SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES

Size: px
Start display at page:

Download "SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES"

Transcription

1 SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES FILIP LINDSKOG The aim of this brief note is to get some basic understanding of spectral densities by computing, plotting and interpreting the spectral densities of the stationary time series (1) (2) (3) (4) X t = 0.8X t 1 + Z t + 0.9Z t 1, X t = 0.8X t 1 0.9X t 2 + Z t, X t = 0.8X t 1 + Z t, X t = 0.8X t 1 + Z t, where {Z t is an iid sequence of standard normal random variables. The processes are examples of causal linear time series, the roots of the autoregressive polynomials are all located outside the unit circle in the complex plane. In order to get some very preliminary feeling for the four systems above, we study how the linear systems transforms the input (z 1, z 2, z 3,... ) = (1, 0, 0,... ) into output values (x 1, x 2, x 3,... ). The result (with linear interpolation) is shown in Figure 1. The AR(1) process (3) shows a periodic behavior, although a rather trivial one (plus, minus, plus, minus, etc.). The AR(2) process (2) shows a more interesting periodic behavior, with cycle lengths of approximately 3 time steps. For a zero-mean stationary time series with ACVF γ satisfying spectral density is given by (5) f(λ) = 1 e ihλ γ(h). γ(h) <, the The assumption γ(h) < ensures that the sum in (5) is absolute convergent (makes sense). Since e ihλ = cos( hλ) + i sin( hλ) and since cos and sin both have period, it is sufficient to consider only λ in (, π]. Since sin is an odd function, sin( x) = sin(x), and the sum in (5) is computed over a set of h-values that is symmetric about 0, f(λ) = 1 e ihλ γ(h) = 1 cos( hλ)γ(h). In particular, f is a real-valued even function, f(λ) = f( λ). Therefore, it is sufficient to consider only λ in [0, π]. Moreover, it can be shown that f(λ) 0. 1

2 2 FILIP LINDSKOG Let us compute the spectral density of a causal AR(1) process with γ(h) = σ 2 φ ( h )/(1 φ 2 ): σ 2 ( ) f(λ) = (1 φ φ h (e ihλ + e ihλ ) ) h=0 h=1 { = z h = 1 1 z if z < 1 = σ 2 (1 (1 φ 2 + φe iλ ) φeiλ + ) 1 φe iλ 1 φe iλ σ 2 1 φ 2 e iλ e iλ = (1 φ 2 ) 1 φ(e iλ + e iλ ) + φ 2 e iλ e iλ = σ2 (1 2φ cos λ + φ2 ) 1. For a causal ARMA(p, q) process it can be shown that f(λ) = σ2 θ(e iλ ) 2 φ(e iλ ) 2, λ [, π]. In particular, for a causal AR(2) process f(λ) is maximized for λ = φ 1 (φ 2 1)/(4φ 2 ). For the AR(2) process in (2) we get the λ arccos( 0.42) 2.0 maximising the spectral density. This corresponds to the cycle length /λ 3. The spectral densities of (1) to (4), for λ [0, π], are shown in Figure 2. The AR(1) process (3) has a spectral density with a maximum at λ = π. This is consistent with the cycle length of /π = 2 shown in Figure 1. The AR(2) process (2) has a spectral density with a maximum at λ 2. This is consistent with the cycle length of /2 = π 3 shown in Figure 1. The processes (1) and (4) have spectral densities with maxima at λ = 0. They show no periodic behavior (cycles of infinite length). Notice that π e ikλ f(λ)dλ = π = 1 = γ(k) 1 γ(h) e i(k h)λ γ(h)dλ π e i(k h)λ dλ since the integral vanishes for h k. We notice that γ(0) = π f(λ)dλ. In particular, the comparison of the spectral densities might be visualized more clearly by dividing the spectral densities by the stationary variance γ(0) of the respective processes. Finally, we want to see if the sample analogues of the spectral densities, based on simulated samples {x 1,..., x n, are sufficiently accurate to draw the same conclusions as if we knew the spectral densities. The result is shown in Figure 4. The sample analogue of

3 SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES 3 (5) is obtained by replacing the autocovariance function γ by the sample autocovariance function γ in (5): f(λ) = 1 n 1 h= n+1 e ihλ γ(h). The sample analogue of the spectral density corresponds to what is called the periodogram of {x 1,..., x n : I n (λ) = 1 n x t e itλ 2. n It can be shown that I n (ω k ) = f(ω k ), t=1 ω k = k n (, π].

4 4 FILIP LINDSKOG R-code ar2specdens<-function(l,s,phi1,phi2) { s^2/(2*pi*(1+phi1^2+phi2^2+2*phi2+2*(phi1*phi2-phi1)*cos(l)-4*phi2*cos(l)^2)) arma11specdens<-function(l,s,phi,theta) { s^2*(1+theta^2+2*theta*cos(l))/(2*pi*(1+phi^2-2*phi*cos(l))) xvals<-(0:100)*pi/100 plot(xvals,arma11specdens(xvals,1,0.8,0.9),type="l",xlab="",ylab="", ylim=c(0,max(ar2specdens(xvals,1,-0.8,-0.9)))) lines(xvals,ar2specdens(xvals,1,-0.8,-0.9)) lines(xvals,ar2specdens(xvals,1,-0.8,0)) lines(xvals,ar2specdens(xvals,1,0.8,0)) ar2roots<-polyroot(c(1,0.8,0.9)) (ar2roots[1]*ar2roots[2])^2/((ar2roots[1]*ar2roots[2]-1)*(ar2roots[2]-ar2roots[1]))* (ar2roots[1]/(ar2roots[1]^2-1)-ar2roots[2]/(ar2roots[2]^2-1)) g01<-(1+1.7^2/(1-0.8^2)) g02<-(ar2roots[1]*ar2roots[2])^2/((ar2roots[1]*ar2roots[2]-1)*(ar2roots[2]-ar2roots[1])) (ar2roots[1]/(ar2roots[1]^2-1)-ar2roots[2]/(ar2roots[2]^2-1)) g03<-1/(1-0.8^2) g04<-1/(1-0.8^2) plot(xvals,arma11specdens(xvals,1,0.8,0.9)/g01,type="l",xlab="",ylab="", ylim=c(0,max(ar2specdens(xvals,1,-0.8,-0.9)/re(g02)))) lines(xvals,ar2specdens(xvals,1,-0.8,-0.9)/re(g02)) lines(xvals,ar2specdens(xvals,1,-0.8,0)/g03) lines(xvals,ar2specdens(xvals,1,0.8,0)/g04) z<-1 tmpmat<-matrix(0,4,20) tmpmat[1,1]<-z tmpmat[2,1]<-z tmpmat[3,1]<-z tmpmat[4,1]<-z

5 SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES 5 tmpmat[1,2]<-0.8*tmpmat[1,1]+0.9*z tmpmat[2,2]<--0.8*tmpmat[2,1] tmpmat[3,2]<--0.8*tmpmat[3,1] tmpmat[4,2]<-0.8*tmpmat[4,1] for(i in (3:20)) { tmpmat[1,i]<-0.8*tmpmat[1,i-1] tmpmat[2,i]<--0.8*tmpmat[2,i-1]-0.9*tmpmat[2,i-2] tmpmat[3,i]<--0.8*tmpmat[3,i-1] tmpmat[4,i]<-0.8*tmpmat[4,i-1] plot(tmpmat[1,],type="l",ylim=c(-1,1.8),xlab="",ylab="",col="red",xaxt="n") axis(1,(0:20)) lines(tmpmat[2,],col="blue") lines(tmpmat[3,],col="green") lines(tmpmat[4,],col="black") arma1.sim<-arima.sim(model=list(ar=c(-0.8,-0.9)),n=200) arma2.sim<-arima.sim(model=list(ar=c(-0.8)),n=200) arma3.sim<-arima.sim(model=list(ar=c(0.8)),n=200) arma4.sim<-arima.sim(model=list(ar=c(0.8),ma=c(0.9)),n=200) (arma1.sim) lines(xvals/(2*pi),ar2specdens(xvals,1,-0.8,-0.9)) (arma2.sim) lines(xvals/(2*pi),ar2specdens(xvals,1,-0.8,0)) (arma3.sim) lines(xvals/(2*pi),ar2specdens(xvals,1,0.8,0)) (arma4.sim) lines(xvals/(2*pi),arma11specdens(xvals,1,0.8,0.9))

6 6 FILIP LINDSKOG Figures Figure 1. Illustration of how the systems transform input to output Figure 2. Spectral densities

7 SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES Figure 3. Spectral densities normalized by dividing by the stationary variance of the time series 1e 02 1e+01 5e 03 5e 01 1e 03 1e+00 1e 03 1e+01 Figure 4. Periodograms based on samples of size 200 and the corresponding spectral densities

SF2943 TIME SERIES ANALYSIS: A FEW COMMENTS ON SPECTRAL DENSITIES

SF2943 TIME SERIES ANALYSIS: A FEW COMMENTS ON SPECTRAL DENSITIES SF2943 TIME SERIES ANALYSIS: A FEW COMMENTS ON SPECTRAL DENSITIES FILIP LINDSKOG The aim of this brief note is to get some basic understanding of spectral densities by computing, plotting and interpreting

More information

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES This document is meant as a complement to Chapter 4 in the textbook, the aim being to get a basic understanding of spectral densities through

More information

Long-range dependence

Long-range dependence Long-range dependence Kechagias Stefanos University of North Carolina at Chapel Hill May 23, 2013 Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 1 / 45 Outline 1 Introduction to time series

More information

Contents. 1 Time Series Analysis Introduction Stationary Processes State Space Modesl Stationary Processes 8

Contents. 1 Time Series Analysis Introduction Stationary Processes State Space Modesl Stationary Processes 8 A N D R E W T U L L O C H T I M E S E R I E S A N D M O N T E C A R L O I N F E R E N C E T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Time Series Analysis 5

More information

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes.

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes. MAY, 0 LECTURE 0 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA In this lecture, we continue to discuss covariance stationary processes. Spectral density Gourieroux and Monfort 990), Ch. 5;

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Modeling and testing long memory in random fields

Modeling and testing long memory in random fields Modeling and testing long memory in random fields Frédéric Lavancier lavancier@math.univ-lille1.fr Université Lille 1 LS-CREST Paris 24 janvier 6 1 Introduction Long memory random fields Motivations Previous

More information

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be ed to

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be  ed to TIME SERIES Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be emailed to Y.Chen@statslab.cam.ac.uk. 1. Let {X t } be a weakly stationary process with mean zero and let

More information

First-order random coefficient autoregressive (RCA(1)) model: Joint Whittle estimation and information

First-order random coefficient autoregressive (RCA(1)) model: Joint Whittle estimation and information ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 9, Number, June 05 Available online at http://acutm.math.ut.ee First-order random coefficient autoregressive RCA model: Joint Whittle

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

A Diagnostic for Seasonality Based Upon Autoregressive Roots

A Diagnostic for Seasonality Based Upon Autoregressive Roots A Diagnostic for Seasonality Based Upon Autoregressive Roots Tucker McElroy (U.S. Census Bureau) 2018 Seasonal Adjustment Practitioners Workshop April 26, 2018 1 / 33 Disclaimer This presentation is released

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1 4.2 Autoregressive (AR) Moving average models are causal linear processes by definition. There is another class of models, based on a recursive formulation similar to the exponentially weighted moving

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Lesson 9: Autoregressive-Moving Average (ARMA) models

Lesson 9: Autoregressive-Moving Average (ARMA) models Lesson 9: Autoregressive-Moving Average (ARMA) models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Introduction We have seen

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Frequency estimation by DFT interpolation: A comparison of methods

Frequency estimation by DFT interpolation: A comparison of methods Frequency estimation by DFT interpolation: A comparison of methods Bernd Bischl, Uwe Ligges, Claus Weihs March 5, 009 Abstract This article comments on a frequency estimator which was proposed by [6] and

More information

Identifiability, Invertibility

Identifiability, Invertibility Identifiability, Invertibility Defn: If {ǫ t } is a white noise series and µ and b 0,..., b p are constants then X t = µ + b 0 ǫ t + b ǫ t + + b p ǫ t p is a moving average of order p; write MA(p). Q:

More information

Chapter 9: Forecasting

Chapter 9: Forecasting Chapter 9: Forecasting One of the critical goals of time series analysis is to forecast (predict) the values of the time series at times in the future. When forecasting, we ideally should evaluate the

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

ARMA Models: I VIII 1

ARMA Models: I VIII 1 ARMA Models: I autoregressive moving-average (ARMA) processes play a key role in time series analysis for any positive integer p & any purely nondeterministic process {X t } with ACVF { X (h)}, there is

More information

Cross Spectra, Linear Filters, and Parametric Spectral Estimation

Cross Spectra, Linear Filters, and Parametric Spectral Estimation Cross Spectra,, and Parametric Spectral Estimation Outline 1 Multiple Series and Cross-Spectra 2 Arthur Berg Cross Spectra,, and Parametric Spectral Estimation 2/ 20 Outline 1 Multiple Series and Cross-Spectra

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

ON THE RANGE OF VALIDITY OF THE AUTOREGRESSIVE SIEVE BOOTSTRAP

ON THE RANGE OF VALIDITY OF THE AUTOREGRESSIVE SIEVE BOOTSTRAP ON THE RANGE OF VALIDITY OF THE AUTOREGRESSIVE SIEVE BOOTSTRAP JENS-PETER KREISS, EFSTATHIOS PAPARODITIS, AND DIMITRIS N. POLITIS Abstract. We explore the limits of the autoregressive (AR) sieve bootstrap,

More information

Calculation of ACVF for ARMA Process: I consider causal ARMA(p, q) defined by

Calculation of ACVF for ARMA Process: I consider causal ARMA(p, q) defined by Calculation of ACVF for ARMA Process: I consider causal ARMA(p, q) defined by φ(b)x t = θ(b)z t, {Z t } WN(0, σ 2 ) want to determine ACVF {γ(h)} for this process, which can be done using four complementary

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Research Article Optimal Portfolio Estimation for Dependent Financial Returns with Generalized Empirical Likelihood

Research Article Optimal Portfolio Estimation for Dependent Financial Returns with Generalized Empirical Likelihood Advances in Decision Sciences Volume 2012, Article ID 973173, 8 pages doi:10.1155/2012/973173 Research Article Optimal Portfolio Estimation for Dependent Financial Returns with Generalized Empirical Likelihood

More information

Autoregressive Models Fourier Analysis Wavelets

Autoregressive Models Fourier Analysis Wavelets Autoregressive Models Fourier Analysis Wavelets BFR Flood w/10yr smooth Spectrum Annual Max: Day of Water year Flood magnitude vs. timing Jain & Lall, 2000 Blacksmith Fork, Hyrum, UT Analyses of Flood

More information

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS)

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes.

More information

Spectral Analysis of Random Processes

Spectral Analysis of Random Processes Spectral Analysis of Random Processes Spectral Analysis of Random Processes Generally, all properties of a random process should be defined by averaging over the ensemble of realizations. Generally, all

More information

Chapter 5: Models for Nonstationary Time Series

Chapter 5: Models for Nonstationary Time Series Chapter 5: Models for Nonstationary Time Series Recall that any time series that is a stationary process has a constant mean function. So a process that has a mean function that varies over time must be

More information

Outline. STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) Summary Statistics of Midterm Scores

Outline. STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) Summary Statistics of Midterm Scores STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) Outline 1 Midterm Results 2 Multiple Series and Cross-Spectra 3 Linear Filters Arthur Berg STA 6857 Cross Spectra,

More information

Covariances of ARMA Processes

Covariances of ARMA Processes Statistics 910, #10 1 Overview Covariances of ARMA Processes 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation

More information

STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8)

STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) STA 6857 Cross Spectra, Linear Filters, and Parametric Spectral Estimation ( 4.6, 4.7, & 4.8) Outline 1 Midterm Results 2 Multiple Series and Cross-Spectra 3 Linear Filters Arthur Berg STA 6857 Cross Spectra,

More information

Akaike criterion: Kullback-Leibler discrepancy

Akaike criterion: Kullback-Leibler discrepancy Model choice. Akaike s criterion Akaike criterion: Kullback-Leibler discrepancy Given a family of probability densities {f ( ; ψ), ψ Ψ}, Kullback-Leibler s index of f ( ; ψ) relative to f ( ; θ) is (ψ

More information

Strictly Stationary Solutions of Autoregressive Moving Average Equations

Strictly Stationary Solutions of Autoregressive Moving Average Equations Strictly Stationary Solutions of Autoregressive Moving Average Equations Peter J. Brockwell Alexander Lindner Abstract Necessary and sufficient conditions for the existence of a strictly stationary solution

More information

Spectral Analysis (Theory)

Spectral Analysis (Theory) Spectral Analysis (Theory) Al Nosedal University of Toronto Winter 2016 Al Nosedal University of Toronto Spectral Analysis (Theory) Winter 2016 1 / 28 Idea: Decompose a stationary time series {X t } into

More information

Nonlinear time series

Nonlinear time series Based on the book by Fan/Yao: Nonlinear Time Series Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 27, 2009 Outline Characteristics of

More information

7. MULTIVARATE STATIONARY PROCESSES

7. MULTIVARATE STATIONARY PROCESSES 7. MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalar-valued random variables on the same probability

More information

Generalised AR and MA Models and Applications

Generalised AR and MA Models and Applications Chapter 3 Generalised AR and MA Models and Applications 3.1 Generalised Autoregressive Processes Consider an AR1) process given by 1 αb)x t = Z t ; α < 1. In this case, the acf is, ρ k = α k for k 0 and

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

Introduction to Time Series Analysis. Lecture 18.

Introduction to Time Series Analysis. Lecture 18. Introduction to Time Series Analysis. Lecture 18. 1. Review: Spectral density, rational spectra, linear filters. 2. Frequency response of linear filters. 3. Spectral estimation 4. Sample autocovariance

More information

Time Series Analysis. Solutions to problems in Chapter 5 IMM

Time Series Analysis. Solutions to problems in Chapter 5 IMM Time Series Analysis Solutions to problems in Chapter 5 IMM Solution 5.1 Question 1. [ ] V [X t ] = V [ǫ t + c(ǫ t 1 + ǫ t + )] = 1 + c 1 σǫ = The variance of {X t } is not limited and therefore {X t }

More information

Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals

Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals Acta Applicandae Mathematicae 78: 145 154, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 145 Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals M.

More information

1. Fundamental concepts

1. Fundamental concepts . Fundamental concepts A time series is a sequence of data points, measured typically at successive times spaced at uniform intervals. Time series are used in such fields as statistics, signal processing

More information

Difference equations. Definitions: A difference equation takes the general form. x t f x t 1,,x t m.

Difference equations. Definitions: A difference equation takes the general form. x t f x t 1,,x t m. Difference equations Definitions: A difference equation takes the general form x t fx t 1,x t 2, defining the current value of a variable x as a function of previously generated values. A finite order

More information

18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013

18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013 18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013 1. Covariance Stationary AR(2) Processes Suppose the discrete-time stochastic process {X t } follows a secondorder auto-regressive process

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Standard Univariate Models ECON/FIN

More information

Extremogram and Ex-Periodogram for heavy-tailed time series

Extremogram and Ex-Periodogram for heavy-tailed time series Extremogram and Ex-Periodogram for heavy-tailed time series 1 Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia) and Yuwei Zhao (Ulm) 1 Jussieu, April 9, 2014 1 2 Extremal

More information

STA 6857 Estimation ( 3.6)

STA 6857 Estimation ( 3.6) STA 6857 Estimation ( 3.6) Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 2/ 19 Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg

More information

IDENTIFICATION OF ARMA MODELS

IDENTIFICATION OF ARMA MODELS IDENTIFICATION OF ARMA MODELS A stationary stochastic process can be characterised, equivalently, by its autocovariance function or its partial autocovariance function. It can also be characterised by

More information

Spectral Analysis for Intrinsic Time Processes

Spectral Analysis for Intrinsic Time Processes Spectral Analysis for Intrinsic Time Processes TAKAHIDE ISHIOKA, SHUNSUKE KAWAMURA, TOMOYUKI AMANO AND MASANOBU TANIGUCHI Department of Pure and Applied Mathematics, Graduate School of Fundamental Science

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

Extremogram and ex-periodogram for heavy-tailed time series

Extremogram and ex-periodogram for heavy-tailed time series Extremogram and ex-periodogram for heavy-tailed time series 1 Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia) and Yuwei Zhao (Ulm) 1 Zagreb, June 6, 2014 1 2 Extremal

More information

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and Trig Identities An identity is an equation that is true for all values of the variables. Examples of identities might be obvious results like Part 4, Trigonometry Lecture 4.8a, Trig Identities and Equations

More information

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh Journal of Statistical Research 007, Vol. 4, No., pp. 5 Bangladesh ISSN 056-4 X ESTIMATION OF AUTOREGRESSIVE COEFFICIENT IN AN ARMA(, ) MODEL WITH VAGUE INFORMATION ON THE MA COMPONENT M. Ould Haye School

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Rational Trigonometry. Rational Trigonometry

Rational Trigonometry. Rational Trigonometry There are an infinite number of points on the unit circle whose coordinates are each rational numbers. Indeed every Pythagorean triple gives one! 3 65 64 65 7 5 4 5 03 445 396 445 3 4 5 5 75 373 5 373

More information

Time Series Analysis Fall 2008

Time Series Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 14.384 Time Series Analysis Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Introduction 1 14.384 Time

More information

Dispersion for the Schrodinger Equation on discrete trees

Dispersion for the Schrodinger Equation on discrete trees Dispersion for the Schrodinger Equation on discrete trees April 11 2012 Preliminaries Let Γ = (V, E) be a graph, denoting V the set of vertices and E the set of edges, assumed to be segments which are

More information

Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology Delhi

Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology Delhi Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology Delhi Lecture No - 27 Interpolation and Approximation (Continued.) In our last lecture we

More information

Time series analysis MAP565

Time series analysis MAP565 Time series analysis MAP565 François Roueff January 29, 2016 ii Contents 1 Random processes 1 1.1 Introduction..................................... 2 1.2 Random processes.................................

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

MATH 5075: Time Series Analysis

MATH 5075: Time Series Analysis NAME: MATH 5075: Time Series Analysis Final For the entire test {Z t } WN(0, 1)!!! 1 1) Let {Y t, t Z} be a stationary time series with EY t = 0 and autocovariance function γ Y (h). Assume that a) Show

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Stochastic processes: basic notions

Stochastic processes: basic notions Stochastic processes: basic notions Jean-Marie Dufour McGill University First version: March 2002 Revised: September 2002, April 2004, September 2004, January 2005, July 2011, May 2016, July 2016 This

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Levinson Durbin Recursions: I

Levinson Durbin Recursions: I Levinson Durbin Recursions: I note: B&D and S&S say Durbin Levinson but Levinson Durbin is more commonly used (Levinson, 1947, and Durbin, 1960, are source articles sometimes just Levinson is used) recursions

More information

Levinson Durbin Recursions: I

Levinson Durbin Recursions: I Levinson Durbin Recursions: I note: B&D and S&S say Durbin Levinson but Levinson Durbin is more commonly used (Levinson, 1947, and Durbin, 1960, are source articles sometimes just Levinson is used) recursions

More information

Introduction to Spectral and Time-Spectral Analysis with some Applications

Introduction to Spectral and Time-Spectral Analysis with some Applications Introduction to Spectral and Time-Spectral Analysis with some Applications A.INTRODUCTION Consider the following process X t = U cos[(=3)t] + V sin[(=3)t] Where *E[U] = E[V ] = 0 *E[UV ] = 0 *V ar(u) =

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Class: Trend-Cycle Decomposition

Class: Trend-Cycle Decomposition Class: Trend-Cycle Decomposition Macroeconometrics - Spring 2011 Jacek Suda, BdF and PSE June 1, 2011 Outline Outline: 1 Unobserved Component Approach 2 Beveridge-Nelson Decomposition 3 Spectral Analysis

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

A first order divided difference

A first order divided difference A first order divided difference For a given function f (x) and two distinct points x 0 and x 1, define f [x 0, x 1 ] = f (x 1) f (x 0 ) x 1 x 0 This is called the first order divided difference of f (x).

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 2 - Probability Models Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 34 Agenda 1 Introduction 2 Stochastic Process Definition 1 Stochastic Definition

More information

EC402: Serial Correlation. Danny Quah Economics Department, LSE Lent 2015

EC402: Serial Correlation. Danny Quah Economics Department, LSE Lent 2015 EC402: Serial Correlation Danny Quah Economics Department, LSE Lent 2015 OUTLINE 1. Stationarity 1.1 Covariance stationarity 1.2 Explicit Models. Special cases: ARMA processes 2. Some complex numbers.

More information

5: MULTIVARATE STATIONARY PROCESSES

5: MULTIVARATE STATIONARY PROCESSES 5: MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalarvalued random variables on the same probability

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Olivia Beckwith 1, Steven J. Miller 2, and Karen Shen 3 1 Harvey Mudd College 2 Williams College 3 Stanford University Joint Meetings

More information

Fourier Analysis of Stationary and Non-Stationary Time Series

Fourier Analysis of Stationary and Non-Stationary Time Series Fourier Analysis of Stationary and Non-Stationary Time Series September 6, 2012 A time series is a stochastic process indexed at discrete points in time i.e X t for t = 0, 1, 2, 3,... The mean is defined

More information

Moving Average (MA) representations

Moving Average (MA) representations Moving Average (MA) representations The moving average representation of order M has the following form v[k] = MX c n e[k n]+e[k] (16) n=1 whose transfer function operator form is MX v[k] =H(q 1 )e[k],

More information

Minimax Interpolation Problem for Random Processes with Stationary Increments

Minimax Interpolation Problem for Random Processes with Stationary Increments STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING Stat., Optim. Inf. Comput., Vol. 3, March 215, pp 3 41. Published online in International Academic Press (www.iapress.org Minimax Interpolation Problem

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Wavelet domain test for long range dependence in the presence of a trend

Wavelet domain test for long range dependence in the presence of a trend Wavelet domain test for long range dependence in the presence of a trend Agnieszka Jach and Piotr Kokoszka Utah State University July 24, 27 Abstract We propose a test to distinguish a weakly dependent

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

LINEAR STOCHASTIC MODELS

LINEAR STOCHASTIC MODELS LINEAR STOCHASTIC MODELS Let {x τ+1,x τ+2,...,x τ+n } denote n consecutive elements from a stochastic process. If their joint distribution does not depend on τ, regardless of the size of n, then the process

More information

Nonlinear Time Series

Nonlinear Time Series Nonlinear Time Series Recall that a linear time series {X t } is one that follows the relation, X t = µ + i=0 ψ i A t i, where {A t } is iid with mean 0 and finite variance. A linear time series is stationary

More information

COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS

COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS Y. ZHANG and A.I. MCLEOD Acadia University and The University of Western Ontario May 26, 2005 1 Abstract. A symbolic

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information