 B i enc Lorentz Kraften

More information

Prof. Jeff Kenney Class 5 June 1, 2018

Prof. Jeff Kenney Class 5 June 1, 2018 www.astro.yale.edu/astro120 Prof. Jeff Kenney Class 5 June 1, 2018 to understand how we know stuff about the universe we need to understand: 1. the spectral analysis of light 2. how light interacts with

More information

Name : Roll No. :.. Invigilator s Signature :.. CS/B.Tech/SEM-2/PH-201/2010 2010 ENGINEERING PHYSICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

The Atom and Quantum Mechanics

The Atom and Quantum Mechanics The Atom and Quantum Mechanics Last time... In a spherical geometry the sum of the angles of a triangle > 180 What is the principle of equivalence? What three observations confirmed Einstein s Theory of

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

Chapter (5) Matter Waves

Chapter (5) Matter Waves Chapter (5) Matter Waves De Broglie wavelength Wave groups Consider a one- dimensional wave propagating in the positive x- direction with a phase speed v p. Where v p is the speed of a point of constant

More information

Lecture 5: the Hydrogen Atom

Lecture 5: the Hydrogen Atom Lecture 5: the Hydrogen Atom 1. Hydrogen atom: energy levels in the Bohr model 2. Emission lines: atoms releasing energy as electrons fall from level to level 3. Absorption lines: electrons being bumped

More information

Automatic Control II: Summary and comments

Automatic Control II: Summary and comments Automatic Control II: Summary and comments Hints for what is essential to understand the course, and to perform well at the exam. You should be able to distinguish between continuous-time (c-t) and discrete-time

More information

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo Light and Photons PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo January 16, 2014 Light What is light? Electromagnetic wave direction of the

More information

Name the region of the electromagnetic radiation emitted by the laser. ...

Name the region of the electromagnetic radiation emitted by the laser. ... 1. An argon-laser emits electromagnetic radiation of wavelength 5.1 10 7 m. The radiation is directed onto the surface of a caesium plate. The work function energy for caesium is 1.9 ev. (i) Name the region

More information

Lecture 9: Introduction to QM: Review and Examples

Lecture 9: Introduction to QM: Review and Examples Lecture 9: Introduction to QM: Review and Examples S 1 S 2 Lecture 9, p 1 Photoelectric Effect V stop (v) KE e V hf F max stop Binding energy F The work function: F is the minimum energy needed to strip

More information

Real-time single-molecule imaging of quantum interference

Real-time single-molecule imaging of quantum interference Real-time single-molecule imaging of quantum interference Thomas Juffmann 1, Adriana Milic 1, Michael Müllneritsch 1, Peter Asenbaum 1, Alexander Tsukernik 2, Jens Tüxen 3, Marcel Mayor 3,4, Ori Cheshnovsky

More information

Deskription. Exempel 1. Exempel 1 (lösning) Normalfördelningsmodellen (forts.)

Deskription. Exempel 1. Exempel 1 (lösning) Normalfördelningsmodellen (forts.) Deskription Normalfördelningsmodellen (forts.) 1 Exempel 1 En datorleverantör har en stödfunktion dit kunder med krånglande datorer kan ringa. Tiden det tar att svara på inkommande samtal varierar, och

More information

Matter Waves. Chapter 5

Matter Waves. Chapter 5 Matter Waves Chapter 5 De Broglie pilot waves Electromagnetic waves are associated with quanta - particles called photons. Turning this fact on its head, Louis de Broglie guessed : Matter particles have

More information

Level 3 Physics, 2016

Level 3 Physics, 2016 91523 915230 3SUPERVISOR S Level 3 Physics, 2016 91523 Demonstrate understanding of wave systems 2.00 p.m. Tuesday 15 November 2016 Credits: Four Achievement Achievement with Merit Achievement with Excellence

More information

Mid Term Exam 1. Feb 13, 2009

Mid Term Exam 1. Feb 13, 2009 Name: ID: Mid Term Exam 1 Phys 48 Feb 13, 009 Print your name and ID number clearly above. To receive full credit you must show all your work. If you only provide your final answer (in the boxes) and do

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Computational Fluid Dynamics F7018T. Part II: Finite volume methods

Computational Fluid Dynamics F7018T. Part II: Finite volume methods Computational Fluid Dynamics F7018T Part II: Finite volume methods Questions to be answered Why numerical solutions of fluid mechanical problems? What is CFD? Why is it wrong to compare CFD with FEM? Can

More information