Atomic Models. 1) Students will be able to describe the evolution of atomic models.

Size: px
Start display at page:

Download "Atomic Models. 1) Students will be able to describe the evolution of atomic models."

Transcription

1 Atomic Models 1) Students will be able to describe the evolution of atomic models. 2) Students will be able to describe the role of experimental evidence in changing models of the atom. 3) Students will be able to use photon energies to describe the energy levels of atoms. 1

2 Teachers' notes Subject Topic Title Grade(s) Cross curricular link(s) Prior knowledge Physics 30 topic title 12 curr. know. Intended learning outcome(s) 2

3 Lesson notes 3

4 Focusing questions: 1. What are atoms made of? 2. What holds atoms together? 3. How do we know any of this stuff? 4

5 Early models of the atom: Democritus (ancient Greece) coined the term atom (from atomos...indivisible) believed that matter consisted of small, indivisible atoms that had space between them 5

6 Dalton's "Billiard ball" model (1800's) all matter is made of atoms all atoms of an element are identical, and different from those of a different element 6

7 J.J. Thomson's q/m ratio of the electron and the "Plum Pudding" model Recall: cathode rays were emitted from the cathode when a voltage was placed across two plates that were in a vacuum 7

8 8

9 Consequences of Thomson's experiments: determined that the atom was divisible the atom could be divided into separate negative and positive charges calculated the q/m ratio for the electron (needed Millikan to eventually get m e ) 9

10 revised the model of the atom to consist of a homogenous distribution of negative charge embedded in a "soup" of positive charge 10

11 11

12 Rutherford Scattering Experiment (see p. 767) Rutherford fired alpha particles at a thin sheaf of gold foil. A detector could be moved to determine where the scattered α 2+ had been deflected. 12

13 Expectations: α 2+ were known to be relatively large (about 8000X the size of an electron). If α 2+ were directed at gold atoms they should pass straight through, as there was nothing large enough in the atom (according to Thomson's model) to cause a deflection. 13

14 14

15 Actual results: the vast majority of particles went straight through the gold foil, but some underwent major deflections (up to 180 degrees) "It was almost as incredible as if you fired a 15 inch shell at a piece of tissue paper and it came back to hit you." 15

16 Consequences of the experiment: the nuclear model of the atom: most of the mass (and all of the + charge) of the atom is located in a central, dense nucleus most of the atom consists of empty space the electrons circle the nucleus like "planets around the Sun" 16

17 See p

18 Problem with the nuclear model: Maxwell had predicted that accelerating charges emit EMR. e circling the nucleus would be accelerating and should emit EMR and lose energy, spiraling into the nucleus... yet this doesn't happen. What are we to do with the electrons? 18

19 More unsettling experimental evidence that needs to be reconciled with theory... Continuous Spectra: produced by hot objects 19

20 Emission Spectra (Bright line spectra): produced by a hot, low density gas 20

21 Hydrogen Iron 21

22 emmission spectra consist of specific wavelengths of light that are emitted by an element when it is excited these wavelengths act as a "fingerprint" for that element 22

23 Absorption spectra (dark line spectra): produced when white light is passed through a cool, low density gas 23

24 24

25 25

26 The bright lines produced by an element's emission spectrum correspond to the dark lines produced by the same elements absorption spectrum (i.e. one is the "photo negative" of the other). Problem: What kind of model of the atom can explain the phenomenon of bright line and dark line spectra? 26

27 Neils Bohr and the Stationary State Model Bohr suggested that: electrons can orbit the nucleus at specific distances from the nucleus. These distances are some multiple of the smallest radius possible Orbits in an atom are quantized. each of these orbits has a specific energy, which is also a multiple of the energy of the smallest radius Electron energy levels (stationary states) are quantized. 27

28 28

29 Key concept: The energy of the photon is equal to the difference in the energy of the stationary states. 29

30 30

31 31

32 32

33 Aurora Borealis Recall...the sun emits a solar wind, which consists of highly energetic particles. These particles are deflected by Earth's magnetic field toward the magnetic north and south poles. 33

34 When the particles in the solar wind interact with gases in the atmosphere (primarily oxygen and nitrogen), they cause electrons in these gases to reach an excited state. As these electrons undergo a transition to lower states, they emit characteristic wavelengths of light. 34

35 Relevant Reading: p (Be aware that you are not responsible for much of the "math" in this section of the textbook) Check and Reflect, p. 780 #5 9, etest 35

36 36

37 37

38 38

39 Lasers Laser: Light amplification by stimulated emission of radiation An excited electron will drop down to a less energy energy state spontaneously. As it does so, it emits a photon. This is spontaneous emission of radiation. 39

40 Einstein predicted that an excited electron could be "encouraged" to drop to its lower energy state. This is accomplished by directing at the excited atom photons that have the same frequency as the photons that will be emitted during the electron transition. These incident photons are not absorbed. 40

41 This process is called stimulated emission of radiation. Some properties of laser light produced by this process: monochromatic (i.e. all one wavelength) the light is coherent (i.e. the EMR is in phase) coherent light tends to focus in a tight beam 41

42 Major problem with Bohr's stationary state model: it doesn't really explain why energy is quantized, or why orbiting electrons don't emit EMR 42

43 Electron Waves and the Model of the Atom Recall...de Broglie had predicted that electrons should exhibit wave behaviours. Evidence of this behaviour was found when electrons were directed at a crystal (which acted as a diffraction grating) and interference patterns were observed. 43

44 The principle of standing waves can be applied to electrons and the atom. For an electron wave to be produced such that there is constructive interference, the circumference of the orbit must be equal to some whole number of wavelengths. Circumference = nλ 44

45 A stationary state can exist at this circumference because a whole # of λ's fit (i.e. we have constructive interference). A stationary state can't exist at this location because the electron wave experience destructive interference. 45

46 Consequences of this wave understanding: the orbital isn't "the path" that electrons are likely to follow. Electrons (acting as waves) do not have a defined position. This means that the orbitals show the likelihood (or probability) of an electron being in a specific location. The quantum model of the atom is a highly statistical model because of this idea of quantum indeterminacy (we can't be sure...we can just calculate the probability). 46

47 47

48 Attachments carjumps[1].dir favicon[1].ico

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012 Atomic Structure Discovered Ancient Greeks Democritus (460-362 BC) - indivisible particles called atoms Prevailing argument (Plato and Aristotle) - matter is continuously and infinitely divisible John

More information

The Atom and Quantum Mechanics

The Atom and Quantum Mechanics The Atom and Quantum Mechanics Last time... In a spherical geometry the sum of the angles of a triangle > 180 What is the principle of equivalence? What three observations confirmed Einstein s Theory of

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

EARLY VIEWS: The Ancient Greeks

EARLY VIEWS: The Ancient Greeks Feb 7 11:59 AM EARLY VIEWS: The Ancient Greeks Empedocles (c. 450 B.C.) proposed Four Element theory he thought that matter was composed of four elements: AIR, EARTH, FIRE and WATER elements mixed together

More information

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model.

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model. Various models of the ATOM Dalton Model John Dalton developed the first atomic model in 1808. Before him people, mostly philosophers, had speculated about the smallest unit of matter and two theories prevailed.

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Dalton Thompson Rutherford Bohr Modern Model ("Wave. Models of the Atom

Dalton Thompson Rutherford Bohr Modern Model (Wave. Models of the Atom Dalton Thompson Rutherford Bohr Modern Model ("Wave Models of the Atom Mechanical" Model) Aim: To discuss the scientists and their contributions to the current atomic model. Focus: Rutherford's Gold Foil

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

Atomic Theory. Democritus to the Planetary Model

Atomic Theory. Democritus to the Planetary Model Atomic Theory Democritus to the Planetary Model Democritus Greek philosopher (460-370 BCE) Believed in the philosophy of materialism With Leucippus, they though that matter can not be divided infinitely.

More information

3. Particle nature of matter

3. Particle nature of matter 3. Particle nature of matter 3.1 atomic nature of matter Democrit(us) 470-380 B.C.: there is only atoms and empty space, everything else is mere opinion (atoms are indivisible) Dalton (chemist) 180: chemical

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

Physics 30 Modern Physics Unit: Atomic Basics

Physics 30 Modern Physics Unit: Atomic Basics Physics 30 Modern Physics Unit: Atomic Basics Models of the Atom The Greeks believed that if you kept dividing matter into smaller and smaller pieces, you would eventually come to a bit of matter that

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Democritus of Abdera. John Dalton. Dalton s Atom. Dalton s Atomic Theory Ancient Greece - 4th century BC. Eaglesfield, England

Democritus of Abdera. John Dalton. Dalton s Atom. Dalton s Atomic Theory Ancient Greece - 4th century BC. Eaglesfield, England Democritus of Abdera Ancient Greece - 4th century BC first suggested the existence of tiny fundamental particles that make up matter. atoms = indestructible did not agree with the current sci theory -

More information

Chapter 27 Lecture Notes

Chapter 27 Lecture Notes Chapter 27 Lecture Notes Physics 2424 - Strauss Formulas: λ P T = 2.80 10-3 m K E = nhf = nhc/λ fλ = c hf = K max + W 0 λ = h/p λ - λ = (h/mc)(1 - cosθ) 1/λ = R(1/n 2 f - 1/n 2 i ) Lyman Series n f = 1,

More information

Atomic Theory. Early models

Atomic Theory. Early models Atomic Theory Early models Ancient Greece Late 18 th century 4 elements Earth, Water, Wind, Fire: Matter is made up in different combinations of these 4 elements. First atom proposed by Democritus (Greek)

More information

The History of the Atom. How did we learn about the atom?

The History of the Atom. How did we learn about the atom? The History of the Atom How did we learn about the atom? The Atomic Theory of Matter All matter is made up of fundamental particles. What does fundamental mean? The Greek Philosophers, 400 B.C. Democritus

More information

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m Chapter 30 Atom Physics DR JJ UiTM-Cutnell & Johnson 7th ed. 1 30.1 Rutherford Scattering and the Nuclear Atom Model of an atom-the recent model Nuclear radius r 10-15 m Electron s position radius r 10-10

More information

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video 2 CH 4- Atoms 1 Discovering the Atom In this lesson we will take a look at the scientists who explored the

More information

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18 Atomic Theory Developing the Nuclear Model of the Atom Democritus Theory: Atom, the indivisible particle c. 300 BC Democritus Problem: No scientific evidence c. 300 BC Dalton Theory: The solid sphere model

More information

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that:

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that: Particle Theory of Matter By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that: all matter is made up of very tiny particles each pure substance has its own

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & &

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & & Name: RegentsChemistry:Mr.Palermo Notes:Unit4:Atomics! www.mrpalermo.com Name: $ Key$Ideas$ Themodernmodeloftheatomhasevolvedoveralongperiodoftimethroughtheworkofmany scientists.(3.1a) Eachatomhasanucleus,withanoverallpositivecharge,surroundedbyoneormorenegatively

More information

The atom cont. +Investigating EM radiation

The atom cont. +Investigating EM radiation The atom cont. +Investigating EM radiation Announcements: First midterm is 7:30pm on Sept 26, 2013 Will post a past midterm exam from 2011 today. We are covering Chapter 3 today. (Started on Wednesday)

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Chapter 31 Atomic Physics

Chapter 31 Atomic Physics 100 92 86 100 92 84 100 92 84 98 92 83 97 92 82 96 91 80 96 91 76 95 91 74 95 90 68 95 89 67 95 89 66 94 87 93 86 No. of Students in Range Exam 3 Score Distribution 25 22 20 15 10 10 5 3 2 0 0 0 0 0 0

More information

VISUAL PHYSICS ONLINE EARLY MODELS OF THE ATOM

VISUAL PHYSICS ONLINE EARLY MODELS OF THE ATOM VISUAL PHYSICS ONLINE EARLY MODELS OF THE ATOM The atom was believed to be smallest building block of matter and an indivisible unit, until the late 19 th century. There was no direct evidence that atoms

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

I. History and Development of the Atom

I. History and Development of the Atom Unit 3: The Atom I. History and Development of the Atom A. Democritus (around 400 B.C.) Based on his observations of the natural world around him, Democritus was the first to suggest that all matter was

More information

Atomic Theory. Why do we believe that all matter is made of atoms?

Atomic Theory. Why do we believe that all matter is made of atoms? Atomic Theory Why do we believe that all matter is made of atoms? 1. Law of definite composition: Compounds (like H 2 O) contain the same elements in the same proportions by mass regardless of the size

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra Atom and Quantum Atomic Nucleus Ernest Rutherford 1871-1937 Rutherford s Gold Foil Experiment Deflection of alpha particles showed the atom to be mostly empty space with a concentration of mass at its

More information

Physics: Quanta to Quarks Option (99.95 ATAR)

Physics: Quanta to Quarks Option (99.95 ATAR) HSC Physics Year 2016 Mark 95.00 Pages 22 Published Jan 15, 2017 Physics: Quanta to Quarks Option (99.95 ATAR) By Edward (99.95 ATAR) Powered by TCPDF (www.tcpdf.org) Your notes author, Edward. Edward

More information

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus Conceptual Physics 11 th Edition Chapter 32: THE ATOM AND THE QUANTUM Discovery of the Atomic Nucleus These alpha particles must have hit something relatively massive but what? Rutherford reasoned that

More information

Rhonda Alexander IC Science Robert E. Lee

Rhonda Alexander IC Science Robert E. Lee Rhonda Alexander IC Science Robert E. Lee Atom The smallest particle of an element that retains all of the chemical properties of the element. The Theory & Evidence for John Dalton s Atomic Theory: Around

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

like firing a 16 shell at a piece of tissue paper and seeing it bounce back. - E Rutherford

like firing a 16 shell at a piece of tissue paper and seeing it bounce back. - E Rutherford Black body radiation [const.] λ max = T E radiated surf. area Planck E f hf = T E W KE 4 ROY G BIV Einstein Photo-electric effect- Photons Thompson electron identification B + F v R +q 2 mv F= =qvb=f R

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Democritus (400 BC) John Dalton (1803) J.J. Thomson (1897) Ernest Rutherford (1911) James Chadwick (1932) - suggested that matter is composed of indivisible particles called

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

In many ways, Dalton's ideas are still useful today. For example, they help us to understand elements, compounds, and molecules.

In many ways, Dalton's ideas are still useful today. For example, they help us to understand elements, compounds, and molecules. History of the Atom Name: Reading excerpt from Absorb Chemistry for GCSE by Lawrie Ryan http://www.absorblearning.com/chemistry/demo/units/lr301.html Introduction Our understanding of the physical world

More information

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Section7: The Bohr Atom Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Continuous Spectrum Everyone has seen the spectrum produced when white

More information

The Structure of the Atom

The Structure of the Atom Main Ideas Atoms contain positive and negative particles. Atoms have small, dense, positively-charged nuclei. A nucleus contains protons and neutrons. The radii of atoms are expressed in picometers. FIGURE

More information

General Chemistry Standard : Identify the significance of the various outcomes of Thomson s and Rutherford s experiments

General Chemistry Standard : Identify the significance of the various outcomes of Thomson s and Rutherford s experiments Not the history of the atom, but the idea of the atom The atom was not discovered until recently Original Idea Ancient Greece (400 BC) Proposed by lesser-known scientists They looked at a beach made of

More information

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture Nuclear Chemistry Atomic Structure Notes Start on Slide 20 from the second class lecture The Birth of an Idea Democritus, 400 B.C. coined the term atom If you divide matter into smaller and smaller pieces,

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

ATOM. Rich -Paradis. Early Thoughts Aristotle-- Continuous theory. Matter can be divided indefinitely. Greeks

ATOM. Rich -Paradis. Early Thoughts Aristotle-- Continuous theory. Matter can be divided indefinitely. Greeks ATOM Early Thoughts Aristotle-- Continuous theory Greeks Matter can be divided indefinitely matter is made up of particles--4 elements 4 elements --air--fire--water- -- earth Democritus --Discontinuous

More information

democritus (~440 bc) who was he? theorized: A Greek philosopher

democritus (~440 bc) who was he? theorized: A Greek philosopher democritus (~440 bc) who was he? A Greek philosopher theorized: Everything in the world is made up small particles that we cannot see The shape of these particles determine the properties of a substance

More information

LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39

LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39 PHYS 270-SPRING 2011 LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39 April 14, 2011 1 HOW TO MEASURE SPECTRA Spectroscopy: Unlocking the Structure of Atoms

More information

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom?

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom? Atomic Theories Chapter 4.1 How do we know about atoms when no one has ever seen inside an atom? Greek Philosopher Democritus Lived 460 370 BCE Believed it is IMPOSSIBLE to divide matter ad infinitum.

More information

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS Atoms Atoms have protons and neutrons located in the nucleus of the atom. Electrons orbit around the nucleus in well-defined paths. Protons have

More information

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on.

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on. Bellwork: Get out your diagram from your research paper. Get out a sheet of paper to take some notes on. Fill in the Following Table in your notes (assume an atom unless otherwise stated: Symbol Protons

More information

Introduction to Quantum Physics. Early Atomic Physics

Introduction to Quantum Physics. Early Atomic Physics Introduction to Quantum Physics Early Atomic Physics What is Quantum Physics Quantum Physics is a collection of laws which explain observations of the tiny building blocks of all matter. The world of the

More information

Greek Philosophers (cont.)

Greek Philosophers (cont.) Greek Philosophers (cont.) Many ancient scholars believed matter was composed of such things as earth, water, air, and fire. Many believed matter could be endlessly divided into smaller and smaller pieces.

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

Chapter 4. Models of the Atom

Chapter 4. Models of the Atom Chapter 4 Models of the Atom Dalton Model of the Atom John Dalton proposed that all matter is made up of tiny particles. These particles are molecules or atoms. Molecules can be broken down into atoms

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Ideas & Theories in Science Change Our theory about the atom has changed over time as new studies are done. Even though no one has ever seen an atom up close we are still

More information

Nicholas J. Giordano. Chapter 29. Atomic Theory. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.  Chapter 29. Atomic Theory. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 29 Atomic Theory Marilyn Akins, PhD Broome Community College Atomic Theory Matter is composed of atoms Atoms are assembled from electrons,

More information

Make sure this is handed in!

Make sure this is handed in! Make sure this is handed in! Based on the 3 groups in early atomic history, pick one of the groups and explain how they progressed the current knowledge of atoms and elements at their time. OR Explain

More information

Particle Nature of Matter. Chapter 4

Particle Nature of Matter. Chapter 4 Particle Nature of Matter Chapter 4 Modern physics When my grandfather was born, atoms were just an idea. That year, 1897, was marked by the discovery of the electron by J.J. Thomson. The nuclear model

More information

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1 Early Atomic Theories and the Origins of Quantum Theory Chapter 3.1 What is Matter Made of? People have wondered about the answer to this question for thousands of years Philosophers Matter is composed

More information

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table An Introduction to Atomic Theory VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table From Democritus to Dalton Two thousand years ago, Democritus proposed that matter consisted

More information

The Development of Atomic Theory. SCH12U February Mr. Dvorsky

The Development of Atomic Theory. SCH12U February Mr. Dvorsky The Development of Atomic Theory SCH12U February 3 2011 Mr. Dvorsky Nearly 2500 years ago Greek philosophers (i.e. Democritus) expressed a belief matter is composed of tiny indivisible particles called

More information

Atomic Theory Timeline

Atomic Theory Timeline Atomic Theory Timeline Democritus 450 B.C. Democritus was a Greek philosopher who came to the conclusion that everything was made up of tiny particles. He used the term atomos. Unfortunately, since Democritus

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 Light: Wave? Particle? Both! Modern models of the atom were derived by studying the

More information

From Last Time Pearson Education, Inc.

From Last Time Pearson Education, Inc. From Last Time Light: Absorption, Emission, Transmission, Reflection, and Scattering c=λ x f E=h x f Light (electromagnetic radiation) extends from gamma rays (high E, high f, small λ) to radio waves (small

More information

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E. Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + =

More information

DEMOCRITUS - A philosopher in the year 400 B.C. - He didn t do experiments and he wondered if atoms kept on being divided, that there would only be

DEMOCRITUS - A philosopher in the year 400 B.C. - He didn t do experiments and he wondered if atoms kept on being divided, that there would only be DEMOCRITUS A philosopher in the year 400 B.C. He didn t do experiments and he wondered if atoms kept on being divided, that there would only be one undividable particle left. He discovered that this was

More information

PROGRESSION OF THE ATOMIC MODEL

PROGRESSION OF THE ATOMIC MODEL PROGRESSION OF THE ATOMIC MODEL By 1808, it was widely accepted that matter was made up of ELEMENTS, which consisted of tiny PARTICLES called ATOMS. After 2000 years - DEMOCRITUS was right all along John

More information

HISTORY OF THE ATOM ATOMA

HISTORY OF THE ATOM ATOMA S.MORRIS 2006 HISTORY OF THE ATOM 460 BC Democritus develops the idea of atoms he pounded up materials in his pestle and mortar until he had reduced them to smaller and smaller particles which he called

More information

Physics 1C. Lecture 28D

Physics 1C. Lecture 28D Physics 1C Lecture 28D "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars." --Sir Arthur

More information

Calculate the volume of propane gas at 25.0 C and 1.08 atm required to provide 565 kj of heat using the reaction above.

Calculate the volume of propane gas at 25.0 C and 1.08 atm required to provide 565 kj of heat using the reaction above. 167 Calculate the volume of propane gas at 25.0 C and 1.08 atm required to provide 565 kj of heat using the reaction above. 1 - Convert energy requirement to moles PROPANE using thermochemical equation.

More information

Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester?

Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester? Chemistry Ms. Ye Name Date Block Do Now: Recall 1. What is an atom? What have you learned about the word atom so far this semester? Atoms Video: 1. Proper Portioned Giant Atom Model of Science: Structure

More information

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the Bellwork: 2/6/2013 1. Label the parts of the atom below. B 2. The smallest part of an atom is the. 3. The majority of the mass in an atom is found in the. A C 4. An atom is made up of mostly. Bellwork:

More information

The Atom. Describe a model of the atom that features a small nucleus surrounded by electrons.

The Atom. Describe a model of the atom that features a small nucleus surrounded by electrons. The Atom Describe a model of the atom that features a small nucleus surrounded by electrons. A guy by the name of Bohr created a model for the atom that consisted of an small nucleus surrounded by orbiting

More information

Heat of formation / enthalpy of formation!

Heat of formation / enthalpy of formation! 165 Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted? 1 - Use Hess' Law to find the enthalpy change of the

More information

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Covers all readings, lectures, homework from Chapters 17 through 30 Be sure to bring your student ID card, calculator, pencil, and up to three onepage

More information

Chemistry Objective: SWBAT describe the changes made to the model of the atom over time. Chemistry Warmup:

Chemistry Objective: SWBAT describe the changes made to the model of the atom over time. Chemistry Warmup: Chemistry Objective: SWBAT describe the changes made to the model of the atom over time. Chemistry Warmup: 1. Pick up a set of the notes for today from the first lab table. 2. Take out your lab activity

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6-1 THE ATOM AND ITS NUCLEUS IB Assessment Statements Topic 7.1, The Atom 7.1.1. Describe a model of the atom that features a small nucleus

More information

Chapter 38 and Chapter 39

Chapter 38 and Chapter 39 Chapter 38 and Chapter 39 State of 19th and very early 20th century physics: Light: 1. E&M Maxwell s equations > waves; J. J. Thompson s double slit experiment with light 2. Does light need a medium? >

More information

SNC1D1 History of the Atom

SNC1D1 History of the Atom SNC1D1 History of the Atom What is the atom? Atoms are the building block for all matter: Atoms make up elements! Elements combine to make compounds!2 ATOMIC MODEL TIMELINE 400 B.C PRESENT DAY ATOMIC MODEL

More information

Chapter 4. History of the atom. History of Atom Smallest possible piece? Atomos - not to be cut. Atoms and their structure

Chapter 4. History of the atom. History of Atom Smallest possible piece? Atomos - not to be cut. Atoms and their structure Chapter 4 Atoms and their structure History of the atom Not the history of atom, but the idea of the atom. Original idea Ancient Greece (400 B.C.) Democritus and Leucippus Greek philosophers. Looked at

More information

Atomic Structure. History of Atomic Theory

Atomic Structure. History of Atomic Theory Atomic Structure History of Atomic Theory Democritus (460-370 BC) Was the to come up with the idea of atom Believed that all matter was composed of Which is derived from the Greek word Atomos meaning He

More information

Chapter 4. The structure of the atom. AL-COS Objectives 1, 2,3,4,7, 10, 15, 20, 21, 22, 27and 28

Chapter 4. The structure of the atom. AL-COS Objectives 1, 2,3,4,7, 10, 15, 20, 21, 22, 27and 28 Chapter 4 The structure of the atom AL-COS Objectives 1, 2,3,4,7, 10, 15, 20, 21, 22, 27and 28 You ll learn to Identify the experiments that led to the development of the nuclear model of atomic structure

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

Ancient Greek Models of Atoms

Ancient Greek Models of Atoms Atomic Theory Ancient Greek Models of Atoms The philosopher Democritus believed that all matter consisted of extremely small particles that could not be divided. He called these particles atoms from the

More information

Chapter 38. The End of Classical Physics

Chapter 38. The End of Classical Physics Chapter 38. The End of Classical Physics Studies of the light emitted by gas discharge tubes helped bring classical physics to an end. Chapter Goal: To understand how scientists discovered the properties

More information

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Atomic Structure What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Early Theories Democritus: 4 B.C.: atom He

More information

Memorial to a Scientist

Memorial to a Scientist Memorial to a Scientist 1. My Question of Inquiry: Use this sheet to outline how you will collect and present the information to the class. My Group s Scientist: 1 Part I: Memorial to a Scientist: John

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 32 Modern Physics Atomic Physics Early models of the atom Atomic spectra http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 28 1 If you want to know your progress

More information

Physics 1C. Modern Physics Lecture

Physics 1C. Modern Physics Lecture Physics 1C Modern Physics Lecture "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars."

More information