Generalized Linear Models. Kurt Hornik

Size: px
Start display at page:

Download "Generalized Linear Models. Kurt Hornik"

Transcription

1 Generalized Linear Models Kurt Hornik

2 Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general linear model Y = XB + E (with E normal with flexible error covariance structures) But what if normality is not appropriate (e.g., skewed, bounded, discrete)? Transformations or generalized linear models. Slide 2

3 Exponential Dispersion Models Densities with respect to reference measure m of the form yθ b(θ) ƒ (y θ, ϕ) = exp + c(y, ϕ) ϕ (alternatively, write (ϕ) instead of ϕ in the denominator). For fixed ϕ, this is an exponential family in θ. Slide 3

4 Exponential Dispersion Models Differentiate ƒ (y θ, ϕ) dm(y) = 1 with respect to θ (and assume interchanging integration and differentiation is justified): so that 0 = ƒ (y θ, ϕ) ƒ (y θ, ϕ) dm(y) = dm(y) θ θ = y b (θ) ƒ (y θ, ϕ) dm(y) = E θ,ϕ(y) b (θ) ϕ ϕ E θ,ϕ (y) = b (θ) (which does not depend on ϕ!). Slide 4

5 Exponential Dispersion Models Differentiate once more: 0 = so that b (θ) y b 2 (θ) + ƒ (y θ, ϕ) dm(y) ϕ ϕ = b (θ) ϕ V θ,ϕ (y) = ϕb (θ). + V θ,ϕ(y) ϕ 2 (which shows that ϕ is a dispersion parameter). Slide 5

6 Exponential Dispersion Models We can thus write E(y) = μ = b (θ). If μ = b (θ) defines a one-to-one relation between μ and θ (which it does: can be shown using convex analysis), we can write b (θ) = V(μ), formally V(μ) = b ((b ) 1 (μ)) where V is the variance function of the family. Thus: vr(y) = ϕb (θ) = ϕv(μ). Slide 6

7 Example: Bernoulli Family Take y binary with P(y = 1) = p. With m counting measure (on {0, 1}), ƒ (y) = p y (1 p) 1 y p y = (1 p) 1 p p = exp y log + log(1 p). 1 p I.e., exponential dispersion model with ϕ = 1 (hence in fact, exponential family) and p θ = log = logit(p) 1 p (quantile function of standard logistic distribution). Slide 7

8 Example: Bernoulli Family Inverting θ = logit(p) gives eθ p = 1 + e θ (probability function of standard logistic distribution) and hence 1 1 p = 1 + e θ so that b(θ) = log(1 p) = log(1 + e θ ). Altogether (note that there is a problem for p {0, 1}): ƒ (y θ) = exp(yθ log(1 + e θ )), θ = logit(p). Slide 8

9 Example: Bernoulli Family Differentiation gives: and b 1 (θ) = 1 + e θ eθ = p = μ b (θ) = eθ (1 + e θ ) e θ e θ (1 + e θ ) 2 = eθ 1 + e θ 1 = p(1 p) = μ(1 μ). 1 + eθ Necessary? We know that E(y) = p and vr(y) = p(1 p). Hence, eθ b (θ) = p = 1 + e θ = b(θ) = log(1 + eθ ). Slide 9

10 Generalized Linear Models For = 1,..., n have responses y from an exponential dispersion family with the same b and covariates such that for E(y ) = μ = b (θ ) we have g(μ ) = β = η, where g is the link function and η is the linear predictor. Alternatively, μ = h(β ) = h(η ), where h is the response function (and g and h are inverses of each other if invertible). Why useful? General conceptual framework for estimation and inference. Slide 10

11 Maximum Likelihood Estimation Log-likelihood is where l = l(β) = n =1 g(μ ) = g(b (θ )) = β. y θ b(θ ) + c(y, ϕ ), ϕ Differentiating the latter with respect to β j : j = β = g(b (θ )) = g (b (θ ))b (θ ) θ = g (μ )V(μ ) θ β j β j β j β j Slide 11

12 Maximum Likelihood Estimation Hence, and θ β j = l β j = j g (μ )V(μ ) n y b (θ ) j g (μ )V(μ ) = =1 ϕ n =1 y μ ϕ V(μ ) j g (μ ). MLE typically performed by solving score equations l/ β j = 0. For Newton-type algorithms, need the Hessian H(β) = [ 2 l/ β j β j ]. As μ = b (θ ), Slide 12 μ = b (θ ) θ j = V(μ ) β j β j g (μ )V(μ ) = j g (μ )

13 Maximum Likelihood Estimation Hence: 2 l β j β k = = = n β k ϕ V(μ ) g (μ ) =1 n j ϕ =1 n =1 n =1 y μ j μ β k 1 V(μ )g (μ ) j k ϕ V(μ )g (μ ) 2 y μ (V(μ )g (μ )) (V(μ )g (μ )) 2 β k (y μ ) j k ϕ V(μ ) 2 g (μ ) 3 (V (μ )g (μ ) + V(μ )g (μ )) Slide 13

14 Maximum Likelihood Estimation Second term looks complicated, but has expectation zero. Hence, drop and only use first term for Newton-type iteration: Fisher scoring algorithm. Equivalently, replace observed information matrix (negative Hessian of log-likelihood) by its expectation (Fisher information matrix). Next problem: what about ϕ? Assume that ϕ = ϕ/ with known case weights. Slide 14

15 Maximum Likelihood Estimation Then Fisher information matrix is 1 ϕ n V(μ =1 )g (μ ) 2 j k = X W(β)X ϕ where X is the usual regressor matrix (with as row ) and W(β) = dig V(μ )g (μ ) 2 Similarly, score function is 1 ϕ,, g(μ ) = β. n V(μ =1 )g (μ ) 2 g (μ )(y μ ) j = X W(β)r(β), ϕ where r(β) has elements g (μ )(y μ ): so-called working residuals. Slide 15

16 Maximum Likelihood Estimation Remember: Newton updates for minimizing l(β) are β new β (H(l)(β)) 1 l(β). Thus, Fisher scoring update (with approximation for H) uses β new β + (X W(β)X) 1 X W(β)r(β) = (X W(β)X) 1 X W(β)(Xβ + r(β)) = (X W(β)X) 1 X W(β)z(β) where working response z(β) has elements β + g (μ )(y μ ), g(μ ) = β. I.e., update computed by weighted least squares regression of z(β) on X (weights: square roots of W(β)): Fisher scoring algorithm for obtaining the MLEs is an iterative weighted least squares (IWLS) algorithm. Note: common dispersion parameter ϕ not used! Slide 16

17 Canonical Links The canonical link is given by g = (b ) 1 so that η = g(μ ) = g(b (θ )) = θ, g (μ) = d dμ (b ) 1 (μ) = so that g (μ)v(μ) 1, and hence 1 b ((b ) 1 (μ)) = 1 V(μ), l = 1 β j ϕ n (y μ ) j, =1 2 l = 1 β j β k ϕ n V(μ ) j k =1 Thus: observed and expected information coincide, IWLS Fisher scoring algorithm is the same as Newton s algorithm. Slide 17

18 Inference Under suitable conditions, MLE ˆβ asymptotically N(β, (β) 1 ) with expected Fisher information matrix (β) = 1 ϕ X W(β)X. Thus, standard errors can be computed as square roots of diagonal elements of cov( ˆβ) = ϕ(x W( ˆβ)X) 1 where X W( ˆβ)X is a by-product of the final IWLS iteration. Slide 18

19 Inference This needs an estimate of ϕ (unless known). Estimation by MLE is practically difficult: hence, usually estimated by method of moments. Remember vr(y ) = ϕ V(μ ) = ϕv(μ )/. Hence: if β was known, unbiased estimate of ϕ would be 1 n (y μ ) 2. n V(μ =1 ) Taking into account that β is estimated, estimate is ˆϕ = 1 n p n (y ˆμ ) 2 =1 V( ˆμ ) (where p is the number of β parameters). Slide 19

20 Deviance A quality-of-fit statistic for model fitting achieved by ML, generalizing the idea of using the sum of squares of residuals in ordinary least squares: D = 2ϕ(l st l mod ) (assuming a common ϕ, perhaps after taking out weights), where the saturated model uses separate parameters for each observation so that the data is fitted exactly. For GLMs: y = μ = b (θ ) achieves zero scores. Contribution of observation to l st l mod is y θ b (θ ) y ˆθ b ( ˆθ ) = y θ θ b(θ), ϕ ϕ ϕ ˆθ where ˆθ is obtained from the fitted model (i.e., g(b ( ˆθ )) = ˆβ ). Slide 20

21 Deviance We can write (y θ b(θ)) θ = ˆθ θ ˆθ d dθ (y θ b(θ)) dθ = θ ˆθ (y b (θ)) dθ. Substituting μ = b (θ): dμ = b (θ) dθ, i.e., dθ = V(μ) 1 dμ, so that θ ˆθ (y b (θ)) dθ = y ˆμ y μ V(μ) dμ and the deviance contribution of observation is 2ϕ y θ b(θ) ϕ θ = 2 ˆθ y ˆμ y μ V(μ) dμ. Can be taken to define deviance and introduce quasi-likelihood models. Slide 21

22 Residuals Several kinds of residuals can be defined for GLMs: response y ˆμ working from working response in IWLS, i.e., g ( ˆμ )(y ˆμ ) Pearson r P = y ˆμ V( ˆμ ) so that (rp )2 equals the generalized Pearson statistic. deviance so that (rd ) 2 equals the deviance (see above). (All definitions equivalent for the Gaussian family.) Slide 22

23 Generalized Linear Mixed Models Augment the linear predictor by (unknown) random effects b : η = β + z b where the b come from a suitable family of distributions and the z (as well as the, of course) are known covariates. Typically, b N(0, G(ϑ)). Conditionally on b, y is taken to follow an exponential dispersion model with g(e(y b )) = η = β + z b. Marginal likelihood function is observed y obtained by integrating out the joint likelihood of the y and b with respect to the marginal distribution of the b. If b are independent across observation units, L(β, ϕ, ϑ) = n ƒ (y β, ϕ, ϑ, b )ƒ (b ϑ) db =1 Slide 23

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Statistics for Applications Chapter 10: Generalized Linear Models (GLMs) 1/52 Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Components of a linear model The two

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Advanced Methods for Data Analysis (36-402/36-608 Spring 2014 1 Generalized linear models 1.1 Introduction: two regressions So far we ve seen two canonical settings for regression.

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples ST3241 Categorical Data Analysis I Generalized Linear Models Introduction and Some Examples 1 Introduction We have discussed methods for analyzing associations in two-way and three-way tables. Now we will

More information

Generalized linear models

Generalized linear models Generalized linear models Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 29, 202 Contents Densities for generalized linear models. Mean and variance...............................

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Poisson regression 1/15

Poisson regression 1/15 Poisson regression 1/15 2/15 Counts data Examples of counts data: Number of hospitalizations over a period of time Number of passengers in a bus station Blood cells number in a blood sample Number of typos

More information

Generalized Linear Models. Last time: Background & motivation for moving beyond linear

Generalized Linear Models. Last time: Background & motivation for moving beyond linear Generalized Linear Models Last time: Background & motivation for moving beyond linear regression - non-normal/non-linear cases, binary, categorical data Today s class: 1. Examples of count and ordered

More information

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1 Count models A classical, theoretical argument for the Poisson distribution is the approximation Binom(n, p) Pois(λ) for large n and small p and λ = np. This can be extended considerably to n approx Z

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random STA 216: GENERALIZED LINEAR MODELS Lecture 1. Review and Introduction Much of statistics is based on the assumption that random variables are continuous & normally distributed. Normal linear regression

More information

Generalized Linear Models I

Generalized Linear Models I Statistics 203: Introduction to Regression and Analysis of Variance Generalized Linear Models I Jonathan Taylor - p. 1/16 Today s class Poisson regression. Residuals for diagnostics. Exponential families.

More information

Generalized Linear Models 1

Generalized Linear Models 1 Generalized Linear Models 1 STA 2101/442: Fall 2012 1 See last slide for copyright information. 1 / 24 Suggested Reading: Davison s Statistical models Exponential families of distributions Sec. 5.2 Chapter

More information

Generalized Estimating Equations

Generalized Estimating Equations Outline Review of Generalized Linear Models (GLM) Generalized Linear Model Exponential Family Components of GLM MLE for GLM, Iterative Weighted Least Squares Measuring Goodness of Fit - Deviance and Pearson

More information

SB1a Applied Statistics Lectures 9-10

SB1a Applied Statistics Lectures 9-10 SB1a Applied Statistics Lectures 9-10 Dr Geoff Nicholls Week 5 MT15 - Natural or canonical) exponential families - Generalised Linear Models for data - Fitting GLM s to data MLE s Iteratively Re-weighted

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 15 Outline 1 Fitting GLMs 2 / 15 Fitting GLMS We study how to find the maxlimum likelihood estimator ˆβ of GLM parameters The likelihood equaions are usually

More information

Lecture 5: LDA and Logistic Regression

Lecture 5: LDA and Logistic Regression Lecture 5: and Logistic Regression Hao Helen Zhang Hao Helen Zhang Lecture 5: and Logistic Regression 1 / 39 Outline Linear Classification Methods Two Popular Linear Models for Classification Linear Discriminant

More information

Fall 2003: Maximum Likelihood II

Fall 2003: Maximum Likelihood II 36-711 Fall 2003: Maximum Likelihood II Brian Junker November 18, 2003 Slide 1 Newton s Method and Scoring for MLE s Aside on WLS/GLS Application to Exponential Families Application to Generalized Linear

More information

Chapter 4: Generalized Linear Models-II

Chapter 4: Generalized Linear Models-II : Generalized Linear Models-II Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu] D. Bandyopadhyay

More information

Generalized Linear Models

Generalized Linear Models York SPIDA John Fox Notes Generalized Linear Models Copyright 2010 by John Fox Generalized Linear Models 1 1. Topics I The structure of generalized linear models I Poisson and other generalized linear

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20 Logistic regression 11 Nov 2010 Logistic regression (EPFL) Applied Statistics 11 Nov 2010 1 / 20 Modeling overview Want to capture important features of the relationship between a (set of) variable(s)

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 3. Hypothesis testing. Goodness of Fit. Model diagnostics GLM (Spring, 2018) Lecture 3 1 / 34 Models Let M(X r ) be a model with design matrix X r (with r columns) r n

More information

Generalized Estimating Equations (gee) for glm type data

Generalized Estimating Equations (gee) for glm type data Generalized Estimating Equations (gee) for glm type data Søren Højsgaard mailto:sorenh@agrsci.dk Biometry Research Unit Danish Institute of Agricultural Sciences January 23, 2006 Printed: January 23, 2006

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part II Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

Some explanations about the IWLS algorithm to fit generalized linear models

Some explanations about the IWLS algorithm to fit generalized linear models Some explanations about the IWLS algorithm to fit generalized linear models Christophe Dutang To cite this version: Christophe Dutang. Some explanations about the IWLS algorithm to fit generalized linear

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

11. Generalized Linear Models: An Introduction

11. Generalized Linear Models: An Introduction Sociology 740 John Fox Lecture Notes 11. Generalized Linear Models: An Introduction Copyright 2014 by John Fox Generalized Linear Models: An Introduction 1 1. Introduction I A synthesis due to Nelder and

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

When is MLE appropriate

When is MLE appropriate When is MLE appropriate As a rule of thumb the following to assumptions need to be fulfilled to make MLE the appropriate method for estimation: The model is adequate. That is, we trust that one of the

More information

STA 450/4000 S: January

STA 450/4000 S: January STA 450/4000 S: January 6 005 Notes Friday tutorial on R programming reminder office hours on - F; -4 R The book Modern Applied Statistics with S by Venables and Ripley is very useful. Make sure you have

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

1/15. Over or under dispersion Problem

1/15. Over or under dispersion Problem 1/15 Over or under dispersion Problem 2/15 Example 1: dogs and owners data set In the dogs and owners example, we had some concerns about the dependence among the measurements from each individual. Let

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

POLI 8501 Introduction to Maximum Likelihood Estimation

POLI 8501 Introduction to Maximum Likelihood Estimation POLI 8501 Introduction to Maximum Likelihood Estimation Maximum Likelihood Intuition Consider a model that looks like this: Y i N(µ, σ 2 ) So: E(Y ) = µ V ar(y ) = σ 2 Suppose you have some data on Y,

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Lecture 16 Solving GLMs via IRWLS

Lecture 16 Solving GLMs via IRWLS Lecture 16 Solving GLMs via IRWLS 09 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Notes problem set 5 posted; due next class problem set 6, November 18th Goals for today fixed PCA example

More information

The logistic regression model is thus a glm-model with canonical link function so that the log-odds equals the linear predictor, that is

The logistic regression model is thus a glm-model with canonical link function so that the log-odds equals the linear predictor, that is Example The logistic regression model is thus a glm-model with canonical link function so that the log-odds equals the linear predictor, that is log p 1 p = β 0 + β 1 f 1 (y 1 ) +... + β d f d (y d ).

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Generalized Linear Models Introduction

Generalized Linear Models Introduction Generalized Linear Models Introduction Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Linear Models For many problems, standard linear regression approaches don t work. Sometimes,

More information

Generalized Linear Models: An Introduction

Generalized Linear Models: An Introduction Applied Statistics With R Generalized Linear Models: An Introduction John Fox WU Wien May/June 2006 2006 by John Fox Generalized Linear Models: An Introduction 1 A synthesis due to Nelder and Wedderburn,

More information

Poisson regression: Further topics

Poisson regression: Further topics Poisson regression: Further topics April 21 Overdispersion One of the defining characteristics of Poisson regression is its lack of a scale parameter: E(Y ) = Var(Y ), and no parameter is available to

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA JAPANESE BEETLE DATA 6 MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA Gauge Plots TuscaroraLisa Central Madsen Fairways, 996 January 9, 7 Grubs Adult Activity Grub Counts 6 8 Organic Matter

More information

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46 A Generalized Linear Model for Binomial Response Data Copyright c 2017 Dan Nettleton (Iowa State University) Statistics 510 1 / 46 Now suppose that instead of a Bernoulli response, we have a binomial response

More information

Lecture 8. Poisson models for counts

Lecture 8. Poisson models for counts Lecture 8. Poisson models for counts Jesper Rydén Department of Mathematics, Uppsala University jesper.ryden@math.uu.se Statistical Risk Analysis Spring 2014 Absolute risks The failure intensity λ(t) describes

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS020) p.3863 Model Selection for Semiparametric Bayesian Models with Application to Overdispersion Jinfang Wang and

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

Computational methods for mixed models

Computational methods for mixed models Computational methods for mixed models Douglas Bates Department of Statistics University of Wisconsin Madison March 27, 2018 Abstract The lme4 package provides R functions to fit and analyze several different

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

Estimating prediction error in mixed models

Estimating prediction error in mixed models Estimating prediction error in mixed models benjamin saefken, thomas kneib georg-august university goettingen sonja greven ludwig-maximilians-university munich 1 / 12 GLMM - Generalized linear mixed models

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

MIT Spring 2016

MIT Spring 2016 Generalized Linear Models MIT 18.655 Dr. Kempthorne Spring 2016 1 Outline Generalized Linear Models 1 Generalized Linear Models 2 Generalized Linear Model Data: (y i, x i ), i = 1,..., n where y i : response

More information

STAT 526 Advanced Statistical Methodology

STAT 526 Advanced Statistical Methodology STAT 526 Advanced Statistical Methodology Fall 2017 Lecture Note 10 Analyzing Clustered/Repeated Categorical Data 0-0 Outline Clustered/Repeated Categorical Data Generalized Linear Mixed Models Generalized

More information

Modeling Longitudinal Count Data with Excess Zeros and Time-Dependent Covariates: Application to Drug Use

Modeling Longitudinal Count Data with Excess Zeros and Time-Dependent Covariates: Application to Drug Use Modeling Longitudinal Count Data with Excess Zeros and : Application to Drug Use University of Northern Colorado November 17, 2014 Presentation Outline I and Data Issues II Correlated Count Regression

More information

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University Chap 2. Linear Classifiers (FTH, 4.1-4.4) Yongdai Kim Seoul National University Linear methods for classification 1. Linear classifiers For simplicity, we only consider two-class classification problems

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Yan Lu Jan, 2018, week 3 1 / 67 Hypothesis tests Likelihood ratio tests Wald tests Score tests 2 / 67 Generalized Likelihood ratio tests Let Y = (Y 1,

More information

General Regression Model

General Regression Model Scott S. Emerson, M.D., Ph.D. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA January 5, 2015 Abstract Regression analysis can be viewed as an extension of two sample statistical

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates Madison January 11, 2011 Contents 1 Definition 1 2 Links 2 3 Example 7 4 Model building 9 5 Conclusions 14

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

Generalized Linear Models and Exponential Families

Generalized Linear Models and Exponential Families Generalized Linear Models and Exponential Families David M. Blei COS424 Princeton University April 12, 2012 Generalized Linear Models x n y n β Linear regression and logistic regression are both linear

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

Administration. Homework 1 on web page, due Feb 11 NSERC summer undergraduate award applications due Feb 5 Some helpful books

Administration. Homework 1 on web page, due Feb 11 NSERC summer undergraduate award applications due Feb 5 Some helpful books STA 44/04 Jan 6, 00 / 5 Administration Homework on web page, due Feb NSERC summer undergraduate award applications due Feb 5 Some helpful books STA 44/04 Jan 6, 00... administration / 5 STA 44/04 Jan 6,

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

1 Mixed effect models and longitudinal data analysis

1 Mixed effect models and longitudinal data analysis 1 Mixed effect models and longitudinal data analysis Mixed effects models provide a flexible approach to any situation where data have a grouping structure which introduces some kind of correlation between

More information

Machine Learning. Lecture 3: Logistic Regression. Feng Li.

Machine Learning. Lecture 3: Logistic Regression. Feng Li. Machine Learning Lecture 3: Logistic Regression Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2016 Logistic Regression Classification

More information

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. semi-parametric likelihood, partial likelihood 3. empirical likelihood,

More information

ECON 4160, Autumn term Lecture 1

ECON 4160, Autumn term Lecture 1 ECON 4160, Autumn term 2017. Lecture 1 a) Maximum Likelihood based inference. b) The bivariate normal model Ragnar Nymoen University of Oslo 24 August 2017 1 / 54 Principles of inference I Ordinary least

More information

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Douglas Bates University of Wisconsin - Madison and R Development Core Team University of

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: )

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: ) NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/62 Lecture 1b Logistic regression & neural network October 2, 2015 2/62 Table of contents 1 1 Bird s-eye

More information

Review and continuation from last week Properties of MLEs

Review and continuation from last week Properties of MLEs Review and continuation from last week Properties of MLEs As we have mentioned, MLEs have a nice intuitive property, and as we have seen, they have a certain equivariance property. We will see later that

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Weighted Least Squares I

Weighted Least Squares I Weighted Least Squares I for i = 1, 2,..., n we have, see [1, Bradley], data: Y i x i i.n.i.d f(y i θ i ), where θ i = E(Y i x i ) co-variates: x i = (x i1, x i2,..., x ip ) T let X n p be the matrix of

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates 2011-03-16 Contents 1 Generalized Linear Mixed Models Generalized Linear Mixed Models When using linear mixed

More information

Sampling distribution of GLM regression coefficients

Sampling distribution of GLM regression coefficients Sampling distribution of GLM regression coefficients Patrick Breheny February 5 Patrick Breheny BST 760: Advanced Regression 1/20 Introduction So far, we ve discussed the basic properties of the score,

More information

Logistic Regression. Mohammad Emtiyaz Khan EPFL Oct 8, 2015

Logistic Regression. Mohammad Emtiyaz Khan EPFL Oct 8, 2015 Logistic Regression Mohammad Emtiyaz Khan EPFL Oct 8, 2015 Mohammad Emtiyaz Khan 2015 Classification with linear regression We can use y = 0 for C 1 and y = 1 for C 2 (or vice-versa), and simply use least-squares

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information