Inference of Sparse Gene Regulatory Network from RNA-Seq Time Series Data

Size: px
Start display at page:

Download "Inference of Sparse Gene Regulatory Network from RNA-Seq Time Series Data"

Transcription

1 Inference of Sparse Gene Regulaory Nework from RNA-Seq Time Series Daa Alireza Karbalayghareh and Tao Hu Texas A&M Universiy December 16, 2015 Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

2 Ouline 1 Inroducion 2 Nework Model 3 Nework Inference 4 Simulaion resuls 5 Conclusions Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

3 Inroducion Main conceps High hroughpu RNA-Seq echnology has become more popular in gene expression analysis. We are ineresed in inferring he Gene Regulaory Neworks GRNs) from he coun-based RNA-Seq daa. Coninuous models like Gaussian) canno work well for he coun-based daa. Poisson model is discree, bu does no reflec he dispersion in he RNA-Seq daa. Temporal daa can be more beneficial for he nework inference. The GRNs in are usually sparse. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

4 Inroducion Model assumpions To address hese facs, in our model we assume: A Negaive Binomial BN) disribuion for he expression levels of he genes, which akes ino accoun he dispersion. A log-linear link funcion for he mean parameer. Adding an l 1 norm penaly o he cos funcion in order o reflec he sparseness in he nework. Using he ime series daa of all genes o infer he underlying GRN. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

5 Nework Model Negaive Binomial Model RNA-Seq Gene expression levels are assumed o have NB disribuion. Negaive Binomial Model f y i) ; µ i), σ i) ) = ) σ i) µ i) 1 σ + 1 i) Γy i) + 1 σ i) ) Γ 1 σ i) )Γy i) + 1) σ i) µ i) σ i) µ i) + 1 ) y i), i = 1,, n, = 1,, m µ i) is mean expression for gene i a ime. σ i) is dispersion coefficien of gene i he same for all imes = 1,, m. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

6 Nework Model Negaive Binomial Model RNA-Seq Gene expression levels are assumed o have NB disribuion. Negaive Binomial Model f y i) ; µ i), σ i) ) = ) σ i) µ i) 1 σ + 1 i) Γy i) + 1 σ i) ) Γ 1 σ i) )Γy i) + 1) σ i) µ i) σ i) µ i) + 1 ) y i), i = 1,, n, = 1,, m µ i) is mean expression for gene i a ime. σ i) is dispersion coefficien of gene i he same for all imes = 1,, m. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

7 Nework Model Negaive Binomial Model RNA-Seq Gene expression levels are assumed o have NB disribuion. Negaive Binomial Model f y i) ; µ i), σ i) ) = ) σ i) µ i) 1 σ + 1 i) Γy i) + 1 σ i) ) Γ 1 σ i) )Γy i) + 1) σ i) µ i) σ i) µ i) + 1 ) y i), i = 1,, n, = 1,, m µ i) is mean expression for gene i a ime. σ i) is dispersion coefficien of gene i he same for all imes = 1,, m. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

8 Nework Model Markov GLM GLM We use a Markov generalized linear model GLM) wih a log link funcion for he mean expression levels as ) log µ i) +1 = where q j) = log gene a ime. β i) j n j=1 y j) q j) β i) j, i = 1,..., n, = 1,..., m 1, ), and y j) is he expression level of he j-h is he connecion srengh or he weigh of he direced edge from gene j o gene i in he nework graph. β i) j s are ime invarian. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

9 Nework Model Markov GLM GLM We use a Markov generalized linear model GLM) wih a log link funcion for he mean expression levels as ) log µ i) +1 = where q j) = log gene a ime. β i) j n j=1 y j) q j) β i) j, i = 1,..., n, = 1,..., m 1, ), and y j) is he expression level of he j-h is he connecion srengh or he weigh of he direced edge from gene j o gene i in he nework graph. β i) j s are ime invarian. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

10 v9 v8 v7 v12 v11 v10 v7 v7 v7 Nework Model Model evoluion i = 1 q 1) 1 q 1) 2 q 1) m i = 2 q 2) 1 q 2) 2 q 2) m i = n q n) 1 q n) 2 q n) m = 1 = 2 = m Figure : Gene expression evoluion for i genes during m ime poins. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

11 Nework Inference Regularized cos funcion If we assume β i) i hen, µ i) +1 = exp = 0, and define [ β i) = [ q i) = β i) 1 q 1) q i) β i)),..., βi) i 1, βi) i+1,..., βi) n ] T ],..., q i 1), q i+1),..., q n) For he nework inference, we use ML plus an l 1 penaly for β i) in order o conrol he sparseness of he nework. Cos funcion o be minimized gβ i), σ i) ) = lβ i), σ i) ) + λ β i) 1, i = 1,, n where lβ i), σ i) ) is he log-likelihood funcion, and λ > 0 is he regularizaion parameer. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

12 Nework Inference Regularized cos funcion If we assume β i) i hen, µ i) +1 = exp = 0, and define [ β i) = [ q i) = β i) 1 q 1) q i) β i)),..., βi) i 1, βi) i+1,..., βi) n ] T ],..., q i 1), q i+1),..., q n) For he nework inference, we use ML plus an l 1 penaly for β i) in order o conrol he sparseness of he nework. Cos funcion o be minimized gβ i), σ i) ) = lβ i), σ i) ) + λ β i) 1, i = 1,, n where lβ i), σ i) ) is he log-likelihood funcion, and λ > 0 is he regularizaion parameer. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

13 Nework Inference ML Log-likelihood funcion lβ i), σ i) ) = = m 1 =1 { log m 1 =1 + y i) σ i) y i) +1 qi) Γ ) log f y i) +1 ; µi) +1, σi) ) )) 1 σ i) log Γ y i) ) ) log β i) + log σ i) expq i) β i) ) + 1 )} Γy i) ). σ i) )) y i) +1 log σi) Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

14 Nework Inference Minimizaion w.r.. σ and β Minimizaion of g wih respec o σ i) i = 1,, n): m 1 =1 { ) 1 F σ i) F y i) ) ) σ i) + log 1 + σ i) y i) exp q i) β i))) σ i) y i) σ i) exp q i) β i)) = 0 where Fu) = log Γu)/ u is he Digamma funcion. g is convex bu no differeniable wih respec o β i). So, we can use Fas Ieraive Shrinkage-Thresholding Algorihm FISTA) [Beck e al., 2009] o do minimizaion w.r. β i) i = 1,, n). Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

15 Nework Inference Minimizaion w.r.. σ and β Minimizaion of g wih respec o σ i) i = 1,, n): m 1 =1 { ) 1 F σ i) F y i) ) ) σ i) + log 1 + σ i) y i) exp q i) β i))) σ i) y i) σ i) exp q i) β i)) = 0 where Fu) = log Γu)/ u is he Digamma funcion. g is convex bu no differeniable wih respec o β i). So, we can use Fas Ieraive Shrinkage-Thresholding Algorihm FISTA) [Beck e al., 2009] o do minimizaion w.r. β i) i = 1,, n). Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

16 Nework Inference How o choose λ? Choice of λ criically affecs he performance Small λ: dense nework, and inferring many unnecessary connecions Very large λ: very sparse nework, and high probabiliy of missing he real connecions We use he popular BIC mehod, and choose he λ which minimizes Bayesian Informaion Crierion BIC) n { } 2lβ i), σ i) ) + k i) logm 1) i=1 where k i) = β i) 0 i = 1,, n). Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

17 Nework Inference How o choose λ? Choice of λ criically affecs he performance Small λ: dense nework, and inferring many unnecessary connecions Very large λ: very sparse nework, and high probabiliy of missing he real connecions We use he popular BIC mehod, and choose he λ which minimizes Bayesian Informaion Crierion BIC) n { } 2lβ i), σ i) ) + k i) logm 1) i=1 where k i) = β i) 0 i = 1,, n). Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

18 Nework Inference Nework Inference Algorihm Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

19 Simulaion resuls Simulaed daa 50 randomly generaed neworks wih n = 10, and m = 15 ROC curve for many differen λ from very small high TPR and high FPR) o very large low TPR and low FPR) Red diamond is he λ achieved from BIC, making saisfacory performance Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

20 Simulaion resuls Simulaed daa cond) a) True connecions b) False connecions c) Hamming disance d) MSE Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

21 Simulaion resuls Tes on he real RNA-Seq daa se We consider he GRN during he gu formaion of he sarle sea anemone Nemaosella vecensis [Boman e al., 2014]. This nework has four genes foxa, snail, wis, and β-caenin: β-ca foxa sna wi Figure : The GRN for he developing Nemaosella vecensis gu, adaped from [Boman e al., 2014] Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

22 Simulaion resuls Tes on he real RNA-Seq daa se cond) We applied our algorihm o he RNA-Seq ime series daa of hese four genes, available in [Helm e al., 2013] This daa se has he expression levels a 6 ime poins 2h, 7h, 12h, 24h, 5d, and 10d. β-ca foxa sna wi Figure : Inferred nework by our algorihm, which capures all he connecions of he real nework excep he self-loop. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

23 Conclusions Conclusions and fuure works We sudied he inference of GRNs using he RNA-Seq ime series daa. We modeled he raw coun daa by an NB disribuion. We assumed a log-linear model for he emporal evoluion of he gene expressions. We ook advanage of sparsiy in he GRNs, and incorporaed an l 1 penaly o conrol he number of connecions. The resulan algorihm demonsraes a good performance boh in he synheic and real biological daa. As a fuure work, we can consider arbirary ime-delays, and exend he curren model o infer ime-lagged regulaory ineracions. Time varian connecions among he genes can be analyzed as a fuure work as well. Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series December 16, / 18

24 Thank you Any quesions?

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Sliding Mode Controller for Unstable Systems

Sliding Mode Controller for Unstable Systems S. SIVARAMAKRISHNAN e al., Sliding Mode Conroller for Unsable Sysems, Chem. Biochem. Eng. Q. 22 (1) 41 47 (28) 41 Sliding Mode Conroller for Unsable Sysems S. Sivaramakrishnan, A. K. Tangirala, and M.

More information

Internet Traffic Modeling for Efficient Network Research Management Prof. Zhili Sun, UniS Zhiyong Liu, CATR

Internet Traffic Modeling for Efficient Network Research Management Prof. Zhili Sun, UniS Zhiyong Liu, CATR Inerne Traffic Modeling for Efficien Nework Research Managemen Prof. Zhili Sun, UniS Zhiyong Liu, CATR UK-China Science Bridge Workshop 13-14 December 2011, London Ouline Inroducion Background Classical

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

HPCFinance research project 8

HPCFinance research project 8 HPCFinance research projec 8 Financial models, volailiy risk, and Bayesian algorihms Hanxue Yang Tampere Universiy of Technology March 14, 2016 Research projec 8 12/2012 11/2015, Tampere Universiy of Technology,

More information

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research Graphical Even Models and Causal Even Models Chris Meek Microsof Research Graphical Models Defines a join disribuion P X over a se of variables X = X 1,, X n A graphical model M =< G, Θ > G =< X, E > is

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel Waveform Transmission Mehod, A New Waveform-relaxaion Based Algorihm o Solve Ordinary Differenial Equaions in Parallel Fei Wei Huazhong Yang Deparmen of Elecronic Engineering, Tsinghua Universiy, Beijing,

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Orientation. Connections between network coding and stochastic network theory. Outline. Bruce Hajek. Multicast with lost packets

Orientation. Connections between network coding and stochastic network theory. Outline. Bruce Hajek. Multicast with lost packets Connecions beween nework coding and sochasic nework heory Bruce Hajek Orienaion On Thursday, Ralf Koeer discussed nework coding: coding wihin he nework Absrac: Randomly generaed coded informaion blocks

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Lecture 4: November 13

Lecture 4: November 13 Compuaional Learning Theory Fall Semeser, 2017/18 Lecure 4: November 13 Lecurer: Yishay Mansour Scribe: Guy Dolinsky, Yogev Bar-On, Yuval Lewi 4.1 Fenchel-Conjugae 4.1.1 Moivaion Unil his lecure we saw

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN Inernaional Journal of Applied Economerics and Quaniaive Sudies. Vol.1-3(004) STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN 001-004 OBARA, Takashi * Absrac The

More information

Crossing the Bridge between Similar Games

Crossing the Bridge between Similar Games Crossing he Bridge beween Similar Games Jan-David Quesel, Marin Fränzle, and Werner Damm Universiy of Oldenburg, Deparmen of Compuing Science, Germany CMACS Seminar CMU, Pisburgh, PA, USA 2nd December

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 RL Lecure 7: Eligibiliy Traces R. S. Suon and A. G. Baro: Reinforcemen Learning: An Inroducion 1 N-sep TD Predicion Idea: Look farher ino he fuure when you do TD backup (1, 2, 3,, n seps) R. S. Suon and

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency)

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency) Foundaions of Saisical Inference Julien Beresycki Lecure 2 - Sufficiency, Facorizaion, Minimal sufficiency Deparmen of Saisics Universiy of Oxford MT 2016 Julien Beresycki (Universiy of Oxford BS2a MT

More information

A variational radial basis function approximation for diffusion processes.

A variational radial basis function approximation for diffusion processes. A variaional radial basis funcion approximaion for diffusion processes. Michail D. Vreas, Dan Cornford and Yuan Shen {vreasm, d.cornford, y.shen}@ason.ac.uk Ason Universiy, Birmingham, UK hp://www.ncrg.ason.ac.uk

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani Feb 6-8, 208 Recen Developmens In Evoluionary Daa Assimilaion And Model Uncerainy Esimaion For Hydrologic Forecasing Hamid Moradkhani Cener for Complex Hydrosysems Research Deparmen of Civil, Consrucion

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Right tail. Survival function

Right tail. Survival function Densiy fi (con.) Lecure 4 The aim of his lecure is o improve our abiliy of densiy fi and knowledge of relaed opics. Main issues relaed o his lecure are: logarihmic plos, survival funcion, HS-fi mixures,

More information

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation Mos Probable Phase Porrais of Sochasic Differenial Equaions and Is Numerical Simulaion Bing Yang, Zhu Zeng and Ling Wang 3 School of Mahemaics and Saisics, Huazhong Universiy of Science and Technology,

More information

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol Applied Mahemaical Sciences, Vol. 7, 013, no. 16, 663-673 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.1988/ams.013.39499 Pade and Laguerre Approximaions Applied o he Acive Queue Managemen Model of Inerne

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Hardware-Software Co-design of Slimmed Optical Neural Networks

Hardware-Software Co-design of Slimmed Optical Neural Networks Hardware-Sofware Co-design of Slimmed Opical Neural Neworks Zheng Zhao 1, Derong Liu 1, Meng Li 1, Zhoufeng Ying 1, Lu Zhang 2, Biying Xu 1, Bei Yu 2, Ray Chen 1, David Pan 1 The Universiy of Texas a Ausin

More information

III. Module 3. Empirical and Theoretical Techniques

III. Module 3. Empirical and Theoretical Techniques III. Module 3. Empirical and Theoreical Techniques Applied Saisical Techniques 3. Auocorrelaion Correcions Persisence affecs sandard errors. The radiional response is o rea he auocorrelaion as a echnical

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays Applied Mahemaics 4 59-64 hp://dx.doi.org/.46/am..4744 Published Online July (hp://www.scirp.org/ournal/am) Bifurcaion Analysis of a Sage-Srucured Prey-Predaor Sysem wih Discree and Coninuous Delays Shunyi

More information

ST2352. Stochastic Processes constructed via Conditional Simulation. 09/02/2014 ST2352 Week 4 1

ST2352. Stochastic Processes constructed via Conditional Simulation. 09/02/2014 ST2352 Week 4 1 ST35 Sochasic Processes consruced via Condiional Simulaion 09/0/014 ST35 Week 4 1 Sochasic Processes consruced via Condiional Simulaion Markov Processes Simulaing Random Tex Google Sugges n grams Random

More information

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011 2229-12 School and Workshop on Marke Microsrucure: Design, Efficiency and Saisical Regulariies 21-25 March 2011 Some mahemaical properies of order book models Frederic ABERGEL Ecole Cenrale Paris Grande

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Semi-Competing Risks on A Trivariate Weibull Survival Model

Semi-Competing Risks on A Trivariate Weibull Survival Model Semi-Compeing Risks on A Trivariae Weibull Survival Model Jenq-Daw Lee Graduae Insiue of Poliical Economy Naional Cheng Kung Universiy Tainan Taiwan 70101 ROC Cheng K. Lee Loss Forecasing Home Loans &

More information

Stochastic Model Predictive Control for Gust Alleviation during Aircraft Carrier Landing

Stochastic Model Predictive Control for Gust Alleviation during Aircraft Carrier Landing Ouline Moivaion Sochasic formulaion Sochasic Model Predicive Conrol for Gus Alleviaion during Aircraf Carrier Landing Aircraf and gus modeling Resuls Deparmen of Mechanical and Aerospace Engineering Rugers,

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

Resource Allocation in Visible Light Communication Networks NOMA vs. OFDMA Transmission Techniques

Resource Allocation in Visible Light Communication Networks NOMA vs. OFDMA Transmission Techniques Resource Allocaion in Visible Ligh Communicaion Neworks NOMA vs. OFDMA Transmission Techniques Eirini Eleni Tsiropoulou, Iakovos Gialagkolidis, Panagiois Vamvakas, and Symeon Papavassiliou Insiue of Communicaions

More information

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand Excel-Based Soluion Mehod For The Opimal Policy Of The Hadley And Whiin s Exac Model Wih Arma Demand Kal Nami School of Business and Economics Winson Salem Sae Universiy Winson Salem, NC 27110 Phone: (336)750-2338

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 CpS 570 Machine Learning School of EECS Washingon Sae Universiy CpS 570 - Machine Learning 1 Form of underlying disribuions unknown Bu sill wan o perform classificaion and regression Semi-parameric esimaion

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite American Journal of Operaions Research, 08, 8, 8-9 hp://wwwscirporg/journal/ajor ISSN Online: 60-8849 ISSN Prin: 60-8830 The Opimal Sopping Time for Selling an Asse When I Is Uncerain Wheher he Price Process

More information

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI 3rd Inernaional Conference on Advances in Elecrical and Elecronics Engineering (ICAEE'4) Feb. -, 4 Singapore Mean Square Projecion Error Gradien-based Variable Forgeing Facor FAPI Young-Kwang Seo, Jong-Woo

More information

A Generalized Poisson-Akash Distribution: Properties and Applications

A Generalized Poisson-Akash Distribution: Properties and Applications Inernaional Journal of Saisics and Applicaions 08, 8(5): 49-58 DOI: 059/jsaisics0808050 A Generalized Poisson-Akash Disribuion: Properies and Applicaions Rama Shanker,*, Kamlesh Kumar Shukla, Tekie Asehun

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by an IBM faculy

More information

On-line Adaptive Optimal Timing Control of Switched Systems

On-line Adaptive Optimal Timing Control of Switched Systems On-line Adapive Opimal Timing Conrol of Swiched Sysems X.C. Ding, Y. Wardi and M. Egersed Absrac In his paper we consider he problem of opimizing over he swiching imes for a muli-modal dynamic sysem when

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Computer Simulates the Effect of Internal Restriction on Residuals in Linear Regression Model with First-order Autoregressive Procedures

Computer Simulates the Effect of Internal Restriction on Residuals in Linear Regression Model with First-order Autoregressive Procedures MPRA Munich Personal RePEc Archive Compuer Simulaes he Effec of Inernal Resricion on Residuals in Linear Regression Model wih Firs-order Auoregressive Procedures Mei-Yu Lee Deparmen of Applied Finance,

More information

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear In The name of God Lecure4: Percepron and AALIE r. Majid MjidGhoshunih Inroducion The Rosenbla s LMS algorihm for Percepron 958 is buil around a linear neuron a neuron ih a linear acivaion funcion. Hoever,

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Time Series Test of Nonlinear Convergence and Transitional Dynamics. Terence Tai-Leung Chong

Time Series Test of Nonlinear Convergence and Transitional Dynamics. Terence Tai-Leung Chong Time Series Tes of Nonlinear Convergence and Transiional Dynamics Terence Tai-Leung Chong Deparmen of Economics, The Chinese Universiy of Hong Kong Melvin J. Hinich Signal and Informaion Sciences Laboraory

More information

An random variable is a quantity that assumes different values with certain probabilities.

An random variable is a quantity that assumes different values with certain probabilities. Probabiliy The probabiliy PrA) of an even A is a number in [, ] ha represens how likely A is o occur. The larger he value of PrA), he more likely he even is o occur. PrA) means he even mus occur. PrA)

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XI Control of Stochastic Systems - P.R. Kumar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XI Control of Stochastic Systems - P.R. Kumar CONROL OF SOCHASIC SYSEMS P.R. Kumar Deparmen of Elecrical and Compuer Engineering, and Coordinaed Science Laboraory, Universiy of Illinois, Urbana-Champaign, USA. Keywords: Markov chains, ransiion probabiliies,

More information

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function STA 114: Saisics Noes 2. Saisical Models and he Likelihood Funcion Describing Daa & Saisical Models A physicis has a heory ha makes a precise predicion of wha s o be observed in daa. If he daa doesn mach

More information

Understanding the asymptotic behaviour of empirical Bayes methods

Understanding the asymptotic behaviour of empirical Bayes methods Undersanding he asympoic behaviour of empirical Bayes mehods Boond Szabo, Aad van der Vaar and Harry van Zanen EURANDOM, 11.10.2011. Conens 2/20 Moivaion Nonparameric Bayesian saisics Signal in Whie noise

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad,

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad, GINI MEAN DIFFEENCE AND EWMA CHATS Muhammad iaz, Deparmen of Saisics, Quaid-e-Azam Universiy Islamabad, Pakisan. E-Mail: riaz76qau@yahoo.com Saddam Akbar Abbasi, Deparmen of Saisics, Quaid-e-Azam Universiy

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS Basic Economerics, Gujarai and Porer CHAPTER 7: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS 7. (a) False. Economeric models are dynamic if hey porray he ime pah of he dependen

More information

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2 Soluions o he Exam Digial Communicaions I given on he 11h of June 2007 Quesion 1 (14p) a) (2p) If X and Y are independen Gaussian variables, hen E [ XY ]=0 always. (Answer wih RUE or FALSE) ANSWER: False.

More information

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP Coninuous Linear Programming. Separaed Coninuous Linear Programming Bellman (1953) max c () u() d H () u () + Gsusds (,) () a () u (), < < CLP (Danzig, yndall, Grinold, Perold, Ansreicher 6's-8's) Anderson

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

arxiv: v1 [cs.dc] 8 Mar 2012

arxiv: v1 [cs.dc] 8 Mar 2012 Consensus on Moving Neighborhood Model of Peerson Graph arxiv:.9v [cs.dc] 8 Mar Hannah Arend and Jorgensen Jos Absrac In his paper, we sudy he consensus problem of muliple agens on a kind of famous graph,

More information

An Adaptive Generalized Likelihood Ratio Control Chart for Detecting an Unknown Mean Pattern

An Adaptive Generalized Likelihood Ratio Control Chart for Detecting an Unknown Mean Pattern An adapive GLR conrol char... 1/32 An Adapive Generalized Likelihood Raio Conrol Char for Deecing an Unknown Mean Paern GIOVANNA CAPIZZI and GUIDO MASAROTTO Deparmen of Saisical Sciences Universiy of Padua

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by: Naional

More information

What is maximum Likelihood? History Features of ML method Tools used Advantages Disadvantages Evolutionary models

What is maximum Likelihood? History Features of ML method Tools used Advantages Disadvantages Evolutionary models Wha i maximum Likelihood? Hiory Feaure of ML mehod Tool ued Advanage Diadvanage Evoluionary model Maximum likelihood mehod creae all he poible ree conaining he e of organim conidered, and hen ue he aiic

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information