STA 6857 Estimation ( 3.6)

Size: px
Start display at page:

Download "STA 6857 Estimation ( 3.6)"

Transcription

1 STA 6857 Estimation ( 3.6)

2 Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 2/ 19

3 Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 3/ 19

4 Yule-Walker Equations The Yule-Walker equations give us a means of estimating the coefficients φ 1, φ 2,..., φ p in an AR(p) model. George Udny Yule ( ) is a Scottish statistician who taught at Cambridge University. The Yule distribution, a discrete power law, is named after him. Arthur Berg STA 6857 Estimation ( 3.6) 4/ 19

5 Yule-Walker Equations "Every cell phone call solves the Yule-Walker equations every ten microseconds." Thierry Dutoit Sir Gilbert Thomas Walker ( ) was a British physicist and statistician known for his description of the Southern Oscillation. Arthur Berg STA 6857 Estimation ( 3.6) 5/ 19

6 Start with the mean zero AR(p) model: x t = φ 1 x t 1 + φ 2 x t φ p x t p + w t ( ) Multiply both sides of ( ) by x t h for h = 1,..., p: x t x t h = φ 1 x t 1 x t h + φ 2 x t 2 x t h + + φ p x t p x t h + w t x t h ( ) Take expectations throughout: γ(h) = φ 1 γ(h 1) + φ 2 γ(h 2) + + φ p γ(h p) (1) Now take the expectation of ( ) with h = 0: γ(0) = φ 1 γ(1) + φ 2 γ(2) + + φ p γ(p) + E(x t z t ) }{{} σ 2 ( ) Rearranging ( ) gives σ 2 = γ(0) φ 1 γ(1) φ p γ(p) (2) Equations (1) and (2) are the Yule-Walker Equations. Arthur Berg STA 6857 Estimation ( 3.6) 6/ 19

7 Y-W Equations in Matrix Form From the recurrence γ(h) = φ 1 γ(h 1) + φ 2 γ(h 2) + + φ p γ(h p) (1) for extract the p equations γ(1) = φ 1 γ(0) + φ 2 γ(1) + + φ p γ(p 1) γ(2) = φ 1 γ(1) + φ 2 γ(0) + + φ p γ(p 2). γ(p) = φ 1 γ(p 1) + φ 2 γ(p 2) + + φ p γ(0) γ(1) γ(2) γ(0) γ(1) γ(p 1) = γ(1) γ(0) γ(p 2) γ(p 1) γ(p 2) γ(0) γ(p) }{{}}{{} Γ p γ p Hence Γ p φ = γ p where Γ p = {γ(k j)} p j,k=1. φ 1 φ 2. φ p } {{ } φ Arthur Berg STA 6857 Estimation ( 3.6) 7/ 19

8 Estimation Using the Y-W Equations Under the method of moments approach, we estimate φ = (φ 1, φ 2,..., φ p ) with φ = Γ p 1 γp and subsequently σ 2 = γ(0) φ 1 γ(1) φ 2 γ(2) φ p γ(p) = γ(0) φ γ p ) = γ(0) ( Γp 1 γp γp = γ(0) γ p Γp 1 γp where Γ p = { γ(k j)} p j,k=1 and γ p = ( γ(1),..., γ(p)). Arthur Berg STA 6857 Estimation ( 3.6) 8/ 19

9 Other Estimation Methods Burg s Method Method of Moments (Example 3.27, p. 125) Least Squares Conditional Maximum Likelihood Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 9/ 19

10 Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 10/ 19

11 Treating Autoregression as Regression For the mean zero AR(p) model x t = φ 1 x t 1 + φ 2 x t φ p x t p + w t we can regress x t 1, x t 2,..., x t p on x t by writing the data {x t } n t=1 as n x t, x }{{} t 1, x t 2,..., x t p }{{} y x t=p+1 Now we can perform least squares regression of x on y. Arthur Berg STA 6857 Estimation ( 3.6) 11/ 19

12 Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 12/ 19

13 Simple MLE Example Let x 1, x 2,..., x n iid N (µ, 1). ˆµ = x = 1 n MLE (Maximum Likelihood Estimator) UMVUE (Uniformly Minimum Variance Unbiased Estimator) admissible (Can t be beaten uniformly.) Maximize L(µ) = L(µ x) = f µ (x) where n n f µ (x) = i=1 f µ (x i ) = i=1 n i=1 1 2π e (x i µ)2 2 = Maximizing f µ (x) with respect to µ amounts to minimizing n g(µ) = (x i µ) 2 i=1 x i ( ) 1 (2π) n/2 e 1 n 2 i=1 (x i µ) 2 Arthur Berg STA 6857 Estimation ( 3.6) 13/ 19

14 Simple MLE Example (cont.) To minimize g(µ), set its derivative equal to zero, i.e. g (µ) = 2 n (x i µ) = 2n x 2nµ = 0 i=1 Therefore we see µ = x minimizes g(µ) thus maximizes the likelihood L(µ). Hence the maximum likelihood estimator of µ is x. Assumption in this derivation: independence Arthur Berg STA 6857 Estimation ( 3.6) 14/ 19

15 MLE for AR(1) For the AR(1) process x t = φx t 1 + w t where w t iid N (0, σ 2 ), we have the likelihood equation L(φ, σ) = n f σ (x t x t 1, x t 2,..., x 1 ) t=1 Note that x t x t 1 φx t 1 + w t so that = f (x 1 )f (x 2 x 1 ) f (x n x n 1 ) ( ) f (x t x t 1 ) = f w (x t φx t 1 ) where f w is the pdf of N (0, σ 2 ). Hence from ( ) we have L(φ, σ) = f (x 1 ) n f w (x t φx t 1 ) t=2 Arthur Berg STA 6857 Estimation ( 3.6) 15/ 19

16 MLE for AR(1) (cont.) From the causal representation of x 1, x 1 = φ j w 1 j we see that x 1 is normally distributed with mean zero and variance var(x 1 ) = var(φ j w 1 j ) = σ 2 φ 2j = σ2 1 φ 2 j=0 Therefore the Likelihood can written as where j=0 j=0 L(φ, σ) = (2πσ 2 ) n/2 (1 φ 2 ) 1/2 exp S(φ) = (1 φ 2 )(x 1 µ) 2 + S(φ) is called the unconditional sum of squares. [ S(φ) ] 2σ 2 n (x t φx t 1 ) 2. Arthur Berg STA 6857 Estimation ( 3.6) 16/ 19 t=2

17 MLE for AR(1) (cont.) Take the partial derivative of L(φ, σ) with respect to σ 2 to see maximizes the likelihood. Therefore σ 2 = S(φ) n σ 2 ML = S( φ ML ) n After taking logs, we see that the MLE of φ is the minimizer of ( ) S(φ) l(φ) = ln ln(1 φ2 ) n n Numerical optimization must be performed here, i.e. no closed form solution of φ ML exists. Arthur Berg STA 6857 Estimation ( 3.6) 17/ 19

18 Conditional MLE of AR(1) The problem becomes much simpler if we condition on x 1, namely the likelihood becomes where L(φ, σ) = f (x 2 x 1 ) f (x n x n 1 ) n = f w (x t φx t 1 ) t=2 = (2πσ 2 ) n/2 exp S(φ) = n (x t φx t 1 ) 2. t=2 [ S(φ) ] 2σ 2 Minimizing S(φ) over φ yields the conditional MLE which is also the least squares estimate! Arthur Berg STA 6857 Estimation ( 3.6) 18/ 19

19 Next Time Asymptotics Bootstrap ARIMA introduction ( 3.7) Arthur Berg STA 6857 Estimation ( 3.6) 19/ 19

Parameter estimation: ACVF of AR processes

Parameter estimation: ACVF of AR processes Parameter estimation: ACVF of AR processes Yule-Walker s for AR processes: a method of moments, i.e. µ = x and choose parameters so that γ(h) = ˆγ(h) (for h small ). 12 novembre 2013 1 / 8 Parameter estimation:

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 6.3. FORECASTING ARMA PROCESSES 123 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss

More information

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE)

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes. Only

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Notes on the Multivariate Normal and Related Topics

Notes on the Multivariate Normal and Related Topics Version: July 10, 2013 Notes on the Multivariate Normal and Related Topics Let me refresh your memory about the distinctions between population and sample; parameters and statistics; population distributions

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS

COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS Y. ZHANG and A.I. MCLEOD Acadia University and The University of Western Ontario May 26, 2005 1 Abstract. A symbolic

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7)

STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) Outline 1 AR Bootstrap 2 ARIMA 3 Homework 4b Arthur Berg STA 6857 Estimation and ARIMA Models ( 3.6 cont. and 3.7) 2/ 20 Outline 1 AR Bootstrap

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002 Name: Last Name 1, First Name 1 Stdnt # StudentNumber1 STAT 450: Final Examination Version 1 Richard Lockhart 16 December 2002 Instructions: This is an open book exam. You may use notes, books and a calculator.

More information

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS)

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes.

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2

Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2 STA 248 H1S MIDTERM TEST February 26, 2008 SURNAME: SOLUTIONS GIVEN NAME: STUDENT NUMBER: INSTRUCTIONS: Time: 1 hour and 50 minutes Aids allowed: calculator Tables of the standard normal, t and chi-square

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Covariances of ARMA Processes

Covariances of ARMA Processes Statistics 910, #10 1 Overview Covariances of ARMA Processes 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0)

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0) Delta Method Often estimators are functions of other random variables, for example in the method of moments. These functions of random variables can sometimes inherit a normal approximation from the underlying

More information

Identifiability, Invertibility

Identifiability, Invertibility Identifiability, Invertibility Defn: If {ǫ t } is a white noise series and µ and b 0,..., b p are constants then X t = µ + b 0 ǫ t + b ǫ t + + b p ǫ t p is a moving average of order p; write MA(p). Q:

More information

Introduction to Time Series Analysis. Lecture 12.

Introduction to Time Series Analysis. Lecture 12. Last lecture: Introduction to Time Series Analysis. Lecture 12. Peter Bartlett 1. Parameter estimation 2. Maximum likelihood estimator 3. Yule-Walker estimation 1 Introduction to Time Series Analysis.

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

Lecture 34: Properties of the LSE

Lecture 34: Properties of the LSE Lecture 34: Properties of the LSE The following results explain why the LSE is popular. Gauss-Markov Theorem Assume a general linear model previously described: Y = Xβ + E with assumption A2, i.e., Var(E

More information

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee Stochastic Processes Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee 1 Outline Methods of Mean Squared Error Bias and Unbiasedness Best Unbiased Estimators CR-Bound for variance

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Financial Time Series Analysis Week 5

Financial Time Series Analysis Week 5 Financial Time Series Analysis Week 5 25 Estimation in AR moels Central Limit Theorem for µ in AR() Moel Recall : If X N(µ, σ 2 ), normal istribute ranom variable with mean µ an variance σ 2, then X µ

More information

Chapter 3. Point Estimation. 3.1 Introduction

Chapter 3. Point Estimation. 3.1 Introduction Chapter 3 Point Estimation Let (Ω, A, P θ ), P θ P = {P θ θ Θ}be probability space, X 1, X 2,..., X n : (Ω, A) (IR k, B k ) random variables (X, B X ) sample space γ : Θ IR k measurable function, i.e.

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

Generalized Linear Models Introduction

Generalized Linear Models Introduction Generalized Linear Models Introduction Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Linear Models For many problems, standard linear regression approaches don t work. Sometimes,

More information

Akaike criterion: Kullback-Leibler discrepancy

Akaike criterion: Kullback-Leibler discrepancy Model choice. Akaike s criterion Akaike criterion: Kullback-Leibler discrepancy Given a family of probability densities {f ( ; ψ), ψ Ψ}, Kullback-Leibler s index of f ( ; ψ) relative to f ( ; θ) is (ψ

More information

Statistics and Econometrics I

Statistics and Econometrics I Statistics and Econometrics I Point Estimation Shiu-Sheng Chen Department of Economics National Taiwan University September 13, 2016 Shiu-Sheng Chen (NTU Econ) Statistics and Econometrics I September 13,

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

Forecasting. This optimal forecast is referred to as the Minimum Mean Square Error Forecast. This optimal forecast is unbiased because

Forecasting. This optimal forecast is referred to as the Minimum Mean Square Error Forecast. This optimal forecast is unbiased because Forecasting 1. Optimal Forecast Criterion - Minimum Mean Square Error Forecast We have now considered how to determine which ARIMA model we should fit to our data, we have also examined how to estimate

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments STAT 135 Lab 3 Asymptotic MLE and the Method of Moments Rebecca Barter February 9, 2015 Maximum likelihood estimation (a reminder) Maximum likelihood estimation Suppose that we have a sample, X 1, X 2,...,

More information

Chapters 9. Properties of Point Estimators

Chapters 9. Properties of Point Estimators Chapters 9. Properties of Point Estimators Recap Target parameter, or population parameter θ. Population distribution f(x; θ). { probability function, discrete case f(x; θ) = density, continuous case The

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part : Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

HT Introduction. P(X i = x i ) = e λ λ x i

HT Introduction. P(X i = x i ) = e λ λ x i MODS STATISTICS Introduction. HT 2012 Simon Myers, Department of Statistics (and The Wellcome Trust Centre for Human Genetics) myers@stats.ox.ac.uk We will be concerned with the mathematical framework

More information

IIT JAM : MATHEMATICAL STATISTICS (MS) 2013

IIT JAM : MATHEMATICAL STATISTICS (MS) 2013 IIT JAM : MATHEMATICAL STATISTICS (MS 2013 Question Paper with Answer Keys Ctanujit Classes Of Mathematics, Statistics & Economics Visit our website for more: www.ctanujit.in IMPORTANT NOTE FOR CANDIDATES

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

MLE and GMM. Li Zhao, SJTU. Spring, Li Zhao MLE and GMM 1 / 22

MLE and GMM. Li Zhao, SJTU. Spring, Li Zhao MLE and GMM 1 / 22 MLE and GMM Li Zhao, SJTU Spring, 2017 Li Zhao MLE and GMM 1 / 22 Outline 1 MLE 2 GMM 3 Binary Choice Models Li Zhao MLE and GMM 2 / 22 Maximum Likelihood Estimation - Introduction For a linear model y

More information

STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method

STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method Rebecca Barter February 2, 2015 Confidence Intervals Confidence intervals What is a confidence interval? A confidence interval is calculated

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Differencing Revisited: I ARIMA(p,d,q) processes predicated on notion of dth order differencing of a time series {X t }: for d = 1 and 2, have X t

Differencing Revisited: I ARIMA(p,d,q) processes predicated on notion of dth order differencing of a time series {X t }: for d = 1 and 2, have X t Differencing Revisited: I ARIMA(p,d,q) processes predicated on notion of dth order differencing of a time series {X t }: for d = 1 and 2, have X t 2 X t def in general = (1 B)X t = X t X t 1 def = ( X

More information

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your

More information

Masters Comprehensive Examination Department of Statistics, University of Florida

Masters Comprehensive Examination Department of Statistics, University of Florida Masters Comprehensive Examination Department of Statistics, University of Florida May 6, 003, 8:00 am - :00 noon Instructions: You have four hours to answer questions in this examination You must show

More information

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45 Two hours Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER PROBABILITY 2 14 January 2015 09:45 11:45 Answer ALL four questions in Section A (40 marks in total) and TWO of the THREE questions

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2 Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution Defn: Z R 1 N(0,1) iff f Z (z) = 1 2π e z2 /2 Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) (a column

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

1. Point Estimators, Review

1. Point Estimators, Review AMS571 Prof. Wei Zhu 1. Point Estimators, Review Example 1. Let be a random sample from. Please find a good point estimator for Solutions. There are the typical estimators for and. Both are unbiased estimators.

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference GARCH Models Estimation and Inference Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 1 Likelihood function The procedure most often used in estimating θ 0 in

More information

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11: Statistical Analysis of EXTREMES in GEOPHYSICS Zwiers FW and Kharin VV. 1998. Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:2200 2222. http://www.ral.ucar.edu/staff/ericg/readinggroup.html

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Introduction to Statistical Methods in Economics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

Problem Set 6 Solution

Problem Set 6 Solution Problem Set 6 Solution May st, 009 by Yang. Causal Expression of AR Let φz : αz βz. Zeros of φ are α and β, both of which are greater than in absolute value by the assumption in the question. By the theorem

More information

Inference and Regression

Inference and Regression Inference and Regression Assignment 3 Department of IOMS Professor William Greene Phone:.998.0876 Office: KMC 7-90 Home page:www.stern.nyu.edu/~wgreene Email: wgreene@stern.nyu.edu Course web page: www.stern.nyu.edu/~wgreene/econometrics/econometrics.htm.

More information

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn!

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Questions?! C. Porciani! Estimation & forecasting! 2! Cosmological parameters! A branch of modern cosmological research focuses

More information

Generalized Linear Models. Kurt Hornik

Generalized Linear Models. Kurt Hornik Generalized Linear Models Kurt Hornik Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Example 1. Let be a random sample from. Please find a good point estimator for

Example 1. Let be a random sample from. Please find a good point estimator for AMS570 Prof. Wei Zhu Point Estimators Example 1. Let be a random sample from. Please find a good point estimator for Solutions. There are the typical estimators for and. Both are unbiased estimators. Property

More information

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak.

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak. Large Sample Theory Large Sample Theory is a name given to the search for approximations to the behaviour of statistical procedures which are derived by computing limits as the sample size, n, tends to

More information

ECE 275A Homework 7 Solutions

ECE 275A Homework 7 Solutions ECE 275A Homework 7 Solutions Solutions 1. For the same specification as in Homework Problem 6.11 we want to determine an estimator for θ using the Method of Moments (MOM). In general, the MOM estimator

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information