Synthesis of asynchronous control circuits with automatically generated relative timing assumptions

Size: px
Start display at page:

Download "Synthesis of asynchronous control circuits with automatically generated relative timing assumptions"

Transcription

1 Syntsis o asynronous ontrol iruits wit automatially gnrat rlativ timing assumptions 1 Jori Cortalla, 2 Mial Kisinvsky, 2 Stvn M. Burns an 2 Kn Stvns 1 Univ. Politènia Catalunya, Barlona, Spain an 2 Stratgi CAD La, Intl Corporation, USA Astrat Tis papr sris a mto o syntsis o asynronous iruits wit rlativ timing. Asynronous ommuniation twn gats an mouls typially utilizs ansaks to nsur untionality. Rlativ timing assumptions in t orm vnt a ours orvnt an us to rmov runant ansaks an assoiat logi. Tis papr prsnts a mto or automati gnration o rlativ timing assumptions rom t untim spiiation. Ts assumptions an us or ara an lay optimization o t iruit. A st o rlativ timing onstraints suiint or t orrt opration o t iruit is ak-annotat to t signr. Eprimntal rsults or ontrol iruits o a prototyp ia32 instrution lngt oing an string unit all RAPPID ( Rvolving Asynronous Pntium R Prossor Instrution Dor ) sows signiiant improvmnts in ara an lay ovr sp-inpnnt iruits. 1 Introution Asynronous ommuniation utilizs ansaking to nsur untionality tat rquir som ara an lay pnalty wit rspt to synronous sign. Timing inormation an us to omat t ull ansak ovra in ara an lay y rmoving runant ansaks an assoiat logi. Sin asolut timing inormation is mostly unknown until layout is omplt, rlativ timing inormation in t orm vnt a ours or vnt is a natural rprsntation o timing tat an us in t sign low. Rlativ timing (RT) was us or sign o a prototyp ia32 instrution lngt oing an string unit all RAPPID ( Rvolving Asynronous Pntium R Prossor Instrution Dor ) tat was ariat an tst sussully [15, 16]. Silion rsults sow signiiant avantags - in partiular, prorman o instrutions pr ns - wit managal risks using tis sign tnology. RAPPID aivs tr tims astr prorman an al t latny issipating only al t powr an rquiring a minor ara pnalty as a omparal 4MHz lok iruit. Anotr primnt wit a iruit as on timing assumptions is sri in [2]. T sign low or syntsizing rlativ timing iruits is as ollows. Rlativ timing assumptions ar provi y t usr or trat y t algoritm prsnt in tis papr. T iruits ar tn sign using t assumptions or ara an lay optimization. RT iruits an optimiz wit rspt to t untim iruits or two rasons: RT assumptions ru t st o raal stats an n inras t numr o on t ar stats or logi optimization o all signals. It is possil to tn t st o stats in wi a signal is nal witout anging t st o raal stats i otr nal signals ar known to or an ma astr tan t arly nal (a.k.a. lazy) signal. Tis aitional liility as loal on t ars tat an ir rom on signal to anotr. Tis work was suport y a grant rom Intl Corporation an was on uring a visit to SCL in summr X /99/$ IEEE. A (possily rla) sust o timing assumptions us or optimization is ak-annotat y t tool an om timing onstraints. Dirnt vali ntlists rquir irnt timing onstraints. T iruits ar tn sign to mt t rlativ orrings, or vrii tat t rstritions ar alray part o t lays in t systm. Mtos as on sparation analysis [6], gomtri timing [1], an rlativ timing an ploy or vriiation [12]. In [3] it is sown tat rlativ timing syntsis an automat using lazy transition systms in wi naling an iring rgions or signal transitions ar istinguis. Tis papr nans t mto o [3] in tr major ways. A mto or automati gnration o timing assumptions starting rom a sp-inpnnt (untim) spiiation is prsnt. Most o t timing assumptions us in RAPPID iruits an automatially trat. Only arittural or nvironmntal assumptions on t inputs n to spii y t usr. A mto or automati akannotation o RT onstraints suiint or t orrt opration o a iruit is vlop. A mto or timing awar stat noing is ploy. It rus t numr o stat signal an gnrats timing assumptions or stat signals i nssary. It as a signiiant positiv t on ot ara an prorman. Stion 2 prsnts asi tory an mols. Stion 3 sri a mto or automati gnration o RT assumptions. Stion 4 prsnts tniqu or trating timing onstraints or a riv RT ntlist an rily sri timing-awar stat noing. Stion 5 prsnts primntal rsults. 2 Basi notions For rvity, w assum t rar to amiliar wit Ptri nts, a ormalism us to spiy onurrnt systms. W rr to [9] or a gnral tutorial on Ptri nts. Lazy transition systms an lazy stat graps wr introu in mor tail in [3]. 2.1 Transition Systms an Stat Graps A transition systm (TS) is a quarupl [13] TS = (S;E;T;s in ),wrsis a non-mpty st o stats, E is a st o vnts, T S E S is a transition rlation, an s in is an initial stat. T lmnts o T ar all t transitions o TS an will otn not y s! s insta o (s;;s ). Stat Graps ar inary intrprt transition systms: vry stat is assign a inary vtor o signal valus in t spii iruit; vry vnt is intrprt as a rising (a+) or alling (a,) transition o a signal a. Notation a is us i on is not spii aout t irtion o t signal transition. T st o signals o an SG is all X = I [ O, wr I an O not t st o input an output signals rsptivly. A laling untion v : S!;1g n assigns a vtor o signal valus to a stat (n = jxj). W will all v a (s) t valu o signal a in stat s. An SG is onsistnt i rising

2 z+ - + z- g (a) y- (a) a s a s1 s2 s11 s3 s12 s4 s5 s13 s6 s14 s15 s7 s16 s8 s9 s17 s18 g s1 s19 g s2 s21 g s22 s23 Fig. 1: (a) Ptri nt, () Transition Systm. y- z+ - z () + 1 z y y () () z z () y z+ z Fig. 2: (a) STG or t ampl, (,) SGs wit timing omains, (,,) Ciruits. an alling transitions altrnat or vry signal on any pat in t SG. An ampl o a TS an a SG ar givn in Figur 1.() an Figur 2.(), orrsponingly. 2.2 Signal Transition Grap A Signal Transition Grap (STG) is a Ptri nt (PN) in wi transitions ar lal wit rising an alling signal transitions lik in a SG. An ampl o a PN is sown in Figur 1.(a). Tis PN orrspons to a TS in Figur 1.(). An STG as an assoiat SG in wi a raal marking orrspons to a stat an a transition twn a pair o markings to an ar lal wit t sam vnt o t transition. Figur 2.(a) pits an STG wit tr signals, ;y,anzorrsponing to t SG in Figur 2.(). For simpliity, plas wit only on input an output transitions ar otn omitt in STGs. 2.3 Eitation an quisnt rgions T itation rgion o an vnt a, not y ER(a ),is t st o stats su tat s 2 ER(a ), s!. a Tquisnt rgion o a+, not y QR(a+), is t st o stats su tat s 2 QR(a+), v a (s) =1 ^ s 62 ER(a,). Similarly, s 2 QR(a,), v a (s) = ^ s62 ER(a+). In Figur 2.(), ER(,) =11;111g an QR(,) =1;11;1g. 2.4 Lazy transition systms T main istintiv atur o a lazy systm is tat it an assum a non-zro lay twn naling o transition an its iring. Du to tis, t st o stats in wi a transition is nal migt largr tan t st o stats in wi t transition irs. Dinition 2.1 (Enaling an iring rgions) T naling rgion, EnR(a), oa signaltransitiona is a t st o stats in wi transition a is nal. T iring rgion, FR(a), o a signal transition a is t st o stats z- () 1 y () z rom wi a an ir, i.. s 2 FR(a),9s :s a!s. A potntially naling rgion, PEnR, givs an uppr oun or a st o stats wi an slt as an atual naling rgion in t RT-implmntation. T rom in oosing t naling rgion witin t PEnR givs aitional possiilitis or logi optimization. It is asy to s t ollowing orrsponn twn t introu rgions: FR(a) EnR(a) PEnR(a). W will r isussion o ampls until Stions Dinition 2.2 (Lazy stat grap) A transition a is all lazy i EnR(a) 6= FR(a). A stat grap is all lazy (lazy SG) i at last on transition is lazy 1. T orrtnss proprtis o SGs an asily transrr onto lazy SGs. A lazy SG is onsistnt, trministi an ommutativ i t unrlying SG as ts proprtis. Prsistny proprty must gnraliz or naling an irings as isuss in Stion Timing assumptions Timing assumptions oul onsrvativly in in t orm tlling tat on vnt is appning or or atr anotr. Dirn assumptions. A irn assumption < a (ras or a), involving two potntially onurrnt vnts a an, assums tat, u to rtain timing aratristis, wnvr an a ar ot nal, always irs arlir tan a. InanSG tis assumption an rprsnt y t onurrny rution o a wit rspt to. RT irn assumptions allows on to liminat stats unraal in timing omain similar to stat limination as on asolut timing inormation in [1, 11]. Ty ar not suiint owvr or prssing lazy avior o signals. Early naling assumption. Suppos tat transition a triggrs t iring o transition,i..aan ar orr in t spiiation. Assum tat a an ma astr tan in t iruit. Tn t naling o an start arlir,.g., rom t vnts triggring a, an t propr orring o a or will still nsur y t timing proprtis o t implmntation. In lazy SG tis rsults in t akwar pansion o PEnR() into FR(a). Simultanity assumption. T simultanity assumption is a rlativ notion, wi is in on a st o onurrnt transitions T wit rspt to a rrn transition a. It tlls tat rom t point o viw o a t skw o irings tims o transitions rom T is ngligil. Tis assumption an viw as a loal unamntal mo o T wit rspt to a an n as a gnralization o urst-mo mains [14, 17]. An ampl o t appliation o simultanity assumption is isuss in Stion 4.2. Assumptions rlating only input vnts annot automatially gnrat rom t iruit avior an an provi y t signr or gnrat rom t implmntation o t nvironmnt. 2.6 Nt-stat untions T implmntation o an SG as a logi iruit is on troug t inition o t nt-stat untion or a output signal an inary vtor. For SGs itisinas ollows: ( 1 i9s2 ER(a+) [ QR(a+) s.t. v(s) =Z a (Z) = i9s2 ER(a,) [ QR(a,) s.t. v(s) =Z, otrwis 1 As w ar targt at optimization o output signals o a iruit lazy aviors o input signals is not onsir.

3 T nt-stat untion a is orrtly in wn t SG as t CSC proprty, i.. tr is no pair o raal stats (s;s ) su tat v(s) =v(s ) an (s 2 ER(a+) [ QR(a+) or s 2 ER(a,) [ QR(a,)). Not tat a is an inompltly spii untion wit a on t ar (DC) st orrsponing to tos inary vtors witout any assoiat stat in t SG. T logi ntlist is sp-inpnnt i SG is trministi, ommutativ an output-prsistnt[4]. In t SG o Figur 2.(), t DC st is mpty sin all inary vtors av a orrsponing stat in t SG. As an ampl, (11) =; y (11) = z (11) =1sin signals an y ar nal, an z is stal in tat stat. T Karnaug maps or t nt-stat untions ar pit in Figur 3.(a). For a lazy SG t nt-stat untions ar in irntly: ( 1 i9s2 FR(a+) [ QR(a+) s.t. v(s) =Z a (Z) = i9s2 FR(a,) [ QR(a,) s.t. v(s) =Z, otrwis Not tat tis inition gnrally givs mor on t ar vtors tat t inition or a SG u to two rasons: Mor stats ar unraal, sin timing assumption an ru onurrny Stats in (PEnR, FR) o not long to itr FR, or QR, an n ar inlu into t DC-st. As an ampl, in t lazy SG o Figur 2.(), (11) =,; y (11) = z (11) =1asplaininStion4.2. T onitions or sp-inpnnt implmntaility an trivially tn to lazy SGs. 2.7 Logi syntsis From t nt-stat untions o a SG, a sp-inpnnt iruit an riv y implmnting t oolan quation o a output signal as an atomi ompl gat [8] or as a gnraliz C-lmnts [1, 7]. For ampl, a spinpnnt ompl gat implmntation or t STG in Figur 2.(a) is a ntlist: = z + y; y = + z; z = + zy: Similarly, rom t nt-stat untion spiiation orrsponing to a lazy SG, an RT-iruit an riv in t orm o ompl gats or gnraliz C-lmnts as illustrat y an ampl in Stions Monotoni ovrs Not vry logi untion riv rom t inition o t nt-stat untion satisis azar-rom onitions, an n vali. T ollowing inition is rlat to azars in t avior o asynronous iruits. Givn two sts o stats S 1 an S 2 o an SG su tat S 2 S 1, w will say tat S 1 is a monotoni ovr o S 2 i or a transition s! a s : (s 2 S 1, S 2 ) s 2 S 1 ) ^ (s 2 S 2 ) s 62 S 1, S 2 ) Only monotoni ovrs o FRs an slt as EnRs or azar-r solutions or logi ntlist [3]. I S 1 = EnR(a) an S 2 = FR(a), tn (1) no isaling o a is possil an (2) tr ar no transitions rom FR(a) to EnR(a), FR(a), i.., no isaling o irings or a is possil itr. Hn, prsistny o a in t RT implmntation is guarant. For ampl, in t SG o Figur 2.(), t st 11;11;111g is a monotoni ovr o ER(,). Howvr, tst1;11;111g is not, sin t transition 1,! 11 violats t onitions or monotoniity. 3 Automati gnration o rlativ timing assumptions 3.1 Orring rlations Lt TS =(S;T;E;s ) a transition systm. Assum tat vry vnt in E orrspons to a singl onnt itation rgion. Dinition 3.1 (Conlit) An vnt 1 2 E isals anotr vnt 2 2 Ei9s 1! 1 s2 su tat s 1 2 ER( 2 ) an s 2 62 ER( 2 ). Two vnts 1 ; 2 2 Earinirt onlit i 1 isals 2 or 2 isals 1. Dinition 3.2 (Conurrny) Two vnts 1 ; 2 2 Ear onurrnt (not y 1 k 2 ) i ty orm a stat iamon, i.. 1. ER( 1 ) \ ER( 2 ) 6= /, 2. 8s 2 ER( 1 ) \ ER( 2 ) : (s 1! s 1 ) 2 T ^ (s 2! s 2 ) 2 T )9s 3 2S: (s 2!s3 1 )2T ^ (s 1!s3 2 )2T. Dinition 3.3 (Triggr) An vnt 1 2 E triggrs anotr vnt 2 2 E (not y 1,! 2 )i9s 1! 1 s2 su tat s 1 62 ER( 2 ) an s 2 2 ER( 2 ). Dinition 3.4 (Enal or) Lt 1 ; 2 2 E two onurrnt vnts. 1 an nal or 2 (not y 1 2 )i9s 1! s 2 su tat s 1 2 ER( 1 ),ER( 2 ) an s 2 2 ER( 1 ) \ ER( 2 ). Dinition 3.5 (Enal simultanously) Lt 1 ; 2 2 E two onurrnt vnts. 1 an 2 an nal simultanously (not y )i9s 1! s 2 su tat s 1 62 ER( 1 ) [ ER( 2 ) an s 2 2 ER( 1 ) \ ER( 2 ). Dinition 3.4 an tn to sts o vnts as ollows. Dinition 3.6 (Enal or a st o vnts) Lt 2 E an vnt pairwis onurrnt wit all t vnts in t st X = 1 ;:::; n ge. an nal or X(not y X) i 9s 1! s 2 su tat s 1 2 ER(),ER(X ), s 2 2 ER()\ER(X ) an 62 X, wr ER(X )=ER( 1 )[ :::[ER( n ). Figur 1. pits t transition systm riv rom t Ptri nt o Figur 1.a. T ollowing ats an riv using t initions aov: :(a k ), k,, 3, t. Evnt annot nal or ; g, ut an nal or ; ;gg sin tr is a transition s 9! s19 su tat s 9 2 ER(),ER(; ;gg), s 19 2 ER() \ ER(; ;gg) an 62 ; ;gg. 3.2 Dlay mol A lay mol or vnts prsnt in tis stion givs an inormal intuitiv motivation or t automati gnration o timing assumptions. Tis mol rrs to t lay o t vnts in t TS. T lay o an vnt is in as t irn twn its naling tim an its iring tim. Tr typs o vnts ar onsir: Non-input vnts: its lay is in t intrval [1, ε; 1 + ε] Fast input vnts: its lay is in t intrval (1 + ε; ) Slow input vnts: its lay is in t intrval [ ; ) T syntsis approa also assums tat (1) t lay o a gat implmnting a non-input vnt an lngtn y lay paing or transistor sizing, (2) t lay o two gats an always ma longr tan t lay o on gat.

4 Hn, on an assum tat ε < 1=3, (3) t iruit will nvr tak longr tan tim units (minimum lay o a slow input vnt) in oming stal rom any stat o t systm an a quisnt nvironmnt. T prvious assumptions on t timing avior o t iruit an translat into assumptions on t iring orr o t vnts. 3.3 Ruls or riving timing assumptions W prsnt ruls or riving timing assumptions in t ollowing ormat: (1) orring rlations tat must satisi in a (Lazy) SG or a rul to appli, (2) automati timing assumption tat an gnrat, an (3) inormal justiiation o a rul as on t aov lay mol Assumptions twn non-input vnts T ollowing ruls an appli or riving timing assumptions twn non-input vnts, 1 ; 2 ; 3 2 E: I. Evnt nal or anotr vnt. Orring rlations: ( 1 k 2 ) ^ ( 1 2 ) ^ ( ) ^ ( ). Dirn timing assumption: 1 irs or 2 Dlay assumptions: on gat sortr tan two gats. II. Evnts simultanously nal. Orring rlations: ( 1 k 2 ) ^ ( ) ^ ( ). Dirn timing assumption: 1 irs or 2 Dlay assumptions: lay o 2 longr tan lay o 1. III. Evnt triggr y vnts simultanously nal. Orring rlations: ( 1 k 2 ) ^ ( ) ^ ( ) ^ [( 1 ) 3 ) _ ( 2 ) 3 )]. Simultanity timing assumption: 1 an 2 simultanous wrt 3. Dlay assumptions: on gat sortr tan two gats. IV. Early (spulativ) naling or orr vnts. Orring rlations: ( 1,! 2 ). Early naling timing assumption: 1 irs or 2 (ut 2 an nal onurrntly wit 1 ). Dlay assumptions: lay o 1 sortr tan lay o 2. Lt us illustrat t prvious ass wit t ampl o Figur 1 assuming tat all vnts ar non-input. Timing assumptions o typ I an riv or t pairs o vnts (; ), (;g) an (;), wr t irst lmnt o t pair is assum to ir or t son. Timing assumptions o typ II an appli to t pairs (;) an (;). Timing assumptions o typ III an appli,.g., to t vnts triggr y t pair (;) tat triggrs t vnts, an g. Timing assumptions o typ IV an appli,.g., to t vnt triggr y t vnt. I tis assumption applis, tn potntial naling rgion or inlus stats s2;s5;s8;s12;s15;s18;s21g as on t ar stats or t valus o t nt stat untion or signal in aition to t originally prsnt stats s3; s6; s9; s13; s16; s19; s22g Assumptions twn non-input an input vnts Assum tat 1 ; 2 2 E ar a non-input an an input vnt rsptivly an ty ar onurrnt. V. Input not nal or non-input vnt. Orring rlations: ( 1 k 2 ) ^ Dirn timing assumption: 1 irs or 2. Dlay assumptions: lay o nvironmnt longr tan lay o on gat. Tis assumption ovrs t ons o typ I an II or t as in wi 2 is an input vnt. T lay assumption us in tis as stats tat t rspons tim o t nvironmnt will always longr tan t lay o on gat Assumptions twn non-input vnts an slow input vnts Assum tat 2 E is a slow input vnt, X = 1 ;:::; n g E is a st o non-input vnts an is pairwis onurrnt wit all t vnts in X. VI. Slow nvironmnt not nal or non-input vnts. Orring rlations: (8 i 2 X : k i ) ^ 6X. Dirn timing assumptions: X irs or. Dlay assumptions: lay o slow input vnt longr tan (lay o stailizing t iruit unr a quisnt nvironmnt). To illustrat t maning o tis timing assumption w will onsir tat is an input vnt an is a slow input vnt in t ampl o Figur 1. T rst o vnts ar non-input. Atr iring t vnts a, an a stat in wi, an ar nal is ra (stat s 3 ). At tis point it an assum tat an will ir or (two gat lays vs. slow nvironmnt). Howvr, no assumptions an maaoutt iring orrtwn ang sin g is pr y an input vnt () or wi no uppr oun on its lay an assum. In as woul a non-input vnt, woul assum to ir or an g also. 4 Bakannotation o timing onstraints Atr logi syntsis, t valiity o t timing assumptions must vrii or valiat to nsur t orrt untion o t iruit. Howvr, t iruit may orrt or a st o stats largr tan t on in y t tim omain, wi an otain y a st o lss stringnt timing assumptions. In otr wors, som o t timing assumptions ar runant or a partiular logi syntsis solution, wil som otr an rla. Tis stion attmpts to answr t ollowing qustion: Can w riv a minimal st o timing assumptions suiint or a iruit to orrt? Tis st o timing assumptions akannotat or a givn logi syntsis solution is all timing onstraints. Timing assumptions (ot manual an automati) ar part o t spiiation an provi aitional rom or logi syntsis, wil timing onstraints is a part o t implmntation, sin ty onstitut rquirmnts to mt suiint or a partiular ntlist solution to vali. 4.1 Eampl 1 Lt us anal t ampl in Figur 2. T saow stats in SG o Figur 2.() orrspon to t tim omain trmin y t timing assumptions z+ < y + an <, Unr ts assumptions, logi syntsis an prorm y onsiring t stats 11 an 1 unraal, i.. in t on t ar st o t logi untions or all signals ;y;z. T iruits o Figurs 2.() an 2.() av a orrt avior unr t prvious assumptions. Looking at t iruit o Figur 2.() w osrv tat: T gats = z + y an y = + z ar orrt implmntations or t wol untim omain. T gat z = is a orrt implmntation or all t stats pt or 1. In tis stat = an z, soul av n nal aoring to t nt stat untion o t implmntation, ut it is not nal in tis stat aoring to t original stat grap spiiation. Tus, vn t iruit may av n otain using t two prvious assumptions, only on rlativ timing onstraint <, must nsur or t iruit to orrt. In gnral, a gat o t iruit is orrt or a sust o t untim omain wi is also a suprst o t tim omain. T iruit is orrt or tos stats in wi all gats ar orrt.

5 y z * * * * * * * * * * 1 * * * Spiiation Implmntation: * LEGEND: 11 - gloal DC 11 * - loal DC - rquir 11 -onurrny timing onstraints 11 rution (a) () () () () () -unraal stats Fig. 3: Nt stat untions or ampl: (a) Original untim spiiation; () Spiiation or RT assumptions z+ < an <, ; (,) Implmntations rom Figurs 2.(,); () Spiiation or RT assumption ;z+ simultanous wit rspt to, ; () Implmntationrom Figur 2.(). 4.2 Eampl 2 Lt us onsir t sam ampl unr a simultanity assumption + an ar simultanous wit rspt to,. Unr tis assumption stat 1 is unraal an oms a on t ar or all signals. In aition stats 11 an 11 oms on t ars or signal, sin ot long to t potntial EnR(,) aoring to t smantis o t simultanity assumption. Only on timing onstraints, z+ <,, is suiint or t iruit in Figur 2.() to orrt. Gat = y is not nal in 11, n onurrny is ru in tis stat wit rspt to t original untim SG an stat 1 oms unraal unr any gat lays. Stat 11 on t ontrary orrspons to t onurrny pansion or naling o,. Tis naling is lazy sin 11 2 EnR(,) ^ FR(,). Figur 3 sows Karnaug maps or t nt stat unstions o signals ;y, anzor spiiations an implmntations orrsponing to t ampls aov. A lgn sows tat timing assumptions provi two typs o on t ar vtors in RT spiiations: gloal on t ars orrsponing to stats unraal u to timing assumptions, an loal on t ars tat ir or irnt signals. In t RT implmntations som stats om unraal u to untim onurrny rution an tror isrpanis in t orrsponing valus o t nt stat untions ompar wit t original untim spiiation an ignor; som isrpanis orrspons to onurrny rution (isaling o signal transitions witout prsistny violation), an inally, otr isrpanis orrspon to lazy naling an rquir timing onstraints or orrt iruit avior. 4.3 Corrtnss o RT iruit Lt S an original untim SG wit a init st o raal stats U 2 an initial stat s. Lt G a iruit ntlist implmnting S unr timing onstraints C. Apair < G;C > is all a rlativ timing iruit (RT iruit). It ins a lazy SG, L<G;C>, wit a st o raal stats U L. T RT-iruit implmntation an ontain mor signals tan t original spiiation S i som stat signals ar insrt or rsolving stat onlits. Lt us assum tat S as n signals an L as k;k n; signals. Tn or omparing stats on ns to us a omomorism : B k 7! B n, tat givn an implmntation stat is (k, n) nw intrnal signals an otains a spiiation stat. Homomorism,, is naturally tn to sts o stats. A RT-iruit is sai to orrt i t ollowing onitions ar satisi: 1. (U L ) U, i.. no stats outsi original untim omain ar raal y t RT-iruit. 2. All signals prsistnt in S ar also prsistnt in lazy SG L<G;C>. All stat signals insrt in L<G;C> ar prsistnt. Commutativity an trminism ar prsrv. 3. T initial stat is prsrv wit rspt to t I/O intra, i.., i s 2 S an s 2 L <G;C> ar t initial stats o t original SG an t lazy SG orrsponing to t implmntation, tn tr is a pat τ s ) (s ) or (s ) ) τ s in S su tat squn τ ontains only vnts o intrnal signals, not osrval y t nvironmnt. 4. No vnts isappar: I ER S () 6= /, tnfr L () 6= / ^ (FR L ()) ER S () 5. No nw alok stats appar in L<G;C>. 4.4 Tory or akannotation For t as o position lt us assum tat no stat signals ar insrt in t RT iruit, an tror t numr o signals stays t sam or S an L. W will rily isuss ow stat signal insrtion is on in Stion 4.8. Lt U t st o stats raal in t untim omain o a stat grap an T U t st o stats raal unr a st o timing assumptions, manual - provi y t usr an automati - riv or syntsis aoring to t ruls o Stion 3. Lt us assum tat w av a iruit wit m output signals, a 1 ;:::;a m. Lt G = g a1 (X);:::;g am (X)g (wr X is t st o signals) a st o gats implmnting t RT iruit, wr g ai (X ) nots t oolan untion implmnt y t gat o signal a i. Raal stats in t untim omain Lt us all R (G) t st o stats raal in t untim omain or t iruit G. Not tat, in gnral, U, R (G) 6= / u to t rution o onurrny impos y t iruit, an R (G), U 6= / u to pansion o onurrny or naling or lazy transitions. T lattr stats ar not gnrat y our prour sin ty must unraal in RT omain anyway. T ormr stats ar o intrst, sin ty o not rquir any timing onstraints (s ampls 4.1 an 4.2). Lt us not U G = R (G) \ U: U G an alulat as ollows: 1. For a output signal a i, alulat isal(a i )= s2u js62 EnR G (a i ) ^ s 2 ER S (a i )g, i.. stats in 2 Our implmntation is urrntly limit y t oun untim STGs an SGs. It an asily tn to unoun untim STGs y making unoun (ininitly growing) markings o STGs unraal in RT omain.

6 1 1 1 Untim omain C Unraal Tim omain Corrt Inorrt 11 avior avior C Fig. 4: Formulation o t akannotation prolm. C 1 ;C 2 ;C 3 g is t st o timing onstraints suiint or orrtnss o RT solution. wi a i was nal in t untim omain in SG, S, ut ma stal y t iruit. C1 2. For a output signal a i, rmov all ars s a i! rom t SG or all stats s 2 isal(a i ). 3. Calulat t nw st U G = R (G) \ U o raal stats. Stats wit inorrt avior Lt us all inorrt(g) U G t st o stats insi U G tat ar rquir to unraal or t orrtnss o t iruit. Ts stats an alulat as ollows: 1. For a output signal a i, alulat inorrt(a i )= s2(u,t )js2enr G (a i ) ^ s 2 QR S (a i )g, i.. stats in wi a i was stal in t untim omain, ut nal in t iruit. 2. inorrt(g) =U, S G \ a i inorrt(a i ) Bakannotation: prolm ormulation W n a st o onstraints tat mak t stats in inorrt(g) unraal. A trivial solution to tis prolm is to tak t omplt st o timing assumptions us or logi syntsis, i.. tos or wi T is t st o raal stats. Our goal, owvr, is to in t lss stringnt st o onstraints suiint to mak t iruit orrt. Givn a st o timing onstraints C = C 1 ;:::;C p g, w will all R (C) U t st o stats raal atr applying C in t untim omain. In gnral, t prolm an ormulat as ollows (s Figur 4): Fin a st o onstraints C wit t largst R (C) su tat 1. T R (C) U, inorrt(g) 2. 8s 2 T : (s 2 EnR G (a i ) ^ s 62 ER S (a i )) )9a j : s a j!s ^ s 2T ^ (a j <a i )2C T irst onition guarants tat no inorrt stats insi U ar raal (onstraints C 1 ;C 2 in Figur 4), wras t son maks sur tat no stats outsi U an ra in t RT iruit (onstraint C 3 in Figur 4). 4.5 Fining a st o timing onstraints Rlativ timing onstraints ar in in trms o iring orr o vnts. Constraining a iring orr twn a pair o vnts maks only sns wn ty an nal simultanously an ir in any orr, i.. wn ty ar onurrnt. Tus, a timing onstraint C i an not y an orr pair o onurrnt vnts,.g. C i =( j < k ). Givn a onstraint C i =( j < k ), w in t st o ars isal(c i ) as isal(c i )=s k!s j9s!s 1!:::!s n : s 1 ;:::;s n,1 2ER( k ) ^ s n 2 ER( k ) \ ER( j )g s3 s2 s6 inorrt avior a s s1 s5 s9 s1 tim omain s4 s7 s8 inorrt avior a orr < < < < < < < < unraal {s4,s7} {s7} {s4,s5,s7,s8} {s7,s8} {s2,s3} {s3} {s2,s3,s5,s6} {s3,s6} Fig. 5: Eampl or akannotation wit tal o unraal stats or a pair o orr vnts. In partiular, t pat s 1! :::! s n an mpty i s 2 ER( j ) \ ER( k ). isal(c i ) is t st o ars wit lal k tat must not ir in orr or j to ir or k, i.. tos ars wit sour stats in wi ot vnts ar onurrnt or pring ER( j ) \ ER( k ) insi ER( k ). Givn a st o onstraints C = C 1 ;:::;C p g, R (C) is t st o raal stats atr rmoving t ars in [ C i 2C isal(c i ) 4.6 Eampl 3 Figur 5 sows an ampl or riving a st o timing onstraints or akannotation. Initially w av U = s ;:::;s 1 g an T = s ;s 1 ;s 2 ;s 5 ;s 8 ;s 9 ;s 1 g. Lt us assum tat s 6 an s 7 ar t stats in wi t avior o t iruit is inorrt. T tal in Figur 5 ontains t st o stats tat om unraal y ruing t onurrny twn a pair o onurrnt vnts 3.For ampl, y imposing t orr <, t stats s 2 an s 3 om unraal. T prolm to solv is t ollowing: in a st o orring onstraints twn pairs o vnts su tat t nw st o raal stats ovrs T an os not intrst t st o inorrt stats s 6 ;s 7 g. Morovr, w want to maimiz t st o raal stats, i.. to in t lss stringnt st o timing onstraints. T prolm an pos as a ovring prolm. T lls o t tal in ol orrspon to tos onstraints tat o not rmov any stat rom T. T ovring prolm an ormulat as ollows: ( < ) ^ ( < _ < ) wit t minimum-ost solution C = < ; < g an R (C) =s ;s 1 ;s 2 ;s 4 ;s 5 ;s 8 ;s 9 ;s 1 g 4.7 Solving t ovring prolm T ovring prolm or akannotation os not orrspon to a unat ovring prolm, sin t ost o t inal solution (numr o isal ars) is not t sum o t ost o a onstraint. Currntly, ptriy uss a gry approa to solv t ovring prolm tat an asily implmnt y symoli BDD-as tniqus. It mrly onsists in oosing t onstraint tat rmovs t maimum numr o ars wos stination is in inorrt(g) an tat av not n rmov y prvious onstraints. Tis pross is itrativly rpat until all inorrt stats om unraal. 3 For simpliity, unraal stats ar rport in t tal or tis ampl. In gnral, t analysis must prorm y alulating t rmov isal ars. In tis partiular as, t rsulting analysis is t sam.

7 li- li lo li+ lo+ FIFO () (a) ri- ro ri ri+ lo- ro+ ro- li- li- li+ + ri- li+ lo+ () + ro- - () OR Fig. 6: (a) FIFO ontrollr, () Spiiation, () Spiiation wit stat noing signal, () RT implmntation wit gc lmnts, () Timing onstraints suiint or orrtnss. In som ass, not all t inorrt stats an ma unraal sin t tim stat spa as n prou y arly naling som vnts. In tos ass, a similar itrativ pross is ut to ovr tos inorrt stats tat an lgaliz y arly naling. As an ampl, onsir t stat s 6 in Figur 5. Assum tat s 6 is inorrtsintnt-statuntioniniatstat is nal in tat stat. T stat oul ma orrt y tning EnR( ) towars s 6 an imposing t typ-iv onstraint <. 4.8 Timing awar stat noing T prolm o stat noing is in insrting stat signals or rsolving CSC onlits. Stat noing in our implmntation is automatially solv using an tnsion o t mto prsnt in [4]: Only tos noing onlits raal in t RT omain ar onsir in t ost untion su tat no ort is invst in solving onlits unraal in RT omain, T. Automati timing assumptions an gnrat or insrt stat signals using ruls rom Stion 3 implying tat t stat signals an implmnt as RT logi. 5 Eprimntal rsults 5.1 Aami ampls T rsults or t wll-known nmarks us at aamia ar prsnt in Tal 1. Tals 1.(a) an 1.() prsnt t rsults or spiiations wit an wit stat oing onlits rsptivly. SI a,si t an TI rprsnt ara an lay optimization or sp-inpnnt sign, an rlativ timing rsults, orrsponingly. For a primnt, ara is stimat as t numr o litrals o t st an rst ntworks o gnraliz C lmnts. Dlay (rspons tim) is stimat as t avrag numr o non-input vnts in t ritial pat twn t iring o two input vnts. Comparing t olumns SI t an TI, w osrv a rution o aout 4% in ara. T rution in rspons tim is lss tan 5% i w onsir all vnts to av a lay o on tim unit. Howvr, t prorman improvmnt is mu mor pronoun i it wr valuat wit atual lays, givn tat t logi o t tim implmntation is mu simplr. W rport tis analysis in Stion Eampl: a FIFO ontrollr In tis stion w tra t vlopmnt o a FIFO ll (spii in Figurs 6.(a),()), a simplii astration o a part o t RAPPID sign. T mouls at t lt an rigt sis o t ontrollr av a similar sp as t ontrollr itsl. In at, ts vnts ar gnrat y twin mouls onnt at a si. For tis rason, it is not wis to assum tat t input vnts ar slow. W simulat our FIFOs using irnt implmntations o t FIFO ll an masur a yl tim o t ri- lo- lo+ ro ro- ri+ lo- ro+ ri+ li lo () ri ro Dsign FIFO yl tim Cll orwar latny RT SI RT rsul SI rsul Tal 2: Prorman omparison o FIFOs normaliz to a an-out our invrtr lay FIFO an a orwar latny (an avrag vnt propagation tim rom li to ro) o a ll. T rsults normaliz to t lay o an invrtr wit an-out our in a givn tnology ar sown in Tal 2. For t irst rlativ timing FIFO (rport in t irst row) w us a RT iruit riv y ptriy using only automati timing assumptions prsnt in Figurs 6.(). A propr transistor sizing is rquir or orrt opration o t iruit. No usr-in assumptions on t nvironmnt ar us. T timing analysis plain in Stion 3 as n appli to t spiiation, an stat noing as n automatially solv as sri in Stion 4.8. Wit tis stratgy, only on aitional stat signal,, was rquir as sown in Figur 6.() 4. Tr ar som intrsting aspts o tis implmntation: T stat signal is is switing onurrntly wit otr ativity in t iruit.tis is a rsult o t stat noing stratgy o ptriy tat attmpts to inras t onurrny o nw stat signals until ty isappar rom t ritial pats aoring to t lay mol plain in Stion 3. T rspons tim o t iruit wit rgar to t nvironmnt is only on vnt (two invrtrs), i.. as soon as an output vnt is nal it irs witout rquiring t iring o any otr intrnal vnt. Finally, t implmntation o Figur 6.() rquirs som timing onstraints to orrt. Atr applying t mto propos in Stion 4, iv timing onstraints twn pairs o onurrnt vnts av n riv tat ar suiint or t iruit to orrt. Ty ar grapially rprsnt in Figur 6.(). T onstraints l o + <, an r o + <, ar not inpnnt. Sin t implmntation o is = l o + r o,it is always guarant tat on o tm will ol, wras t otr must nsur. Sin l o + an r o + ar nal simultanously, ts onstraints will always ol i t lay o two gats is longr tan t lay o on gat. From t rst o onstraints, t most stringnt is, < r i +. In t worst as, ot r i + an, will nal simultanously y r o +. In tis as, it is rquir t lay o, to sortr tan t lay o r i + (rom t nviromnt). In as o a vry ast nvironmnt, it an or y irnt tniqus,.g. transistor sizing or lay paing or gat. For t son FIFO (t son row o t tal) w riv a sp-inpnnt iruit using ptriy in t mo o automati onurrny rution [5] witout onstraining I/O onurrny o t ll. Baus o onurrny rution only on stat signal was rquir [4] lik in t as o t automati RT solution. Howvr, t stat signal was on a ritial yl an t implmntation o lo an ro ontain aitional p-transistors, wi ma t sp-inpnnt iruit 2-3% slowr tan t RT on. 5.3 RAPPID ontrol iruits In tis stion w ompar manually optimiz RT ontrol iruits us or RAPPID [16, 15] wit tos riv automatially wit ptriy. For a ampl, Tal 3, rports: manual (otain y applying rlativ timing manually), automati (otain automatially y ptriy 4 Tis nw spiiation is not stritly a Ptri nt, sin t ars rom l o + an r o + to t OR pla iniat an or-ausality rlation:, is triggr y t irst vnt to ir, wras t tokn prou y t latst vnt is impliitly onsum. An quivalnt Ptri Nt is a it mor umrsom an is omitt or simpliity.

8 Ara Rspons tim Stat signals iruit SI a SI t TI SI a SI t TI SI a SI t TI aast allo-outoun mastr-ra mmu mmu mr mr nak-pa nowik ram-ra-su su-ram-writ su-ra-tl sq sq-mi vmus Total Ara iruit SI TI u u onvrta rgn al 8 7 azar 8 8 mslat 24 2 trimos-sn 3 21 var v v5 1 1 v6a v wrata Total (a) () Tal 1: Eprimntal rsults: spiiations witout CSC (a) an wit CSC (). Dsign Ara (# tr.) Worst as Avrag as rspons tim rspons tim m a s m a s m a s FIFO-A FIFO-B Byt-ntr Tag-unit Summary Tal 3: Comparison or two gnri rprsntativ ampls (io) an two ontrol iruits rom RAPPID (ytontrol, tag-unit). Rspons tim is masur in gat lays, ara in transistors. m: manual,a: automati,s: spinpnnt. an applying rlativ timing) an sp-inpnnt (otain automatially y ptriy witout onurrny rution). From t tal it an u tat automati solutions ar quit omparal wit manually optimiz RT signs. T improvmnt in rspons tim y applying rlativ timing is aout a ator o 2, sustantially ttr tan or t ampls o Tal 1. Tis is aus t signrs o ts iruits a a strongr intration wit t tool an provi aggrssiv timing assumptions on t nvironmnt tat oul not riv automatially. 6 Conlusions T mto or automati gnration o timing assumptions prsnt in tis papr allows t signr to onntrat on ining tos timing assumptions tat an only u rom a tail knowlg o t nvironmnt. T tniqu or automati ak-annotation o timing onstraints rlativ to a partiular RT iruit provis nssary timing inormation or t own-stram tools. Timing-awar stat noing allows ara/lay optimization o RT iruits. Rlativ timing prsnts a mil-groun twn lok an asynronous iruits, an is a rtil ara or CAD vlopmnt. Bot urst-mo[14, 17] an spinpnnt spiiations ar at opposit trms o a mor gnral lass o rlativ timing spiiations. Akowlgmnts W woul lik to tank Sai Rotm, Luiano Lavagno, Al Konratyv an Alanr Yakovlv or tir ontriutions in motivating tis work an vloping t tory or syntsis wit rlativ timing. Rrns [1] S. Burns. Gnral onitions or t omposition o stat oling lmnts. In Intrnational Symposium on Avan Rsar in Asynronous Ciruits an Systms, Aizu, Japan, Mar [2] W. S. Coats, J. K. Lau, I. W. Jons, S. M. Fairanks, an I. E. Sutrlan. A io ata swit sign primnt. In Pro. Intrnational Symposium on Avan Rsar in Asynronous Ciruits an Systms, pags 4 17, [3] J. Cortalla, M. Kisinvsky, A. Konratyv, L. Lavagno, A. Tauin, an A. Yakovlv. Lazy transition systms: appliation to timing optimization o asynronous iruits. In Proings o t Intrnational Conrn on Computr-Ai Dsign, pags , Novmr [4] J. Cortalla, M. Kisinvsky, A. Konratyv, L. Lavagno, an A. Yakovlv. A rgion-as tory or stat assignmnt in spinpnnt iruits. IEEE Transations on Computr-Ai Dsign, 16(8): , August [5] J. Cortalla, M. Kisinvsky, A. Konratyv, L. Lavagno, an A. Yakovlv. Automati syntsis an optimization o partially spii asynronous systms. In DAC, pags 1 115, Jun [6] Hnrik Hulgaar an Stvn M. Burns. Boun lay timing analysis o a lass o CSP programs wit oi. In Pro. Intrnational Symposium on Avan Rsar in Asynronous Ciruits an Systms, pags 2 11, Novmr [7] Alain J. Martin. Syntsis o asynronous VLSI iruits. In J. Straunstrup, itor, Formal Mtos or VLSI Dsign, aptr 6, pags Nort-Hollan, 199. [8] D. E. Mullr an W. C. Bartky. A tory o asynronous iruits. In Annals o Computing Laoratory o Harvar Univrsity, pags , [9] T. Murata. Ptri Nts: Proprtis, analysis an appliations. Proings o t IEEE, pags , April [1] Cris J. Myrs. Computr-Ai Syntsis an Vriiation o Gat- Lvl Tim Ciruits. PD tsis, Dpt. o El. Eng., Stanor Univrsity, Otor [11] Cris J. Myrs an Trsa H.-Y. Mng. Syntsis o tim asynronous iruits. IEEE Transations on VLSI Systms, 1(2):16 119, Jun [12] Rau Ngulsu an A Ptrs. Vriiation o sp-pnns in singl-rail ansak iruits. In Pro. Intrnational Symposium on Avan Rsar in Asynronous Ciruits an Systms, pags , [13] M. Nilsn, G. Roznrg, an P.S. Tiagarajan. Elmntary transition systms. Tortial Computr Sin, 96:3 33, [14] S.M. Nowik. Automati Syntsis o Burst-Mo Asynronous Controllrs. PD tsis, Stanor Univrsity, Dpt. o Computr Sin, [15] S. Rotm, K. S. Stvns, R. Ginosar, P. A. Brl, C. J. Myrs, K. Yun, R. Kol, C. Dik, M. Ronkn, an B. Agapiv. RAPPID: An asynronous instrution lngt or. In Pro. ASYNC, April [16] K. S. Stvns, S. Rotm, an R. Ginosar. Rlativ timing. In Pro. ASYNC, April [17] Knnt Yi Yun. Syntsis o Asynronous Controllrs or Htrognous Systms. PD tsis, Stanor Univrsity, August 1994.

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Carriers Concentration in Semiconductors - VI. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration in Semiconductors - VI. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carrirs Conntration in Smionutors - VI 1 Prof.P. Ravinran, Dpartmnt of Pysis, Cntral Univrsity of Tamil au, Inia ttp://folk.uio.no/ravi/smi01 P.Ravinran, PHY0 Smionutor Pysis, 17 January 014 : Carrirs

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand Onlin Supplmnt Avanc Slling in a Supply Cain unr Uncrtain Supply an Dman. Proos o Analytical sults Proo o Lmma. Using a = minl 0 ; x g; w can rwrit () as ollows (x ; w ; x ; w ) = a +(m0 w )a +( +" x w

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Signal Prossing, Fall 006 Ltur 7: Filtr Dsign Zhng-ua an Dpartmnt of Eltroni Systms Aalborg Univrsity, Dnmar t@om.aau. Cours at a glan MM Disrt-tim signals an systms Systm MM Fourir-omain rprsntation

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

THE CORRELATION DECAY (CD) TREE AND STRONG SPATIAL MIXING IN MULTI-SPIN SYSTEMS

THE CORRELATION DECAY (CD) TREE AND STRONG SPATIAL MIXING IN MULTI-SPIN SYSTEMS THE CORRELATION DECAY (CD) TREE AND STRONG SPATIAL MIXING IN MULTI-SPIN SYSTEMS CHANDRA NAIR AND PRASAD TETALI Astrat. This papr als with th onstrution o a orrlation ay tr (hyprtr) or intrating systms

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Exponential Functions

Exponential Functions Eponntial Functions Dinition: An Eponntial Function is an unction tat as t orm a, wr a > 0. T numbr a is calld t bas. Eampl: Lt i.. at intgrs. It is clar wat t unction mans or som valus o. 0 0,,, 8,,.,.

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

NR3A-containing NMDA receptors promote neurotransmitter release and spike timing-dependent plasticity

NR3A-containing NMDA receptors promote neurotransmitter release and spike timing-dependent plasticity NR3A-ontaining NMDA rptors promot nurotransmittr rlas an spik timing-pnnt plastiity Rylan S. Larsn, Rkah J. Corlw, Mail A. Hnson, Aam C. Rorts, Masayoshi Mishina, Masahiko Watana, Stuart A. Lipton, Nouki

More information

N1.1 Homework Answers

N1.1 Homework Answers Camrig Essntials Mathmatis Cor 8 N. Homwork Answrs N. Homwork Answrs a i 6 ii i 0 ii 3 2 Any pairs of numrs whih satisfy th alulation. For xampl a 4 = 3 3 6 3 = 3 4 6 2 2 8 2 3 3 2 8 5 5 20 30 4 a 5 a

More information

3) Use the average steady-state equation to determine the dose. Note that only 100 mg tablets of aminophylline are available here.

3) Use the average steady-state equation to determine the dose. Note that only 100 mg tablets of aminophylline are available here. PHA 5127 Dsigning A Dosing Rgimn Answrs provi by Jry Stark Mr. JM is to b start on aminophyllin or th tratmnt o asthma. H is a non-smokr an wighs 60 kg. Dsign an oral osing rgimn or this patint such that

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

ICCAD /96 $ IEEE

ICCAD /96 $ IEEE SIGMA: A Simulator or Sgmnt Dlay Faults Krthi Hragu Vishwani D. Agrawal Janak H. Patl Bll Labs, Lunt Thnologis Cntr or Rliabl an High-Prorman Computing 700 Mountain Avnu Univrsity o Illinois at Urbana-Champaign,

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Linked-List Implementation. Linked-lists for two sets. Multiple Operations. UNION Implementation. An Application of Disjoint-Set 1/9/2014

Linked-List Implementation. Linked-lists for two sets. Multiple Operations. UNION Implementation. An Application of Disjoint-Set 1/9/2014 Disjoint Sts Data Strutur (Chap. 21) A disjoint-st is a olltion ={S 1, S 2,, S k } o distint dynami sts. Eah st is idntiid by a mmbr o th st, alld rprsntativ. Disjoint st oprations: MAKE-SET(x): rat a

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem. Outlins: Graps Part-4 Applications o DFS Elmntary Grap Aloritms Topoloical Sort o Dirctd Acyclic Grap Stronly Connctd Componnts PART-4 1 2 Applications o Dpt-First Sarc Topoloical Sort: Usin dpt-irst sarc

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Kernels. ffl A kernel K is a function of two objects, for example, two sentence/tree pairs (x1; y1) and (x2; y2)

Kernels. ffl A kernel K is a function of two objects, for example, two sentence/tree pairs (x1; y1) and (x2; y2) Krnls krnl K is a function of two ojcts, for xampl, two sntnc/tr pairs (x1; y1) an (x2; y2) K((x1; y1); (x2; y2)) Intuition: K((x1; y1); (x2; y2)) is a masur of th similarity (x1; y1) twn (x2; y2) an ormally:

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Evans, Lipson, Wallace, Greenwood

Evans, Lipson, Wallace, Greenwood Camrig Snior Mathmatial Mthos AC/VCE Units 1& Chaptr Quaratis: Skillsht C 1 Solv ah o th ollowing or x: a (x )(x + 1) = 0 x(5x 1) = 0 x(1 x) = 0 x = 9x Solv ah o th ollowing or x: a x + x 10 = 0 x 8x +

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Chapter 1. Analysis of a M/G/1/K Queue without Vacations

Chapter 1. Analysis of a M/G/1/K Queue without Vacations Chatr nalysis of a M/G// Quu without Vaations W onsir th singl srvr finit aaity quu with Poisson arrivals an gnrally istriut srvi tims. Th M/G// systm may analys using an im Marov Chain aroah vry similar

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

G. Gambosi (*), J. Ne~etgil (**), M. Talamo (*)

G. Gambosi (*), J. Ne~etgil (**), M. Talamo (*) EFFICIENT REPRESENTATION OF TAXONOMIES G. Gamosi (*), J. N~tgil (**), M. Talamo (*) (*) Istituto i Analisi i Sistmi Inormatica l C.N.R.~ Vial Manzoni 30, 00185, Roma,Italy (**) Charls Univrsity Malostransk~

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

Jonathan Turner Exam 2-12/4/03

Jonathan Turner Exam 2-12/4/03 CS 41 Algorim an Program Prolm Exam Soluion S Soluion Jonaan Turnr Exam -1/4/0 10/8/0 1. (10 poin) T igur low ow an implmnaion o ynami r aa ruur wi vral virual r. Sow orrponing o aual r (owing vrx o).

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT 0 NOTS: VI UNSS OTRWIS SPII IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION. NR: a. PPITION SPIITION S: S--00 b. PROUT SPIITION S: PS--00 c. PIN SPIITION

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d Aitional Math (07) Prpar b Mr Ang, Nov 07 Fin th valu of th constant k for which is a solution of th quation k. [7] Givn that, Givn that k, Thrfor, k Topic : Papr (00 marks) Tim : hours 0 mins Nam : Aitional

More information

LR(0) Analysis. LR(0) Analysis

LR(0) Analysis. LR(0) Analysis LR() Analysis LR() Conlicts: Introuction Whn constructing th LR() analysis tal scri in th prvious stps, it has not n possil to gt a trministic analysr, caus thr ar svral possil actions in th sam cll. I

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

A Simple Method of Tuning PI Controllers for Interval Plant of Cold Rolling Mill

A Simple Method of Tuning PI Controllers for Interval Plant of Cold Rolling Mill ntrnational Journal of Rnt Trns in Enginring, Vol. 1, No. 4, May 009 A Simpl Mtho of Tuning P Controllrs for ntrval Plant of Col Rolling Mill S.Umamahswari 1, V.Palanisamy, M.Chiambaram 3, 1 Dpartmnt of

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

PROBLEM SET Problem 1.

PROBLEM SET Problem 1. PROLEM SET 1 PROFESSOR PETER JOHNSTONE 1. Problm 1. 1.1. Th catgory Mat L. OK, I m not amiliar with th trminology o partially orr sts, so lt s go ovr that irst. Dinition 1.1. partial orr is a binary rlation

More information

1 Random graphs with specified degrees

1 Random graphs with specified degrees 1 Ranom graphs with spii grs Rall that a vrtx s gr unr th ranom graph mol G(n, p) ollows a Poisson istribution in th spars rgim, whil most ral-worl graphs xhibit havy-tail gr istributions. This irn is

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

Case Study Vancomycin Answers Provided by Jeffrey Stark, Graduate Student

Case Study Vancomycin Answers Provided by Jeffrey Stark, Graduate Student Cas Stuy Vancomycin Answrs Provi by Jffry Stark, Grauat Stunt h antibiotic Vancomycin is liminat almost ntirly by glomrular filtration. For a patint with normal rnal function, th half-lif is about 6 hours.

More information

Application of Uncertain Temporal Relations Algebra to Diagnostic Problems

Application of Uncertain Temporal Relations Algebra to Diagnostic Problems Appliation of Unrtain Tmporal Rlations Algbra to iagnosti Problms VLAIMIR RYAOV, VAGAN TERZIYAN partmnt of Computr Sin an Information Systms, partmnt of Mathmatial Information Thnology, Univrsity of Jyväskylä,

More information

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for)

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for) Cas stuy 6.1, R: Chapra an Canal, p. 769. Th quation scribin th concntration o any tracr in an lonat ractor is known as th avction-isprsion quation an may b writtn as: Schmatic o a mi low ractor (both

More information

Parameter Choice for International Linear Collider (ILC) *

Parameter Choice for International Linear Collider (ILC) * 005 ALCPG & ILC Workshops-Snowmass, U.S.A. Paramtr Choic for Intrnational Linar Collir (ILC) * J. Gao 1 Institut of igh Enrg Phsics, Chins Acam of Scincs, ijing 100049 In this papr a gnral procu to trmin

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Greenfield Wind Farm. Visual Simulation 1. Affinity Renewables Inc. Figure As viewed from Trans Canada Highway 104.

Greenfield Wind Farm. Visual Simulation 1. Affinity Renewables Inc. Figure As viewed from Trans Canada Highway 104. Affinity Rnwabls Inc. Figur 6.12 Grnfil Win Farm Visual Simulation 1 As viw from Trans Canaa Highway 104 Easting: 487,437 Northing: 5,029,060 Photograph Dat: Octobr 28, 2013 Viw Angl: 163 Dgrs Imag Manufacturr:

More information

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination Mathmatics H Calculus I: Limits, rivativs, an Intgrals Trnt Univrsity, Summr 8 Solutions to th Actual Final Eamination Tim-spac: 9:-: in FPHL 7. Brought to you by Stfan B lan k. Instructions: Do parts

More information

Design and Analysis of Algorithms (Autumn 2017)

Design and Analysis of Algorithms (Autumn 2017) Din an Analyi o Alorim (Auumn 2017) Exri 3 Soluion 1. Sor pa Ain om poiiv an naiv o o ar o rap own low, o a Bllman-For in a or pa. Simula ir alorim a ru prolm o a layr DAG ( li), or on a an riv rom rurrn.

More information

Basic Logic Review. Rules. Lecture Roadmap Combinational Logic. Textbook References. Basic Logic Gates (2-input versions)

Basic Logic Review. Rules. Lecture Roadmap Combinational Logic. Textbook References. Basic Logic Gates (2-input versions) Lctur Roadmap ombinational Logic EE 55 Digital Systm Dsign with VHDL Lctur Digital Logic Rrshr Part ombinational Logic Building Blocks Basic Logic Rviw Basic Gats D Morgan s Law ombinational Logic Building

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

SOURCES OF ERROR AND LIMITS OF APPLYING THE ENERGETIC-BASED-REGULARIZATION METHOD

SOURCES OF ERROR AND LIMITS OF APPLYING THE ENERGETIC-BASED-REGULARIZATION METHOD Sourcs o rror an limit o applying t nrgtic-bas rgularization mto X ntrnational Conrnc on Computational Plasticity. Funamntals an Applications COMPLAS X. Oñat, D.R.J. Own, D. Pric an M. Ciumnti s SOURCS

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

ECE 407 Computer Aided Design for Electronic Systems. Instructor: Maria K. Michael. Overview. CAD tools for multi-level logic synthesis:

ECE 407 Computer Aided Design for Electronic Systems. Instructor: Maria K. Michael. Overview. CAD tools for multi-level logic synthesis: 407 Computr Aidd Dsign for Elctronic Systms Multi-lvl Logic Synthsis Instructor: Maria K. Michal 1 Ovrviw Major Synthsis Phass Logic Synthsis: 2-lvl Multi-lvl FSM CAD tools for multi-lvl logic synthsis:

More information

The Semantics of Intermediate CPTs in Variable Elimination

The Semantics of Intermediate CPTs in Variable Elimination T Smantis of Intrmiat CPTs in Varial Elimination Cory J. Butz Univrsity of Rina, Canaa utz@s.urina.a Wn Yan Univrsity of Rina, Canaa yanw111@s.urina.a Astrat Varial limination (VE), a ntral omponnt of

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

CPS 616 W2017 MIDTERM SOLUTIONS 1

CPS 616 W2017 MIDTERM SOLUTIONS 1 CPS 616 W2017 MIDTERM SOLUTIONS 1 PART 1 20 MARKS - MULTIPLE CHOICE Instructions Plas ntr your answrs on t bubbl st wit your nam unlss you ar writin tis xam at t Tst Cntr, in wic cas you sould just circl

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Internet Algorithms. (Oblivious) Routing. Lecture 10 06/24/11. Wereferto. demands(requirements), forall vertex pairs,,

Internet Algorithms. (Oblivious) Routing. Lecture 10 06/24/11. Wereferto. demands(requirements), forall vertex pairs,, Intrnt Algoritms Ltur 10 06/24/11 (Olivious) Routing Givn a ntwork, witdglngtsl and dmands(rquirmnts), forall vrtx pairs,, afasilroutingisa multiommodityflow, satisfying t rquirmnts, i..,,,,, Wrfrto,,,,,

More information