Electromagnetic waves

Size: px
Start display at page:

Download "Electromagnetic waves"

Transcription

1 Electromagnetic waves University of Pécs, Faculty of Medicines, Dept. Biophysics Scientists physicists, chemists, astronomers Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert Wilhelm Bunsen Gustav Robert Kirchhoff Albert Einstein Louis-Victor de Broglie James Clerk Maxwell Heinrich Rudolf - Dispersion (664) - IR (800) - UV (80) - lines in the solar spectra (84) - interpretation of lines (86) - interpretation of lines (86) - light quantum (photon) (904) - matter-waves (924) - EM radiation theoretically (864) - EM radiation pragmatically (888) October 203 The light Electromagnetic spectrum Electromagnetic wave Transversal wave electric field strength - vector wavelength E B x x magnetic field strength- vector The vectors of the electric and the magnetic gradients are perpendicular to each other and to the direction of the propagation of the wave. James Clerk Maxwell (864) verified their existence theoretically. Heinrich Rudolf (888) confirmed their existence experimentally.

2 absorption The spectrum Spallation of one wave e.g. electromagnetic wave to its component frequencies. One intensity-like quantity represented as the function of an energy-like quantity. intensity, count rate (e.g. measurement of radioactivity), number of photons, transmittancy, absorbancy (extinction, OD) energy and energy-proportional quantities (e.g. frequency, wavelength, wavenumber) (nm) First law: a hot dense gas at high pressure produces a continuous emission spectrum of all colours. (Thermal radiation.) Second law: hot rarefied gas at low pressure produces an emission line spectrum (bright spectral lines in front of a dark background). Kirchhoff s Laws Third law: when light from a hot dense gas passes through a cooler gas, it produces an absorption line spectrum (bright spectrum with a number of dark, fine lines). The appearance of the spectra line-type (atoms) band (molecules) continuous (heated materials) I Line spectra (emission) of some elements He Hg Continuous emission Line-type emission Line-type absorption n Na Ne Ar Joseph von Fraunhofer ( ) Interaction of the light with matter Quanted energy uptaking (photon) Interaction of electromagnetic wave with atomic system (matter): reflection absorption transmission (scattering) 2

3 Electric energy levels of the atoms Bohr- and the quantummechanical atom model Postulates:. Electrons can only circle around the nucleus at definite levels (does not emit or absorb energy) stationary levels (unchanging). Energy level system of molecules 2. Atoms absorb or emit radiation only when the electrons abruptly jump between the different stationary levels, states. Important physical quantities and relations Frequency: n or f (/s) v = λ f Wavelength: (m) c v n = c / v Wavenumber: n (cm - ) Energy: E (J) h. f Einstein: energy of a photon (light-quantum) Extinct. coeff.: (M - cm - or (mg/ml) - cm - ) The dual nature of the light Region Wavelength range (mm) Wavenumber range (cm - ) Near Middle Far Wave (propagation) Diffraction Interference Polarization Particle (interaction) photoeffect Compton-effect The most useful I.R. region lies between cm -. Albert Einstein (905) : photoelectric effect photon (light quantum), its energy: E = h n (or E = h f) Louis-Victor de Broglie (924) : Matter-waves theory (All materials have wave nature as well.) λ = h/p, where p is the impulse => λ = h/m v 3

4 Huygens-Fresnel principle. All points on a wave front can be considered as point sources for the production of spherical secondary wavelets. 2. The interference of the secondary wavelets determines the further behaviour of the wave. a x s Interference s2 a sin To achieve max. gain: a sin n To achieve max. weakening: a sin ( n 2) Linearly polarized light Linearly polarized light Polarization The dual nature of the light Wave (propagation) Diffraction Interference Polarization Particle (interaction) photoeffect Compton-effect 4

5 absorption Photo- and Compton-effect, pair production Spectroscopy Spectra: The distribution of the intensity of the electromagnetic wave in terms of wavelength. (Greek: picture, colour) -scopo-, scop-, scept-, skept-, -scope-, -scopy, scopia, -scopic, -scopist Greek: see, view, sight, look at, examine (nm) Studies with EM radiations (e.g. light) Types and methods of spectroscopy. Spectroscopy of electric (atomic) energy levels Intensity - wavelength (frequency): VIS, IR, UV, Röntgen, Raman, Mössbauer, ESR, NMR, CT, MRI... Lifetimes of energy states: fluorescence/phosphorescence lifetime Polarisation (anisotropy): anisotropy decay, CD-spectroscopy 2. Spectroscopy of radioactivity (α-, β-, γ-particles, neutron, neutrino)... The purposes of the spectroscopy Qualitative and/or quantitative cognition of matter: Analysing the quality ( finger-print ) Analysing the quantity (intensity) Structural information (conformation) To follow the time scaled change of matter: (time-resolved spectroscopy) Changes of chemical constitution (e.g. under chemical reaction). Structural changes (acceptable for fast kinetic measurements) We can not see the molecule, but on the basis of the (change of the) spectrum and with the help of our physical knowledge we can implicate its structure. 5

Absorption photometry

Absorption photometry The light Absorption photometry Szilvia Barkó University of Pécs, Faculty of Medicines, Dept. Biophysics February 2011 Transversal wave E Electromagnetic wave electric gradient vector wavelength The dual

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Light was recognised as a wave phenomenon well before its electromagnetic character became known.

Light was recognised as a wave phenomenon well before its electromagnetic character became known. VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT WAVE or PARTICLE??? Light was recognised as a wave phenomenon well before its electromagnetic character became known. The problem of the nature of light is

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 Light: Wave? Particle? Both! Modern models of the atom were derived by studying the

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU 1 Agilent is committed to the educational community and is willing to provide access to company-owned material. This slide

More information

The Duality of Light. Electromagnetic Radiation. Light as a Wave

The Duality of Light. Electromagnetic Radiation. Light as a Wave In this unit, you will be introduced to the dual nature of light, the quantum theory and Bohr s planetary atomic model. The planetary model was an improvement on the nuclear model and attempted to answer

More information

Recall: The Importance of Light

Recall: The Importance of Light Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

More information

Astonomy 62 Lecture #10. Last Time. Applications of Stefan-Boltzmann Law Color Magnitudes Color Index

Astonomy 62 Lecture #10. Last Time. Applications of Stefan-Boltzmann Law Color Magnitudes Color Index Last Time Applications of Stefan-Boltzmann Law Color Magnitudes Color Index Standard Visual Band Filters U B V R I Flux through filter X: F x = 0 F S x d F x F x W x Apparent Color Magnitude: m x,1 m x,2

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Light and Matter(LC)

Light and Matter(LC) Light and Matter(LC) Every astronomy book that I ve seen has at least one chapter dedicated to the physics of light. Why are astronomers so interested in light? Everything* that we know about Astronomical

More information

We now realize that the phenomena of chemical interactions, and, ultimately life itself, are to be understood in terms of electromagnetism".

We now realize that the phenomena of chemical interactions, and, ultimately life itself, are to be understood in terms of electromagnetism. We now realize that the phenomena of chemical interactions, and, ultimately life itself, are to be understood in terms of electromagnetism". -Richard Feynman Quantum H Atom Review Radia Wave Function (1s):

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III Light and Other Electromagnetic Radiation Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Light and Other Electromagnetic Radiation

Light and Other Electromagnetic Radiation Light and Other Electromagnetic Radiation 1 Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons Outline Chapter 9 The Atom 9-1. Photoelectric Effect 9-3. What Is Light? 9-4. X-rays 9-5. De Broglie Waves 9-6. Waves of What? 9-7. Uncertainty Principle 9-8. Atomic Spectra 9-9. The Bohr Model 9-10. Electron

More information

Atomic Theories. John Dalton s Atomic Theory: Joseph John (J.J.) Thomson s Atomic Theory: Ernest Rutherford s Atomic Theory:

Atomic Theories. John Dalton s Atomic Theory: Joseph John (J.J.) Thomson s Atomic Theory: Ernest Rutherford s Atomic Theory: Atomic Theories John Dalton s Atomic Theory: In 1805, the English chemist/school teacher, John Dalton, created the modern theory to explain three important scientific laws: the law of definite composition,

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom The Nature of Light:Its Wave Nature Light is a form of electromagnetic radiation composed of perpendicular oscillating waves, one for the electric field

More information

The Nature of Light. Chapter Five

The Nature of Light. Chapter Five The Nature of Light Chapter Five Guiding Questions 1. How fast does light travel? How can this speed be measured? 2. Why do we think light is a wave? What kind of wave is it? 3. How is the light from an

More information

Quantum theory and models of the atom

Quantum theory and models of the atom Guess now. It has been found experimentally that: (a) light behaves as a wave; (b) light behaves as a particle; (c) electrons behave as particles; (d) electrons behave as waves; (e) all of the above are

More information

Heinrich Hertz, a German physicist, achieved the first experimental demonstration of EM waves in 1887.

Heinrich Hertz, a German physicist, achieved the first experimental demonstration of EM waves in 1887. 9.4.2-1(i) Hertz s first radio wave transmission demonstration Maxwell In 1865 James Clerk Maxwell predicted the existence of electromagnetic waves. He said that an accelerating charge would produce a

More information

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation Models of the

More information

Example of a Plane Wave LECTURE 22

Example of a Plane Wave LECTURE 22 Example of a Plane Wave http://www.acs.psu.edu/drussell/demos/evanescentwaves/plane-x.gif LECTURE 22 EM wave Intensity I, pressure P, energy density u av from chapter 30 Light: wave or particle? 1 Electromagnetic

More information

Chapter 5 the nature of light

Chapter 5 the nature of light Chapter 5 the nature of light The speed of light Light travels very fast. Early scientists realised thunderstorms that it travels much much faster than sound. during Galileo made an early attempt to measure

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Light & Matter Interactions

Light & Matter Interactions Light & Matter Interactions. Spectral Lines. Kirchoff's Laws 2. Photons. Inside atoms 2. Classical Atoms 3. The Bohr Model 4. Lowest energy 5. Kirchoff's laws, again 3. Quantum Theory. de Broglie wavelength

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields Quantized Radiation (Particle Theory of Light) Dr. Bill Pezzaglia Part I 1 Quantum Mechanics A. Classical vs Quantum Theory B. Black Body Radiation C. Photoelectric Effect 2 Updated: 2010Apr19 D. Atomic

More information

Chapter 4. Spectroscopy. Dr. Tariq Al-Abdullah

Chapter 4. Spectroscopy. Dr. Tariq Al-Abdullah Chapter 4 Spectroscopy Dr. Tariq Al-Abdullah Learning Goals: 4.1 Spectral Lines 4.2 Atoms and Radiation 4.3 Formation of the Spectral Lines 4.4 Molecules 4.5 Spectral Line Analysis 2 DR. T. AL-ABDULLAH

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x 10-19 C and mass 9.1x 10-31 kg... Work function. The minimum amount of energy required

More information

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by.

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by. Planck s s Radiation Law Planck made two modifications to the classical theory The oscillators (of electromagnetic origin) can only have certain discrete energies determined by E n = n h ν with n is an

More information

Light & Matter Interactions

Light & Matter Interactions Light & Matter Interactions. Spectral Lines. Kirchoff's Laws 2. Inside atoms 3. Classical Atoms 4. The Bohr Model 5. Lowest energy 6. Kirchoff's laws, again 2. Quantum Theory. The Photoelectric Effect

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Models of the Atom Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation

More information

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1 Early Atomic Theories and the Origins of Quantum Theory Chapter 3.1 What is Matter Made of? People have wondered about the answer to this question for thousands of years Philosophers Matter is composed

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

PY3101 Optics. Overview. A short history of optics Optical applications Course outline. Introduction: Overview. M.P. Vaughan

PY3101 Optics. Overview. A short history of optics Optical applications Course outline. Introduction: Overview. M.P. Vaughan Introduction: Overview M.P. Vaughan Overview A short history of optics Optical applications Course outline 1 A Short History of Optics A short history of optics Optics: historically the study of visible

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty?

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty? Howdy Folks. Homework Due by 5PM September 20 (next class) 5-Problems Every Week due 1 week later. Does everyone have a topic that has been approved by the faculty? Practice your presentation as I will

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Electromagnetic Waves

Electromagnetic Waves Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 23 Electromagnetic Waves Marilyn Akins, PhD Broome Community College Electromagnetic Theory Theoretical understanding of electricity and magnetism

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

The Theory of Electromagnetism

The Theory of Electromagnetism Notes: Light The Theory of Electromagnetism James Clerk Maxwell (1831-1879) Scottish physicist. Found that electricity and magnetism were interrelated. Moving electric charges created magnetism, changing

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) NAME: August 2009--------------------------------------------------------------------------------------------------------------------------------- 11 41.

More information

Photoelectric effect

Photoelectric effect Experimental Physics EP3 Atoms and Molecules Photoelectric effect energy quantization, photons http://research/uni-leipzig.de/valiu/ Experimental Physics III - Photoelectric effect 1 Light-matter interaction

More information

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 XII PHYSICS TEST MODERN PHYSICS NAME-... DATE-.. MM- 25 TIME-1 HR 1) Write one equation representing nuclear fusion reaction. (1) 2) Arrange radioactive radiations

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom Quantum Mechanics The Behavior of the Very Small Electrons are incredibly small. Electron behavior determines much of the behavior of atoms. Directly

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles Newton Used this particle model to explain reflection and refraction Huygens 1678 Explained

More information

3. Particle-like properties of E&M radiation

3. Particle-like properties of E&M radiation 3. Particle-like properties of E&M radiation 3.1. Maxwell s equations... Maxwell (1831 1879) studied the following equations a : Gauss s Law of Electricity: E ρ = ε 0 Gauss s Law of Magnetism: B = 0 Faraday

More information

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications Unit title: Atomic and Nuclear Physics for Spectroscopic Applications Unit code: Y/601/0417 QCF level: 4 Credit value: 15 Aim This unit provides an understanding of the underlying atomic and nuclear physics

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

Review: Properties of a wave

Review: Properties of a wave Radiation travels as waves. Waves carry information and energy. Review: Properties of a wave wavelength (λ) crest amplitude (A) trough velocity (v) λ is a distance, so its units are m, cm, or mm, etc.

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Physics 126 Practice Exam #4 Professor Siegel

Physics 126 Practice Exam #4 Professor Siegel Physics 126 Practice Exam #4 Professor Siegel Name: Lab Day: 1. Light is usually thought of as wave-like in nature and electrons as particle-like. In which one of the following instances does light behave

More information

Lecture 2. In this lecture we will go through the chronological development of the Atomic physics.

Lecture 2. In this lecture we will go through the chronological development of the Atomic physics. Lecture 2 TITLE: A brief history of the development of structure of atom Page 1 Objectives In this lecture we will go through the chronological development of the Atomic physics. We will find out the thoughts

More information

CHAPTER 1 The Birth of Modern Physics

CHAPTER 1 The Birth of Modern Physics CHAPTER 1 The Birth of Modern Physics 1.1 Classical Physics of the 1890s 1.2 The Kinetic Theory of Gases 1.3 Waves and Particles 1.4 Conservation Laws and Fundamental Forces 1.5 The Atomic Theory of Matter

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

Plane waves and spatial frequency. A plane wave

Plane waves and spatial frequency. A plane wave Plane waves and spatial frequency A plane wave Complex representation E(,) zt Ecos( tkz) E cos( tkz) o Ezt (,) Ee Ee j( tkz) j( tkz) o 1 cos(2 ) cos( ) 2 A B t Re atbt () () ABcos(2 t ) Complex representation

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

How does your eye form an Refraction

How does your eye form an Refraction Astronomical Instruments Eyes and Cameras: Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the bending of light

More information

Electromagnetic Theory, Photoelectric effect and Quantum Physics

Electromagnetic Theory, Photoelectric effect and Quantum Physics Electromagnetic Theory, Photoelectric effect and Quantum Physics Physicists John L. Emmett (left) and John H. Nuckolls were the key Lawrence Livermore National Laboratory pioneers in laser and fusion science

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle! 9/16/08 Tuesday Announce: Observations? Milky Way Center movie Moon s Surface Gravity movie Questions on Gravity from Ch. 2 Ch. 3 Newton Movie Chapter 3 Light and Atoms Copyright (c) The McGraw-Hill Companies,

More information

Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements:

Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements: Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements: Problem solving sessions Tues. 1-3. Reading for Wednesday TZD 6.1-.4 2013 Nobel Prize Announcement Tomorrow Few slides on the Higgs Field

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

WAVE-PARTICLE DUALITY. Katrina Forrestall & Emily Kingsbury

WAVE-PARTICLE DUALITY. Katrina Forrestall & Emily Kingsbury WAVE-PARTICLE DUALITY Katrina Forrestall & Emily Kingsbury History of Light Newton s Particle Model: Newton proposed that light is made up of extremely small particles that travel extremely fast Proposed

More information

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22 Physics 102: Lecture 22 Single Slit Diffraction and Resolving Power Quantum Mechanics: Blackbody Radiation & Photoelectric Effect Physics 102: Lecture 22, Slide 1 Diffraction/Huygens principle Huygens:

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Section7: The Bohr Atom Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Continuous Spectrum Everyone has seen the spectrum produced when white

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

CEGE046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 2: Radiation (i)

CEGE046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 2: Radiation (i) CEGE046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 2: Radiation (i) Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7679 0592 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016 Learning Objectives and Worksheet I Chemistry 1B-AL Fall 2016 Lectures (1 2) Nature of Light and Matter, Quantization of Energy, and the Wave Particle Duality Read: Chapter 12, Pages: 524 526 Supplementary

More information