In-flight Ice Accretion Prediction Code

Size: px
Start display at page:

Download "In-flight Ice Accretion Prediction Code"

Transcription

1 In-flight Ice Accretion Prediction Code Vladimír HORÁK*, Zdeněk CHÁRA** *Corresponding author University of Defence in Brno, Kounicova 65, Brno, Czech Republic **Institute of Hydrodynamics, Academy of Sciences of the Czech Republic, Pod Patankou 5, Praha 6 chara@ih.cas.cz DOI: / Abstract: The phenomenon of in-flight icing may affect all types of aircraft. The paper deals with the development of the computational wing airfoil ice accretion prediction code Ice. Presented code versions enable computational rime ice and glaze ice accretion prediction on single and multi-element airfoils in acceptable time of solution. There are presented results of rime ice and glaze ice accretion predictions and compared with current ice accretion prediction codes. Various cases of predicted ice shapes are shown in dependence of air temperature. The latest Ice code version enables to solve system of several airfoils. The example of ice prediction on the wing airfoil with a slotted flap is shown for two angles of deflection. Key Words: aircraft icing, ice accretion simulation, icing code. 1. MOTIVATION The formation of ice on airplane wings occurs when the aircraft flies at a level where temperature is at, or below freezing point and hits supercooled water droplets. The in-flight icing may affect all types of aircraft. Presence of ice on an aircraft surface can lead to a number of performance degradations: changes in pressure distribution decreased maximum lift and increased drag stall occurring at lower angles of attack and increased stall speed reduced controllability. It is important to understand how the different ice shapes affect aircraft aerodynamics. It can be studied by flight tests, wind tunnel measurements, and computational simulations. Computational simulation of ice accretion is an essential tool in design, development and certification of aircraft for flight into icing conditions. Currently, there exist several approved ice accretion codes: LEWICE (LEWis ICE accretion program) is software developed by the Icing Branch at NASA Glenn Research Center CANICE code developed at the Ecole Polytechnique de Montreal ONERA (Office National d'etudes et de Recherches Aérospatiales) code in France TRAJICE code which was developed by DERA (Defence Evaluation and Research Agency) in United Kingdom CIRA code from Italian Aerospace Research Center., pp

2 Vladimír HORÁK, Zdeněk CHÁRA ICE ACCRETION PREDICTION CODE In conjunction with the project of the Czech Ministry of Industry and Trade, was developed the tool for simulating flight into icing conditions. Presented software was subsequently developed and improved. Currently, there are three main code versions: R-Ice 1.1 Rime ice accretion prediction [1] Ice 3.1 Glaze ice accretion prediction [3] Ice 4.1 Multi-element airfoils icing [4] The rime ice is formed if all the impinging water droplets freeze immediately upon impact. It tends to form at combinations of low ambient temperature, low speed (low kinetic heating) and a low value of cloud water concentration. The glaze ice creates at combinations of temperature close to freezing, high speed or high cloud liquid water content. In that case, not all of the impinging water freezes on impact, the thin layer of remainder water is flowing along the surface and freeze at other locations. The process is strongly influenced by the heat transfer. The latest code version is modified for multi-element airfoils, when the mutual flow overlap of circumfluent bodies can occur. This modification enables the solution of more complicated icing simulation cases, e.g. airfoil with slotted flap, wing slot, etc. 3. TRAJECTORIES OF WATER DROPLETS The potential flow field is calculated using 2-D panel method. The relation for any point inside the control area is in form 1 r n grad grad ln d S grad d S r n. (1) r 2 2 S S The searching solution has to respect the boundary area condition grad n v, where n v n is the normal direction velocity component on the boundary. It is possible to approximate the velocity potential, or the n value respectively, on the body surface and on the flow field potential discontinuity surfaces by a linear combination of an appropriate function class. If we choose the needed quantity of control points on the boundary in which we require to fulfill the integral equation for the gradient of potential and boundary conditions, the method leads to the set of linear equations solution for unknown coefficients of functions linear combination that approximate the solution. Potential flow field is then used to determine the trajectories of water droplets and the impingement points on the body. Droplets passing through the atmosphere are considered as spherical elements with a mass m on that the surrounding fluid forces and gravitation F act. Droplets acceleration and position vector r are given by relations d v d t p F, m d r v d t p. (2) Typical results of trajectories solution near an airfoil are presented in Fig. 1. It is perceptible that the small water droplets have trajectories similar to streamlines, vice versa the large water droplets trajectories are affected by the airfoil inherency only slightly.

3 121 In-flight Ice Accretion Prediction Code Fig. 1 Influence of the water droplets diameter on their trajectories. Airfoil NACA 0018, chord is 1 m, free stream velocity is 50 ms -1 and angle of attack is 5º. 4. R-ICE 1.1 AIRFOIL RIME ICE ACCRETION PREDICTION The rime ice accretion is the simplest case of ice simulation to predict when impinging super-cooled water droplets freeze immediately upon impact. Code applies a time-stepping procedure to calculate the shape of an ice accretion [1]. The new flow field and droplet impingement recalculations are applied for every procedure step. This procedure is repeated until the desired icing time is reached. Results of the airfoil NFL0414 ice accretion prediction for the total icing duration time 1224 seconds in five time steps of solution are presented in Fig. 2. There are presented icing parameters (the R-Ice code incoming data) in the figure either. Figure also shows the final ice shape from the in-flight icing experiment [2] at the same conditions by a red color line. 0,050 y/c [1] 0,025 0,000 Chord= m; Vext=92.54 m.s -1 ; FluidP= Pa; FluidT=257.6 K; Alpha=0 o ; PartD= m; PartContent= kg.m -3, RimeIceRho=900kg.m -3 ; Steps=5; TimeStep=244.8 s; Time=1224 s. Fig. 2 Illustration of the successive rime ice accretion for the icing time 1224 sec. -0,025-0,050-0,050-0,025 0,000 0,025 0,050 x/c [1] Rime ice accretion prediction provides the comparable results like other current computational ice-accretion simulation methods [2]. It is evident from the quantitative comparison plotted in Fig. 3. Icing parameters of solutions are the same as those outlined above.

4 Vladimír HORÁK, Zdeněk CHÁRA 122 0,050 Fig. 3 Quantitative comparison of current computational iceaccretion simulation methods for the icing time 1224 sec. y/c [1] 0,025 0,000-0,025-0,050-0,050-0,025 0,000 0,025 x/c [1] 0,050 Clean Airfoil Experimental ONERA1990 Simon CANICE Paraschivoiu TRAJICE ADSE ONERA2000 Duprat NASA R-ICE 5. ICE 3.1 GLAZE ICE ACCRETION PREDICTION Generally, current ice accretion codes give satisfied results of the rime ice simulation, but glaze icing cases are the most difficult to predict. There is still room for improvement in the quality of ice-accretion-space predictions [2]. Glaze ice creates at combinations of temperature close to freezing. In that case, not all of the impinging water freezes on impact. Thin layer of water is flowing very slowly along the surface and freeze at other locations. The Ice 3.1 code uses so called a shallow water theory for the solution of the flow of thin water layer on the airfoil surface and gradual freezing. The conservative equations using for the solution of water flow in open channels are formally arranged. Conservative equations written in the general form are Q F t x S S Vectors of variables Q, flow F and sources S, S q are given by relations q. (3) A Q 2 Q Q, F Q A g I, (4) n 1 E EQ A 0 S g n I g t A dp dx A ow w oe e, (5) 2 ow w T w T oe e T e T oeq pctp oeq p owq fr owqev S q oeq pv px owq fr v owqevv. (6) o eq pctp owq fr ct L fr owqev ct Lev

5 123 In-flight Ice Accretion Prediction Code Where g represents acceleration due to gravity with components g n and g t. The quantity ρ is the liquid density, the liquid temperature is denoted by T, channel wall temperature is T w and the ambient temperature above water level is T e. Integrals I 1 and I 2 are given by the shape of the channel cross-section h h db x, I 1 h b x, d, I 2 h d. (7) d x 0 The coordinate η is measured upwards from the lowest point of channel bed level in the section x = const. and b (x, η) is the channel width. The channel geometry description is complemented by the wetted perimeter o w and the level width o e. Variable quantities: Q 1 = A represents the local flow cross-section, Q 2 = Q = A v is the flow volume and Q 3 = E = A c T expresses the thermal energy of liquid having specific heat capacity c. Quantities: F 1 is the mass flux, F 2 is the momentum flux and F 3 is the flux of energy. Vector S includes sources of mass, momentum and energy. Certain liquid volume inflows from external sources S q1 (impacting flux) with the area intensity q p [m 3 s -1 m -2 ]. Some water can freezes, the freezing fraction could be expressed from the heat balance like the area intensity q fr. Similarly, the area intensity q ev represents the quantity of evaporating water, which is determined by the vapors diffusion from the surface. Source of momentum S 2 includes: hydrostatic pressure (effect of the cross-section change da/dx), tangential component of gravity force g t (generally external volume forces), friction on the channel bed τ w and on the liquid surface τ e and the momentum component supplying from external sources with the radial velocity v px. Finally, the source of energy S 3 constitutes heat transfer on the channel wetted perimeter, heat transfer on the liquid level (coefficients α w and α e ), the heat supplied from external sources S q3 by means of liquid and the thermal influence of freezing and evaporating process, where L fr is the latent heat of fusion and L ev is the latent heat of evaporation. The formulated problem of the thin liquid layer flow solution is solved by a discontinuous Galerkin method, which could be considered as a generalized finite volumes classical method. Principles of the Galerkin method, applied to the solution of the flow of a thin water layer and gradual freezing, are closely described in [3]. Results of the glaze ice accretion prediction for the icing time 300 seconds and airfoil NACA 0012 are outlined in Fig. 4. Process of glaze ice accretion is strongly influenced by the wall temperature T w. 0 Fig. 4 Effect of wall temperature on glaze ice shapes and comparison with experiment. Input data of the solution are airfoil chord b = 0.45 m, free stream velocity v = 77.2 m s -1, angle of attack α = 0º, cloud liquid water content LWC = 0.32 g m -3, droplets median volume diameter MVD = 18 μm, ambient air temperature T e = K and wing surface temperature T w = K.

6 Vladimír HORÁK, Zdeněk CHÁRA 124 It could be noted that the results outlined above qualitatively correspond to the experimental observations of glaze ice shapes. Comparison in Fig. 5 acknowledges that the presented solution could 0,06 be considered at least as y/b a fully comparable with 0,04 the current ice accretion prediction codes. 0,02 Clean Airfoil Experimental Fig. 5 Quantitative comparison of current computational ice accretion simulation methods from [2]. 0,00-0,02-0,04-0,06-0,02 0,00 0,02 0,04 0,06 0,08 x/b 0,10 Paraschivoiu CANICE ADSE TRAJICE Duprat ONERA NASA LEWICE 6. INFLUENCE OF AIR TEMPERATURE ON ICE SHAPES The glaze ice accretion process is strongly dependent on temperature, besides other icing parameters like air liquid water content (LWC) and median droplets diameter (MVD). Influence of air temperature T on iced airfoil shapes predicted by the Ice code, version 3.1, is shown in Fig. 6, where we can see various cases of glaze ice shapes: stream-wise shape (b), (c), double-horn shape (d), (e), and span-wise ridge shape (f). (a) Rime ice (b) Glaze ice: T = K (c) Glaze ice: T = K (d) Glaze ice: T = K (e) Glaze ice: T = K (f) Glaze ice: T = K Fig. 6 Ice code simulation of air temperature influence on iced airfoil shapes for T = T w. Airfoil NFL0414, chord 0.45 m, angle of attack α = 0 o, free stream velocity v = 77.2 m s -1, MVD = 18 μm, LWC = 0.32 g m -3, atmospheric pressure 100 kpa, icing time 900 seconds.

7 125 In-flight Ice Accretion Prediction Code 7. ICE 4.1 MULTI-ELEMENT AIRFOILS ICING The latest Ice code version [4] enables to solve system of several airfoils, by default, up to eight separate parts. Model algorithms have been extended to involve mutual flow overlap of multi-element airfoils (e.g. overlap between the airfoil and flap). The typical results of air streamlines of droplet trajectories around an airfoil with a slotted flap are presented in Fig. 7. There are seen droplet trajectories and impact locations near the airfoil leading edge. Trajectories of droplets impacting an airfoil surface are depicted by a black square. The impact locations where droplet trajectories intersect an airfoil surface may be divided into several separated subsections. It can be seen for the case of airfoil with the slotted flap in landing position. The flap is not fully overlapped in this case. Then black squares of impinging droplets trajectories are divided on one impacting the airfoil and another one impacting the flap surface. Fig. 7 Droplet trajectories near an airfoil with a slotted flap and for flap in landing position The ability of the Ice code 4.1 version to predict ice accretion of flapped airfoils is presented on the case of the wing airfoil with a slotted flap. Example of the ice prediction on the wing airfoil with the slotted flap for angles of flap deflection 20 and 38 is shown in Fig. 8 Fig. 8 Example of ice prediction on the wing airfoil with a slotted flap for angles of deflection 20 and 38 Mentioned ice accretion on the flap causes the reduction of the gap size between main element and flap. Consequently, it can have a large impact on the performance degradation of iced multi-element airfoils. Lastly, there is a potential mechanical problem in the elevator mechanism itself.

8 Vladimír HORÁK, Zdeněk CHÁRA CLOSING REMARKS The Ice code enables computational rime ice and glaze ice accretion prediction on single and multi-element airfoils in acceptable time of solution. Mathematical model has been modified for variable wall temperature along the airfoil surface. The code was also subsequently improved for the better approximation of transition boundary layer location. The code is designed for the icing simulation as an aid to the certification process of small transport aircraft for flight in icing conditions according to international aircraft standards, where maximum and intermittent maximum icing conditions are specified. Presented code could be considered at least as a fully comparable with the current ice accretion prediction codes. ACKNOWLEDGEMENT The work presented in this paper has been supported by the Czech Science Foundation project No. P101/10/0257, by the Czech Ministry of Industry and Trade project FT-TA/044 InICE, and by the Ministry of Defense project No. FVT REFERENCES [1] V. Horák and B. Hoření. Wing Airfoil Rime Ice Accretion Prediction. In Engineering Mechanics Svratka, May [2] R. J. Kind. Ice Accretion Simulation Evaluation Test. RTO Technical Report 38, November [3] B. Hoření and V. Horák. Wing Airfoil Glaze Ice Accretion Prediction: Thin Freezing Water Layer. In Sixth International conference on Mathematical Problems in Engineering and Aerospace Sciences ICNPAA Cambridge Scientific Publishers, [4] B. Hoření, V. Horák, and Z. Chára. Improved Ice Accretion Prediction Code. Advances in Military Technology, Vol. 3, No. 1, p , September 2008.

Ice Accretion Prediction Code

Ice Accretion Prediction Code Ice Accretin Predictin Cde Vladimír Hrák University f Defence Institute f Hydrdynamics, Academy f Sciences Czech Republic 1 Dedicated t the memry f Dr. Bhumír Hření 2 Mtivatin The in-flight icing may affect

More information

Aircraft Icing Icing Physics

Aircraft Icing Icing Physics Aircraft Icing Icing Physics Prof. Dr. Dept. Aerospace Engineering, METU Fall 2015 Outline Formation of ice in the atmosphere Supercooled water droplets Mechanism of aircraft icing Icing variations Ice

More information

In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D

In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: 339 In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D Erdem Ayan and Serkan Özgen Turkish Aerospace

More information

Leveraging STAR-CCM+ for Aircraft Applications. Durrell Rittenberg, Ph.D.

Leveraging STAR-CCM+ for Aircraft Applications. Durrell Rittenberg, Ph.D. Leveraging STAR-CCM+ for Aircraft Applications Durrell Rittenberg, Ph.D. Overview of Icing with STAR-CCM+ Icing in aerospace Common applications Impact of icing on Aircraft safety Common icing conditions

More information

List of symbols. Latin symbols. Symbol Property Unit

List of symbols. Latin symbols. Symbol Property Unit Abstract Aircraft icing continues to be a threat for modern day aircraft. Icing occurs when supercooled large droplets (SLD s) impinge on the body of the aircraft. These droplets can bounce off, freeze

More information

Aircraft Performance Sensitivity to Icing Cloud Conditions

Aircraft Performance Sensitivity to Icing Cloud Conditions 45 th Aerospace Sciences Meeting & Exhibit AIAA-2007-0086 January 8-11, 2007 Reno, NV Aircraft Performance Sensitivity to Icing Cloud Conditions Scot E. Campbell 1, Andy P. Broeren 2, and Michael B. Bragg

More information

INITIAL VERIFICATION OF A 3D MORPHOGENETIC MODEL OF IN-FLIGHT ICING ON A CYLINDER

INITIAL VERIFICATION OF A 3D MORPHOGENETIC MODEL OF IN-FLIGHT ICING ON A CYLINDER 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES INITIAL VERIFICATION OF A 3D MORPHOGENETIC MODEL OF IN-FLIGHT ICING ON A CYLINDER Krzysztof Szilder*, Edward P. Lozowski** *Institute for Aerospace

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

NUMERICAL SIMULATION OF AIRFOIL ICE ACCRETION AND THERMAL ANTI-ICING SYSTEMS

NUMERICAL SIMULATION OF AIRFOIL ICE ACCRETION AND THERMAL ANTI-ICING SYSTEMS 24th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL SIMULATION OF AIRFOIL ICE ACCRETION AND THERMAL ANTI-ICING SYSTEMS Jeroen E Dillingh, Harry WM Hoeijmakers Group Engineering Fluid Dynamics,

More information

Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Fall 2015

Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Fall 2015 Aircraft Icing FAR 25, Appendix C charts Prof. Dr. Serkan ÖZGEN Dept. Aerospace Engineering, METU Fall 2015 Outline FAR 25 and FAR 29 Appendix C charts Using FAR 25 Appendix C charts Liquid water content

More information

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future OVERVIEW Presentation Aircraft Review of Current Icing Environments Pending Changes to

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Numerical Study of Atmospheric Ice Accretion on Various Geometric Cross-sections

Numerical Study of Atmospheric Ice Accretion on Various Geometric Cross-sections Numerical Study of Atmospheric Ice Accretion on Various Geometric Cross-sections by Muhammad S. Virk REPRINTED FROM WIND ENGINEERING VOLUME 35, NO. 5, 2011 MULTI-SCIENCE PUBLISHING COMPANY 5 WATES WAY

More information

ICING DISTRIBUTION OF ROTATING BLADE OF HORIZONTAL AXIS WIND TURBINE BASED ON QUASI-3-D NUMERICAL SIMULATION

ICING DISTRIBUTION OF ROTATING BLADE OF HORIZONTAL AXIS WIND TURBINE BASED ON QUASI-3-D NUMERICAL SIMULATION Li, Y., et al.: Icing Distribution of Rotating of Horizontal Axis Wind... THERMAL SCIENCE: Year 218, Vol. 22, Suppl. 2, pp. S681-S691 S681 ICING DISTRIBUTION OF ROTATING BLADE OF HORIZONTAL AXIS WIND TURBINE

More information

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena Dr. Hui HU Advanced Flow Diagnostics and Experimental Aerodynamics Laboratory

More information

Effect of Mixed Icing Conditions on Thermal Ice Protection Systems

Effect of Mixed Icing Conditions on Thermal Ice Protection Systems Effect of Mixed Icing Conditions on Thermal Ice Protection Systems By Kamel Al-Khalil, Ph.D. Manager, LeClerc Icing Research Laboratory New York, NY 114 FAA Specialists Workshop I. INTRODUCTION The purpose

More information

Facilities for Demonstrating Compliance Appendix O Conditions

Facilities for Demonstrating Compliance Appendix O Conditions Determining i the Suitability of IWT Test Facilities for Demonstrating Compliance with Certification Requirements in Appendix O Conditions Kamel Al-Khalil, Cox & Company, Inc. Joseph Vogel, Cox & Company,

More information

Wind tunnel effects on ice accretion over aircraft wings

Wind tunnel effects on ice accretion over aircraft wings Wind tunnel effects on ice accretion over aircraft wings Marta Zocca, Giulio Gori, Alberto Guardone Politecnico di Milano, Campus Bovisa, 2156 Milano, Italy Reference ice accretion experiments are reproduced

More information

Airfoil Ice-Accretion Aerodynamics Simulation

Airfoil Ice-Accretion Aerodynamics Simulation Airfoil Ice-Accretion Aerodynamics Simulation M. Bragg and A. Broeren University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 H. Addy and M. Potapczuk NASA Glenn Research Center, Cleveland,

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

Study on the Heat Transfer Characteristics in aircraft icing

Study on the Heat Transfer Characteristics in aircraft icing Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

Aerodynamics and Flight Mechanics

Aerodynamics and Flight Mechanics Aerodynamics and Flight Mechanics Principal Investigator: Mike Bragg Eric Loth Post Doc s: Graduate Students: Undergraduate Students: Sam Lee Jason Merret Kishwar Hossain Edward Whalen Chris Lamarre Leia

More information

COMPUTATIONAL METHODOLOGY FOR BLEED AIR ICE PROTECTION SYSTEM PARAMETRIC ANALYSIS. A Thesis by. Rodrigo Hoffmann Domingos

COMPUTATIONAL METHODOLOGY FOR BLEED AIR ICE PROTECTION SYSTEM PARAMETRIC ANALYSIS. A Thesis by. Rodrigo Hoffmann Domingos COMPUTATIONAL METHODOLOGY FOR BLEED AIR ICE PROTECTION SYSTEM PARAMETRIC ANALYSIS A Thesis by Rodrigo Hoffmann Domingos Bachelor of Science, Universidade Federal de Santa Catarina, 2001 Submitted to the

More information

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? 1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

ν δ - 1 -

ν δ - 1 - ν δ - 1 - δ ν ν δ ν ν - 2 - ρ δ ρ θ θ θ δ τ ρ θ δ δ θ δ δ δ δ τ μ δ μ δ ν δ δ δ - 3 - τ ρ δ ρ δ ρ δ δ δ δ δ δ δ δ δ δ δ - 4 - ρ μ ρ μ ρ ρ μ μ ρ - 5 - ρ τ μ τ μ ρ δ δ δ - 6 - τ ρ μ τ ρ μ ρ δ θ θ δ θ - 7

More information

Aerodynamic Classification of Swept-Wing Ice Accretion

Aerodynamic Classification of Swept-Wing Ice Accretion 5th AIAA Atmospheric and Space Environments Conference June 24-27, 2013, San Diego, CA AIAA 2013-2825 Aerodynamic Classification of Swept-Wing Ice Accretion Jeff M. Diebold *, Andy P. Broeren and Michael

More information

The E80 Wind Tunnel Experiment the experience will blow you away. by Professor Duron Spring 2012

The E80 Wind Tunnel Experiment the experience will blow you away. by Professor Duron Spring 2012 The E80 Wind Tunnel Experiment the experience will blow you away by Professor Duron Spring 2012 Objectives To familiarize the student with the basic operation and instrumentation of the HMC wind tunnel

More information

DEVELOPMENT OF ICE ACCRETION AND ANTI-ICING SYSTEM SIMULATION CODE

DEVELOPMENT OF ICE ACCRETION AND ANTI-ICING SYSTEM SIMULATION CODE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DEVELOPMENT OF ICE ACCRETION AND ANTI-ICING SYSTEM SIMULATION CODE Seiji Nihio* and Sumio Kato* *Kawaaki Heavy Indutrie, LTD Keyword: accretion,

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

Airplane Icing. Accidents That Shaped Our Safety Regulations. Federal Aviation Administration

Airplane Icing. Accidents That Shaped Our Safety Regulations. Federal Aviation Administration Airplane Icing Accidents That Shaped Our Safety Regulations Presented to: AE598 UW Aerospace Engineering Colloquium By: Don Stimson, Topics Icing Basics Certification Requirements Ice Protection Systems

More information

Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils

Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils Dr. Jose L Palacios Research Associate jlp324@psu.edu Yiqiang Han Research Assistant ARMY Program Review April 7,

More information

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS 54 CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS The baseline characteristics and analysis of NACA 4 series airfoils are presented in this chapter in detail. The correlations for coefficient of lift and

More information

Research Article Study of the Effect of Centrifugal Force on Rotor Blade Icing Process

Research Article Study of the Effect of Centrifugal Force on Rotor Blade Icing Process Hindawi Aerospace Engineering Volume 2017, Article ID 8695170, 9 pages https://doi.org/10.1155/2017/8695170 Research Article Study of the Effect of Centrifugal Force on Rotor Blade Icing Process Zhengzhi

More information

Aerodynamics and Flight Mechanics

Aerodynamics and Flight Mechanics Aerodynamics and Flight Mechanics Principal Investigator: Mike Bragg, Eric Loth Post Doc s: Andy Broeren, Sam Lee Graduate Students: Holly Gurbachi(CRI), Tim Hutchison, Devesh Pokhariyal, Ryan Oltman,

More information

IN-FLIGHT ICING SIMULATION WITH SUPERCOOLED LARGE DROPLET EFFECTS

IN-FLIGHT ICING SIMULATION WITH SUPERCOOLED LARGE DROPLET EFFECTS HEFAT010 7 th International Conference on Heat Transfer Fluid Mechanics and Thermodynamics 19-1 July 010 Antalya Turkey IN-FLIGHT ICING SIMULATION WITH SUPERCOOLED LARGE DROPLET EFFECTS Özgen S.* and Canıbek

More information

Aircraft Icing FAR/CS-25, Appendix O and P charts

Aircraft Icing FAR/CS-25, Appendix O and P charts Aircraft Icing FAR/CS-25, Appendix O and P charts Prof. Dr. Serkan ÖZGEN Dept. Aerospace Engineering, METU Fall 2015 Outline Appendix O and P - Background Existing CS-25 certification specifications for

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

AIAA Nomenclature

AIAA Nomenclature AIAA Atmospheric and Space Environments Conference 2-5 August 2010, Toronto, Ontario Canada AIAA 2010-7983 Computational Prediction of Propeller Performance in Icing Conditions Greg Busch 1 and Michael

More information

CRANFIELD UNIVERSITY. Jafar S L Alzaili

CRANFIELD UNIVERSITY. Jafar S L Alzaili CRANFIELD UNIVERSITY Jafar S L Alzaili SEMI-EMPIRICAL APPROACH TO CHARACTERIZE THIN WATER FILM BEHAVIOUR IN RELATION TO DROPLET SPLASHING IN MODELLING AIRCRAFT ICING SCHOOL OF ENGINEERING Department of

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

AIAA Aerodynamic Performance of an NLF Airfoils with Simulated Ice

AIAA Aerodynamic Performance of an NLF Airfoils with Simulated Ice AIAA 99-373 Aerodynamic Performance of an NLF Airfoils with Simulated Ice D.G. Jackson and M.B. Bragg University of Illinois Urbana, IL 37th AIAA Aerospace Sciences Meetings & Exhibit 4 January 999/Reno,NV

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

FREEZING CONTAMINATION : AIRCRAFT ICING

FREEZING CONTAMINATION : AIRCRAFT ICING FREEZING CONTAMINATION : AIRCRAFT ICING EFFECTS ON AIRCRAFT Different types of accretion Intensity of ice accretion Consequences of accretion Vulnerability factors examples Specific vulnerabilities Detection

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

PREDICTION OF ICE CRYSTAL ACCRETION WITH IN-HOUSE TOOL TAICE

PREDICTION OF ICE CRYSTAL ACCRETION WITH IN-HOUSE TOOL TAICE PREDICTION OF ICE CRYSTAL ACCRETION WITH IN-HOUSE TOOL TAICE Erdem Ayan, Serkan Özgen, Erhan Tarhan, Murat Canıbek TAI Turkish Aerospace Industries Inc. SAE 2015 International Conference on Icing of Aircraft,

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

Flow field in the compressor blade cascade NACA

Flow field in the compressor blade cascade NACA Flow field in the compressor blade cascade NACA 65-100 Tomáš Turek Thesis Supervisor: Ing. Tomáš Hyhlík, Ph.D. Abstract An investigation is made into the effects of a flow field in the compressor blade

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Effects of Supercooled Water Ingestion on Engine Performance

Effects of Supercooled Water Ingestion on Engine Performance University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 Effects of Supercooled Water Ingestion on Engine Performance Rick Hutchings rhutchi3@utk.edu

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

Department of Energy Sciences, LTH

Department of Energy Sciences, LTH Department of Energy Sciences, LTH MMV11 Fluid Mechanics LABORATION 1 Flow Around Bodies OBJECTIVES (1) To understand how body shape and surface finish influence the flow-related forces () To understand

More information

INSTRUMENTATION OF AN ICING WIND TUNNEL BASED ON SAE STANDARDS

INSTRUMENTATION OF AN ICING WIND TUNNEL BASED ON SAE STANDARDS INSTRUMENTATION OF AN ICING WIND TUNNEL BASED ON SAE STANDARDS Reinhard F.A. Puffing 1,2), Marian Peciar 2), Wolfgang Hassler 1) 1 University of Applied Sciences FH JOANNEUM GrazLuftfahrt/Aviation, Graz,

More information

ACTIVE SEPARATION CONTROL ON A SLATLESS 2D HIGH-LIFT WING SECTION

ACTIVE SEPARATION CONTROL ON A SLATLESS 2D HIGH-LIFT WING SECTION 26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES ACTIVE SEPARATION CONTROL ON A SLATLESS 2D HIGH-LIFT WING SECTION F. Haucke, I. Peltzer, W. Nitsche Chair for Aerodynamics Department of Aeronautics

More information

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008) Aerodynamics SYST 460/560 George Mason University Fall 2008 1 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH Copyright Lance Sherry (2008) Ambient & Static Pressure Ambient Pressure Static Pressure 2 Ambient

More information

Keywords: Ice Accretion, Rotor-Stator Interaction, Tip Clearance, Leakage Vortex.

Keywords: Ice Accretion, Rotor-Stator Interaction, Tip Clearance, Leakage Vortex. Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm NUMERICAL INVESTIGATION OF TIP CLEARANCE EFFECT OF ICING IN ROTOR/STATOR INTERACTION R.

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture-0 Introduction toufiquehasan.buet.ac.bd

More information

Numerical simulation of airfoil aerodynamic performance under the coupling effects of heavy rain and ice accretion

Numerical simulation of airfoil aerodynamic performance under the coupling effects of heavy rain and ice accretion Research Article Numerical simulation of airfoil aerodynamic performance under the coupling effects of heavy rain and ice accretion Advances in Mechanical Engineering 2016, Vol. 8(10) 1 9 Ó The Author(s)

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

ICING SIMULATION ON JET ENGINE WITH TEMPERATURE CHANGE OF SUPER-COOLED DROPLET

ICING SIMULATION ON JET ENGINE WITH TEMPERATURE CHANGE OF SUPER-COOLED DROPLET 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) Ryosuke Hayashi and

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Lecture-4. Flow Past Immersed Bodies

Lecture-4. Flow Past Immersed Bodies Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

More information

rn1ii lk L FTL REPORT R86-7 AN EXPERIMENTAL AND THEORETICAL STUDY OF THE ICE ACCRETION PROCESS DURING ARTIFICIAL AND NATURAL ICING CONDITIONS

rn1ii lk L FTL REPORT R86-7 AN EXPERIMENTAL AND THEORETICAL STUDY OF THE ICE ACCRETION PROCESS DURING ARTIFICIAL AND NATURAL ICING CONDITIONS FTL REPORT R86-7 AN EXPERIMENTAL AND THEORETICAL STUDY OF THE ICE ACCRETION PROCESS DURING ARTIFICIAL AND NATURAL ICING CONDITIONS Mark S. Kirby and R. John Hansman, Jr. rn1ii lk L May 1986 FLIGHT TRANSPORTATION

More information

PHASE CHANGE. Freezing Sublimation

PHASE CHANGE. Freezing Sublimation Melting Graphic Organizer Deposition PHASE CHANGE Freezing Sublimation Boiling Evaporation Condensation PHASE CHANGE Phase change happens as the temperature changes. All matter can move from one state

More information

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Saurabh Nath and Jonathan B. Boreyko Department of Biomedical Engineering and Mechanics, Virginia

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering 4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 6: D potential flow, method of characteristics Thierry Magin, Greg Dimitriadis, and Johan Boutet Thierry.Magin@vki.ac.be Aeronautics and Aerospace

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

Recap: Static Fluids

Recap: Static Fluids Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid

More information

Analysis on Aerodynamic and Aeroelastic behaviour of a Wind Turbine Rotor During Icing

Analysis on Aerodynamic and Aeroelastic behaviour of a Wind Turbine Rotor During Icing MEK-FM-EP 2005-01 FLUID MECHANICS International Master Program in Wind Energy Analysis on Aerodynamic and Aeroelastic behaviour of a Wind Turbine Rotor During Icing Giuseppe Soraperra TECHNICAL UNIVERSITY

More information

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet AIAA Paper 2004-2208, 2004 A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet Ge-Cheng Zha and Craig D. Paxton Dept. of Mechanical & Aerospace Engineering University of Miami Coral

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

Momentum (Newton s 2nd Law of Motion)

Momentum (Newton s 2nd Law of Motion) Dr. Nikos J. Mourtos AE 160 / ME 111 Momentum (Newton s nd Law of Motion) Case 3 Airfoil Drag A very important application of Momentum in aerodynamics and hydrodynamics is the calculation of the drag of

More information

An Evaluation of Novel Integral Scheme for Calculations of Transitional Boundary Layers

An Evaluation of Novel Integral Scheme for Calculations of Transitional Boundary Layers Colloquium FLUID DYNAMICS 2011 Institute of Thermomechanics AS CR, v.v.i., Prague, Czech Society for Mechanics, the ERCOFTAC Czech Pilot Centre An Evaluation of Novel Integral Scheme for Calculations of

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

Matter In Our Surroundings

Matter In Our Surroundings Matter In Our Surroundings Introduction Matter is a substance which occupies space and has weight. Like the air we breath, the food we eat, stones, clouds, etc even a small drop of water or a particle

More information

Experimental Study on Flow Control Characteristics of Synthetic Jets over a Blended Wing Body Configuration

Experimental Study on Flow Control Characteristics of Synthetic Jets over a Blended Wing Body Configuration Experimental Study on Flow Control Characteristics of Synthetic Jets over a Blended Wing Body Configuration Byunghyun Lee 1), Minhee Kim 1), Chongam Kim 1), Taewhan Cho 2), Seol Lim 3), and Kyoung Jin

More information

Numerical study of battle damaged two-dimensional wings

Numerical study of battle damaged two-dimensional wings Advances in Fluid Mechanics IX 141 Numerical study of battle damaged two-dimensional wings S. Djellal, T. Azzam, M. Djellab & K. Lakkaichi Fluid Mechanics Laboratory Polytechnical School Bordj El Bahri,

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH 82 CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH The coefficient of lift, drag and power for wind turbine rotor is optimized using an iterative approach. The coefficient

More information

Experimental Evaluation of Aerodynamics Characteristics of a Baseline Airfoil

Experimental Evaluation of Aerodynamics Characteristics of a Baseline Airfoil Research Paper American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-1, pp-91-96 www.ajer.org Open Access Experimental Evaluation of Aerodynamics Characteristics

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Coupled Fluid and Heat Flow Analysis Around NACA Aerofoil Profiles at Various Mach Numbers

Coupled Fluid and Heat Flow Analysis Around NACA Aerofoil Profiles at Various Mach Numbers International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 249-258 International Research Publication House http://www.irphouse.com Coupled Fluid and Heat

More information

Design of Propeller Blades For High Altitude

Design of Propeller Blades For High Altitude Design of Propeller Blades For High Altitude Silvestre 1, M. A. R., Morgado 2 1,2 - Department of Aerospace Sciences University of Beira Interior MAAT 2nd Annual Meeting M24, 18-20 of September, Montreal,

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Modeling of Humidification in Comsol Multiphysics 4.4

Modeling of Humidification in Comsol Multiphysics 4.4 Modeling of Humidification in Comsol Multiphysics 4.4 Indrajit Wadgaonkar *1 and Suresh Arikapudi 1 1 Tata Motors Ltd. Pimpri, Pune, India, 411018. *Corresponding author: Indrajit Wadgaonkar, Tata Motors

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics and Astronautics AIAA Aerospace Sciences Meeting, Reno, NV AIAA Paper 2007-0037

More information

Aerodynamics and Flight Mechanics

Aerodynamics and Flight Mechanics Aerodynamics and Flight Mechanics Principal Investigators: Mike Bragg Eric Loth Graduate Students: Holly Gurbacki (CRI support) Tim Hutchison Devesh Pokhariyal (CRI support) Ryan Oltman 3-1 SMART ICING

More information

Aerodynamics. High-Lift Devices

Aerodynamics. High-Lift Devices High-Lift Devices Devices to increase the lift coefficient by geometry changes (camber and/or chord) and/or boundary-layer control (avoid flow separation - Flaps, trailing edge devices - Slats, leading

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

CONVEYING OF COARSE PARTICLES IN INCLINED PIPES. Pavel Vlasak, Zdenek Chara, Jiri Konfrst

CONVEYING OF COARSE PARTICLES IN INCLINED PIPES. Pavel Vlasak, Zdenek Chara, Jiri Konfrst ISBN 978-83-927084-8-3 ISSN 0867-7964 CONVEYING OF COARSE PARTICLES IN INCLINED PIPES Pavel Vlasak, Zdenek Chara, Jiri Konfrst Institute of Hydrodynamics ASCR, v. v. i., Pod Patankou 30/5, Prague 6, Czech

More information

Recap: Bernoulli s Principle

Recap: Bernoulli s Principle Recap: Bernoulli s Principle The sum of pressure plus kinetic energy per unit volume of a flowing fluid is constant. P + ½ρv 2 = constant pressure K.E. per unit volume (ρ = mass vol ) Result: Relates pressure

More information