Statistics of Stochastic Processes

Size: px
Start display at page:

Download "Statistics of Stochastic Processes"

Transcription

1 Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function X(t), a t b ( a < b ) spatial processes (e.g. image analysis, d = 2, 3): X z, z Z d (discrete) X(z), z R d (continuous)

2 Prof. Dr. J. Franke All of Statistics 4.2 Stationarity (spatial homogeneity) L(X t1,..., X tn ) = L(X t1 +s,..., X tn +s) Analogously for t j, s R, z j, s Z d, z j, s R d for all n 1, t 1,..., t n, s Z Note: Distribution of X(t), a t b, as a random function, e.g. as a random variable with values in C[a, b], completely determined by the finite-dimensional distributions L(X(t 1 ),..., X(t n )) n 1, t 1,..., t n [a, b] Gaussian process if L(X(t 1 ),..., X(t n )) n-dimensional normal Examples: a) autoregressive process of order 1 or AR(1)-process X t = ax t 1 + Z t, EZ t = 0, var Z t = σ 2 < Z t innovation at time t; uncorrelated or even i.i.d.

3 Prof. Dr. J. Franke All of Statistics 4.3 (X t µ) = a(x t 1 µ) + Z t, EZ t = 0, var Z t = σ 2 < if EX t = µ 0. Gaussian if innovations Z t i.i.d N (0, σ 2 ). Stationary a < 1. For a = 1: random walk X t = X 0 + t j=1 Z j, var X t = var X 0 + tσ 2 distribution of X t depends on t not stationary b) stationary AR(1)-process solves stochastic difference equation: with b > 0. X t = X t X t 1 = (a 1)X t + Z t = bx t + Z t

4 Prof. Dr. J. Franke All of Statistics 4.4 AR(1): X t = 0.9X t 1 + Z t

5 Prof. Dr. J. Franke All of Statistics 4.5 Gaussian random walks with EX t = 0 for all t

6 Prof. Dr. J. Franke All of Statistics 4.6 X t = X t X t 1 = bx t + Z t, b > 0 time discretization: t 1 t t, t 0 stochastic differential equation (Ornstein-Uhlenbeck process) dx(t) = bx(t) + σdw (t), b > 0 W (t) standard Wiener process or Brownian motion, e.g. on [0, ) with W (0) = 0: i) process with independent increments: W (t) W (s) independent of W (s), 0 s < t ii) Gaussian: increment W (t) W (s) is N (0, t s)-distributed Wiener process = continuous-time analogue to and limit of Gaussian random walk (used for simulation)

7 Prof. Dr. J. Franke All of Statistics 4.7 c) nonlinear autoregressive process of order p or NLAR(p)-process: X t = m(x t 1,..., X t p ) + Z t, EZ t = 0, var Z t = σ 2 < innovations Z t usually i.i.d. Key property for statistics: 1 realization X 1,..., X N of part of a stationary process suffices for statistical inference (estimation, testing,...), e.g. (under weak assumptions) ergodic theorem implies: X N = 1 N N t=1 X t µ = EX s (independent of s) Extension of inference to local stationarity or piecewise stationarity possible

8 Prof. Dr. J. Franke All of Statistics 4.8 NLAR(2): X t = ψ(x t 1 + X t 2 ) + Z t, ψ = logistic function

9 Prof. Dr. J. Franke All of Statistics 4.9 Markov property: distributions of future X s, s > t given past and present only depend on current value X t Examples: AR(1), Ornstein-Uhlenbeck, NLAR(1) Markov random fields (spatial): distributions of X z beyond a boundary only depend on data on the boundary Statistical problems: Estimation, e.g. for parametric Gaussian NLAR(p) by leastsquares as in regression: N t=p+1 ( X t m(x t 1,..., X t p, b)) 2 = min b! Forecasting: Fit appropriate autoregressive scheme to the data (e.g. NLAR(p)), e.g. estimate b by ˆb, and predict X N+1 by X N+1 = m(x N,..., X N+1 p,ˆb)

10 Prof. Dr. J. Franke All of Statistics 4.10 AR(1) with changepoint at 151: mean shift of +2

11 Prof. Dr. J. Franke All of Statistics 4.11 AR(1) with changepoint at 151: start of trend with slope 0.05

12 Prof. Dr. J. Franke All of Statistics 4.12 AR(1) with changepoint at 151: change of dependence from a = 0.9 to a = 0.5

13 Prof. Dr. J. Franke All of Statistics 4.13 Spectral Analysis of Stationary Processes Here only stationary time series:..., X 1, X 0, X 1, X 2,... Analogously: spatial processes (stationary spatially homogeneous) Extension to nonstationary data: wavelets Goal: Detect and interpret periodic features in the data structure Use those periodic features to differ, e.g. by hypothesis tests, between or to classify different kinds of objects

14 Prof. Dr. J. Franke All of Statistics 4.14 Building blocks of spectral decomposition: sines and cosines

15 Prof. Dr. J. Franke All of Statistics 4.15 period/wavelength l, frequency ν = 1 l, angular frequency ω = 2πν, phase (shift) φ, amplitude A

16 Prof. Dr. J. Franke All of Statistics 4.16 Deterministic signal: How to reconstruct the cosine-components? Fourier analysis

17 Prof. Dr. J. Franke All of Statistics 4.17 Random signals and spectral representation X 1,..., X N sample from a random time series..., X 1, X 0, X 1, X 2,... Assumption (weak stationarity of signal): var X t < and cov(x t, X s ) = r t s i.e. linear dependence between X t, X s depends on time span t s between the observations only. Strict stationarity requires that the whole data generating mechanism does not change with time: (X t1 +s,..., X tn +s) has same distribution as (X t1,..., X tn ) for all n 1, t 1,..., t n, s

18 Prof. Dr. J. Franke All of Statistics 4.18 Terminology: r t autocovariance at lag t f(ω) power spectral density at (angular) frequency ω r t = cov(x t+s, X s ), f(ω) = t= r t e itω, π ω π if r t <. Remark: For real-valued signals: f(ω) = f( ω) 0. Both are equivalent characterizations of the stationary signal X t Example: White noise X t, X s uncorrelated for t s r t = 0 for all t 0 f(ω) r 0 = constant for all ω

19 Prof. Dr. J. Franke All of Statistics 4.19 Spectral representation theorem : Every stationary signal can be arbitrarily well approximated by a random trignometric polynomial if only m is large enough: X t m j= m Z j e iω jt = A 0 + m j=1 A j cos(ω j t + Φ j ) with random and independent A 0 R, A j 0, 0 Φ j < 2π, j = 1,..., m and Fourier frequencies ω j = 2πj M, M = 2m + 1. Cramér s Theorem: X t = 1 2π π π eiωt dz(ω) Z(ω) complex-valued stochastic processes with orthogonal increments, Z( π) = 0, e.g. Wiener process, E Z(ω + dω) Z(ω) 2 f(ω)dω

20 Prof. Dr. J. Franke All of Statistics 4.20 Two special cases: a) discrete spectrum: X t = A 0 + n l=1 A l cos(ω l t + Φ l ) with fixed, but unknown n and ωl not necessarily Fourier frequencies spectral lines at ωl, l = 1,..., n b) continuous spectrum: X t has a spectral density f(ω) which is large in frequency bands dominating the cyclic behaviour of the signal The examples on the slides , have a mixed spectrum, i.e. the signal is an additive superposition of a periodic signal and another signal (here: white noise) with continuous spectrum.

21 Prof. Dr. J. Franke All of Statistics 4.21 Fourier frequencies ω k = 2πk N. Assume: X t = m j= m Z j e iω jt, t = 1,..., N, N = 2m + 1 Discrete Fourier transform (DFT) of data: D N (ω k ) = 1 N N t=1 X t e itω k, k = m,..., m one-to-one data transformation X 1,..., X N D N (ω m ),..., D N (ω m ) fast calculation: FFT algorithm (fast Fourier transform) and its inverse (MATLAB: fft and ffti) D N (ω k ) complex, difficult to plot periodogram I N (ω k ) = D N (ω k ) 2, k = m,..., m, I N (ω k ) = Z k 2

22 Prof. Dr. J. Franke All of Statistics 4.22 I N (ω k ) = 1 N N t=1 X t e itω k 2, k = m,..., m X t real-valued I N (ω k ) = I N ( ω k ) symmetric. Periodogram for discrete and continuous spectrum, if N : a) I N (ω j ) 1 2 A2 l N if ω j ω l 0, I N(ω j ) 0 else. b) EI N (ω j ) f(ω j ), but var I N (ω j ) constant > 0 In case b), the periodogram will not converge for N, but it even becomes more and more irregular visually. For estimating the power spectral density, the periodogram has to be smoothed: f(ω k ) = L l= L w l I N (ω k+l ), w l = w l, L l= L w l = 1.

23 Prof. Dr. J. Franke All of Statistics 4.23

24 Prof. Dr. J. Franke All of Statistics 4.24

25 Prof. Dr. J. Franke All of Statistics 4.25

26 Prof. Dr. J. Franke All of Statistics 4.26

27 Prof. Dr. J. Franke All of Statistics 4.27

28 Prof. Dr. J. Franke All of Statistics 4.28

29 Prof. Dr. J. Franke All of Statistics 4.29

30 Prof. Dr. J. Franke All of Statistics 4.30

31 Prof. Dr. J. Franke All of Statistics 4.31

32 Prof. Dr. J. Franke All of Statistics 4.32

33 Prof. Dr. J. Franke All of Statistics 4.33

34 Prof. Dr. J. Franke All of Statistics 4.34

35 Prof. Dr. J. Franke All of Statistics 4.35

36 Prof. Dr. J. Franke All of Statistics 4.36

37 Prof. Dr. J. Franke All of Statistics 4.37

38 Prof. Dr. J. Franke All of Statistics 4.38 Data example: Wolfer s sunspot numbers (since 1700) The annual data represent an index for the number of large sunspots and clusters of smaller sunspots related to the activity of the sun. The data here are taken from MATLAB. a.k.a. Wolf number (A. Wolfer has been the student of R. Wolf, both active in Zürich in the 19 th century

39 Prof. Dr. J. Franke All of Statistics 4.39

40 Prof. Dr. J. Franke All of Statistics 4.40 periodogram of raw sunspot numbers X t

41 Prof. Dr. J. Franke All of Statistics 4.41 periodogram I 0 N (ω k) of centered sunspot numbers X 0 t = X t X N

42 Prof. Dr. J. Franke All of Statistics 4.42 averaged periodogram ˆf(ω k ) = 1 3 (I0 N (ω k 1) + I 0 N (ω k) + I 0 N (ω k+1))

43 Prof. Dr. J. Franke All of Statistics 4.43 averaged periodogram with weights 15 1 (1, 2, 3, 3, 3, 2, 1)

44 Prof. Dr. J. Franke All of Statistics 4.44

45 Prof. Dr. J. Franke All of Statistics 4.45

46 Prof. Dr. J. Franke All of Statistics 4.46

47 Prof. Dr. J. Franke All of Statistics 4.47

48 Prof. Dr. J. Franke All of Statistics 4.48 Data example: EEG-like data The following sample has been generated from a time series model which has been fitted to 10 seconds of real EEG data of a young child which has been in an idle state of mind during EEG recording. The simulated data correspond to approximately 1.5 sec of brain activity. For the original data and the fitted model (an autoregression of order 8), compare: H.W. Steinberg, T. Gasser, J. Franke: Fitting autoregressive models to EEG time series: An empirical comparison of estimates of the order. IEEE Trans. Acoustics, Speech and Signal Proc., 33, (1985)

49 Prof. Dr. J. Franke All of Statistics 4.49

50 Prof. Dr. J. Franke All of Statistics 4.50

51 Prof. Dr. J. Franke All of Statistics 4.51

8.2 Harmonic Regression and the Periodogram

8.2 Harmonic Regression and the Periodogram Chapter 8 Spectral Methods 8.1 Introduction Spectral methods are based on thining of a time series as a superposition of sinusoidal fluctuations of various frequencies the analogue for a random process

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

X random; interested in impact of X on Y. Time series analogue of regression.

X random; interested in impact of X on Y. Time series analogue of regression. Multiple time series Given: two series Y and X. Relationship between series? Possible approaches: X deterministic: regress Y on X via generalized least squares: arima.mle in SPlus or arima in R. We have

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Technische Universität Kaiserslautern WS 2016/17 Fachbereich Mathematik Prof. Dr. J. Franke 19. January 2017

Technische Universität Kaiserslautern WS 2016/17 Fachbereich Mathematik Prof. Dr. J. Franke 19. January 2017 Technische Universität Kaiserslautern WS 2016/17 Fachbereich Mathematik Prof. Dr. J. Franke 19. January 2017 Exercises for Computational Modelling with Statistics IV This exercise is about the spectral

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

Fourier Analysis of Stationary and Non-Stationary Time Series

Fourier Analysis of Stationary and Non-Stationary Time Series Fourier Analysis of Stationary and Non-Stationary Time Series September 6, 2012 A time series is a stochastic process indexed at discrete points in time i.e X t for t = 0, 1, 2, 3,... The mean is defined

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

1. Stochastic Processes and Stationarity

1. Stochastic Processes and Stationarity Massachusetts Institute of Technology Department of Economics Time Series 14.384 Guido Kuersteiner Lecture Note 1 - Introduction This course provides the basic tools needed to analyze data that is observed

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Introduction to Stochastic processes

Introduction to Stochastic processes Università di Pavia Introduction to Stochastic processes Eduardo Rossi Stochastic Process Stochastic Process: A stochastic process is an ordered sequence of random variables defined on a probability space

More information

EC402: Serial Correlation. Danny Quah Economics Department, LSE Lent 2015

EC402: Serial Correlation. Danny Quah Economics Department, LSE Lent 2015 EC402: Serial Correlation Danny Quah Economics Department, LSE Lent 2015 OUTLINE 1. Stationarity 1.1 Covariance stationarity 1.2 Explicit Models. Special cases: ARMA processes 2. Some complex numbers.

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

11. Further Issues in Using OLS with TS Data

11. Further Issues in Using OLS with TS Data 11. Further Issues in Using OLS with TS Data With TS, including lags of the dependent variable often allow us to fit much better the variation in y Exact distribution theory is rarely available in TS applications,

More information

IDENTIFICATION OF ARMA MODELS

IDENTIFICATION OF ARMA MODELS IDENTIFICATION OF ARMA MODELS A stationary stochastic process can be characterised, equivalently, by its autocovariance function or its partial autocovariance function. It can also be characterised by

More information

Generalised AR and MA Models and Applications

Generalised AR and MA Models and Applications Chapter 3 Generalised AR and MA Models and Applications 3.1 Generalised Autoregressive Processes Consider an AR1) process given by 1 αb)x t = Z t ; α < 1. In this case, the acf is, ρ k = α k for k 0 and

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets TIME SERIES AND FORECASTING Luca Gambetti UAB, Barcelona GSE 2014-2015 Master in Macroeconomic Policy and Financial Markets 1 Contacts Prof.: Luca Gambetti Office: B3-1130 Edifici B Office hours: email:

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Spectral Analysis. Jesús Fernández-Villaverde University of Pennsylvania

Spectral Analysis. Jesús Fernández-Villaverde University of Pennsylvania Spectral Analysis Jesús Fernández-Villaverde University of Pennsylvania 1 Why Spectral Analysis? We want to develop a theory to obtain the business cycle properties of the data. Burns and Mitchell (1946).

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t,

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t, CHAPTER 2 FUNDAMENTAL CONCEPTS This chapter describes the fundamental concepts in the theory of time series models. In particular, we introduce the concepts of stochastic processes, mean and covariance

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

1 Class Organization. 2 Introduction

1 Class Organization. 2 Introduction Time Series Analysis, Lecture 1, 2018 1 1 Class Organization Course Description Prerequisite Homework and Grading Readings and Lecture Notes Course Website: http://www.nanlifinance.org/teaching.html wechat

More information

Long-Range Dependence and Self-Similarity. c Vladas Pipiras and Murad S. Taqqu

Long-Range Dependence and Self-Similarity. c Vladas Pipiras and Murad S. Taqqu Long-Range Dependence and Self-Similarity c Vladas Pipiras and Murad S. Taqqu January 24, 2016 Contents Contents 2 Preface 8 List of abbreviations 10 Notation 11 1 A brief overview of times series and

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

Computational Data Analysis!

Computational Data Analysis! 12.714 Computational Data Analysis! Alan Chave (alan@whoi.edu)! Thomas Herring (tah@mit.edu),! http://geoweb.mit.edu/~tah/12.714! Introduction to Spectral Analysis! Topics Today! Aspects of Time series

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Nonlinear time series

Nonlinear time series Based on the book by Fan/Yao: Nonlinear Time Series Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 27, 2009 Outline Characteristics of

More information

An algorithm for robust fitting of autoregressive models Dimitris N. Politis

An algorithm for robust fitting of autoregressive models Dimitris N. Politis An algorithm for robust fitting of autoregressive models Dimitris N. Politis Abstract: An algorithm for robust fitting of AR models is given, based on a linear regression idea. The new method appears to

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Chapter 13: Functional Autoregressive Models

Chapter 13: Functional Autoregressive Models Chapter 13: Functional Autoregressive Models Jakub Černý Department of Probability and Mathematical Statistics Stochastic Modelling in Economics and Finance December 9, 2013 1 / 25 Contents 1 Introduction

More information

CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME

CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME Shri Mata Vaishno Devi University, (SMVDU), 2013 Page 13 CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME When characterizing or modeling a random variable, estimates

More information

ECO 513 Fall 2009 C. Sims CONDITIONAL EXPECTATION; STOCHASTIC PROCESSES

ECO 513 Fall 2009 C. Sims CONDITIONAL EXPECTATION; STOCHASTIC PROCESSES ECO 513 Fall 2009 C. Sims CONDIIONAL EXPECAION; SOCHASIC PROCESSES 1. HREE EXAMPLES OF SOCHASIC PROCESSES (I) X t has three possible time paths. With probability.5 X t t, with probability.25 X t t, and

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES This document is meant as a complement to Chapter 4 in the textbook, the aim being to get a basic understanding of spectral densities through

More information

Multiresolution Models of Time Series

Multiresolution Models of Time Series Multiresolution Models of Time Series Andrea Tamoni (Bocconi University ) 2011 Tamoni Multiresolution Models of Time Series 1/ 16 General Framework Time-scale decomposition General Framework Begin with

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

Wavelet Methods for Time Series Analysis. Motivating Question

Wavelet Methods for Time Series Analysis. Motivating Question Wavelet Methods for Time Series Analysis Part VII: Wavelet-Based Bootstrapping start with some background on bootstrapping and its rationale describe adjustments to the bootstrap that allow it to work

More information

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes EAS 305 Random Processes Viewgraph 1 of 10 Definitions: Random Processes A random process is a family of random variables indexed by a parameter t T, where T is called the index set λ i Experiment outcome

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

Wavelet Methods for Time Series Analysis. Part IX: Wavelet-Based Bootstrapping

Wavelet Methods for Time Series Analysis. Part IX: Wavelet-Based Bootstrapping Wavelet Methods for Time Series Analysis Part IX: Wavelet-Based Bootstrapping start with some background on bootstrapping and its rationale describe adjustments to the bootstrap that allow it to work with

More information

Simulation of stationary fractional Ornstein-Uhlenbeck process and application to turbulence

Simulation of stationary fractional Ornstein-Uhlenbeck process and application to turbulence Simulation of stationary fractional Ornstein-Uhlenbeck process and application to turbulence Georg Schoechtel TU Darmstadt, IRTG 1529 Japanese-German International Workshop on Mathematical Fluid Dynamics,

More information

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications Yongmiao Hong Department of Economics & Department of Statistical Sciences Cornell University Spring 2019 Time and uncertainty

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

1. Fundamental concepts

1. Fundamental concepts . Fundamental concepts A time series is a sequence of data points, measured typically at successive times spaced at uniform intervals. Time series are used in such fields as statistics, signal processing

More information

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be ed to

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be  ed to TIME SERIES Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be emailed to Y.Chen@statslab.cam.ac.uk. 1. Let {X t } be a weakly stationary process with mean zero and let

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

ECON 616: Lecture 1: Time Series Basics

ECON 616: Lecture 1: Time Series Basics ECON 616: Lecture 1: Time Series Basics ED HERBST August 30, 2017 References Overview: Chapters 1-3 from Hamilton (1994). Technical Details: Chapters 2-3 from Brockwell and Davis (1987). Intuition: Chapters

More information

Part II. Time Series

Part II. Time Series Part II Time Series 12 Introduction This Part is mainly a summary of the book of Brockwell and Davis (2002). Additionally the textbook Shumway and Stoffer (2010) can be recommended. 1 Our purpose is to

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Lesson 4: Stationary stochastic processes

Lesson 4: Stationary stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Stationary stochastic processes Stationarity is a rather intuitive concept, it means

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes Chapter 2 Some basic tools 2.1 Time series: Theory 2.1.1 Stochastic processes A stochastic process is a sequence of random variables..., x 0, x 1, x 2,.... In this class, the subscript always means time.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

Wavelet entropy as a measure of solar cycle complexity

Wavelet entropy as a measure of solar cycle complexity Astron. Astrophys. 363, 3 35 () Wavelet entropy as a measure of solar cycle complexity S. Sello Mathematical and Physical Models, Enel Research, Via Andrea Pisano, 56 Pisa, Italy (sello@pte.enel.it) Received

More information

Wavelet Methods for Time Series Analysis. Part IV: Wavelet-Based Decorrelation of Time Series

Wavelet Methods for Time Series Analysis. Part IV: Wavelet-Based Decorrelation of Time Series Wavelet Methods for Time Series Analysis Part IV: Wavelet-Based Decorrelation of Time Series DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced

More information

Course content (will be adapted to the background knowledge of the class):

Course content (will be adapted to the background knowledge of the class): Biomedical Signal Processing and Signal Modeling Lucas C Parra, parra@ccny.cuny.edu Departamento the Fisica, UBA Synopsis This course introduces two fundamental concepts of signal processing: linear systems

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 9 Jakub Mućk Econometrics of Panel Data Meeting # 9 1 / 22 Outline 1 Time series analysis Stationarity Unit Root Tests for Nonstationarity 2 Panel Unit Root

More information

Time Series. Anthony Davison. c

Time Series. Anthony Davison. c Series Anthony Davison c 2008 http://stat.epfl.ch Periodogram 76 Motivation............................................................ 77 Lutenizing hormone data..................................................

More information

Long-range dependence

Long-range dependence Long-range dependence Kechagias Stefanos University of North Carolina at Chapel Hill May 23, 2013 Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 1 / 45 Outline 1 Introduction to time series

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

E 4101/5101 Lecture 6: Spectral analysis

E 4101/5101 Lecture 6: Spectral analysis E 4101/5101 Lecture 6: Spectral analysis Ragnar Nymoen 3 March 2011 References to this lecture Hamilton Ch 6 Lecture note (on web page) For stationary variables/processes there is a close correspondence

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

Adaptive wavelet decompositions of stochastic processes and some applications

Adaptive wavelet decompositions of stochastic processes and some applications Adaptive wavelet decompositions of stochastic processes and some applications Vladas Pipiras University of North Carolina at Chapel Hill SCAM meeting, June 1, 2012 (joint work with G. Didier, P. Abry)

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Data Extension & Forecasting Moving

More information

On Moving Average Parameter Estimation

On Moving Average Parameter Estimation On Moving Average Parameter Estimation Niclas Sandgren and Petre Stoica Contact information: niclas.sandgren@it.uu.se, tel: +46 8 473392 Abstract Estimation of the autoregressive moving average (ARMA)

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

Lecture 11: Spectral Analysis

Lecture 11: Spectral Analysis Lecture 11: Spectral Analysis Methods For Estimating The Spectrum Walid Sharabati Purdue University Latest Update October 27, 2016 Professor Sharabati (Purdue University) Time Series Analysis October 27,

More information

Characteristics of Time Series

Characteristics of Time Series Characteristics of Time Series Al Nosedal University of Toronto January 12, 2016 Al Nosedal University of Toronto Characteristics of Time Series January 12, 2016 1 / 37 Signal and Noise In general, most

More information

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics David B. University of South Carolina Department of Statistics What are Time Series Data? Time series data are collected sequentially over time. Some common examples include: 1. Meteorological data (temperatures,

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

Time Series Analysis. Solutions to problems in Chapter 5 IMM

Time Series Analysis. Solutions to problems in Chapter 5 IMM Time Series Analysis Solutions to problems in Chapter 5 IMM Solution 5.1 Question 1. [ ] V [X t ] = V [ǫ t + c(ǫ t 1 + ǫ t + )] = 1 + c 1 σǫ = The variance of {X t } is not limited and therefore {X t }

More information