Subsidence and Sinkholes

Size: px
Start display at page:

Download "Subsidence and Sinkholes"

Transcription

1 Subsidence and Sinkholes This section provides a profile and vulnerability assessment for the subsidence and sinkhole hazard for the Armstrong County Hazard Mitigation Plan (HMP). Two common causes of subsidence in Pennsylvania that impact Armstrong County are (1) dissolution of carbonate rock, such as limestone or dolomite; and (2) mining activity. In the first case, water passing through naturally occurring fractures and bedding planes dissolves bedrock leaving voids below the surface. Eventually, overburden on top of the voids collapses, leaving surface depressions resulting in karst topography. Characteristic structures associated with karst topography include sinkholes, linear depressions and caves. Often, subsurface solution of limestone will not result in the immediate formation of karst features. Collapse sometimes occurs only after a large amount of activity, or when a heavy burden is placed on the overlying material. Areas of the County underlain by carbonate rock may be more susceptible to sinkholes as they are common where this type of rock is below the surface. As the rock dissolves, spaces and caverns develop underground (U.S. Geological Survey [USGS] 2018). Human activity can also result in subsidence or sinkhole events. Leaking water pipes or structures that convey storm-water runoff may also result in areas of subsidence as the water dissolves substantial amounts of rock over time. Poorly-managed stormwater has particularly been an exacerbating factor in subsidence events in Cumberland County, Lebanon County, and Palmyra. In some cases, construction, land grading, or earthmoving activities that cause changes in stormwater flow can trigger sinkhole events (Pennsylvania Emergency Management Agency [PEMA] 2018). Subsidence or sinkhole events may also occur in the presence of mining activity, even in areas where bedrock is not necessarily conducive to their formation. Mining activity is concentrated in the southwestern region of the state, as well as Schuylkill, Northumberland, and Carbon Counties. Because subsurface (i.e., underground) extraction of materials such as oil, gas, coal, metal ores (i.e., copper, iron, and zinc), clay, shale, limestone, or water may result in slow-moving or abrupt shifts in the ground surface, these areas have a higher potential to be impacted by sinkholes and subsidence (PEMA 2018). Sinkholes often develop where the cover above a mine is thin. Piggott and Eynon (1978) indicated that sinkhole development normally occurs where the interval to the ground surface is less than 3 to 5 times the thickness of the extracted seam and the maximum interval is up to ten times the thickness of the extracted seam. In western Pennsylvania, most sinkholes develop where the soil and rock above a mine are less than 50 feet thick. A study of subsidence in the Pittsburgh area revealed that the majority of sinkholes, which constituted about 95 percent of all reported subsidence incidents, occurred on sites located less than 60 feet above mine level (PEMA 2018). The following sections discuss the location and extent, range of magnitude, previous occurrence, future occurrence, and vulnerability assessment associated with the subsidence and sinkhole hazard for Armstrong County Location and Extent Approximately 2.5 percent of Armstrong County (3.6 square miles) is underlain by carbonate bedrock. Figure shows the distribution of carbonate rock areas in Armstrong County. The following municipalities have identified near-surface limestone: Kiskiminetas Township South Bend Township Armstrong County Hazard Mitigation Plan

2 Figure Armstrong County Carbonate Bedrock Geology Source: Pennsylvania Bureau of Topographic and Geologic Survey 2001 Armstrong County Hazard Mitigation Plan

3 Figure shows the approximate location of abandoned mines and land hazards created by past coal mining; information is based on a subset of data contained in the Office of Surface Mining Reclamation and Enforcement (OSMRE) Abandoned Mine Land Inventory. In addition, detailed maps of abandoned mines are available for 649 mines in Armstrong County through the National Mine Map Repository (NMMR), maintained by OSMRE. The NMMR contains over 183,000 maps from the 1790s to the present day, providing information for both surface and underground mines throughout the United States (OSMRE 2018). Armstrong County Hazard Mitigation Plan

4 Figure Abandoned Mines in Armstrong County Source: Pennsylvania Department of Environmental Protection (PADEP) 2014 Note: Red areas indicate abandoned mines that have been identified as subsidence areas. Armstrong County Hazard Mitigation Plan

5 Range of Magnitude No two subsidence areas or sinkholes are exactly alike. Variations in size and shape, time period under which they occur (i.e., gradually or abruptly), and their proximity to development ultimately determines the magnitude of damage incurred. Events could result in minor elevation changes or deep, gaping holes in the ground surface. Subsidence and sinkhole events can cause severe damage in urban environments, although gradual events can be addressed before significant damage occurs. Primarily, problems related to subsidence include the disruption of utility services and damages to private and public property including buildings, roads, and underground infrastructure. If long-term subsidence or sinkhole formation is not recognized and mitigation measures are not implemented, fractures or complete collapse of building foundations and roadways may result (PEMA 2018). Damage from mine subsidence can impact structures, surface water and groundwater, and wells and springs (PADEP 1999) Past Occurrence According to the USGS, Pennsylvania is one of the top seven states most likely to receive damage from sinkholes. The other states include Florida, Texas, Alabama, Missouri, Kentucky, and Tennessee. Neither the Pennsylvania Department of Conservation and Natural Resources (PA DCNR) (PA DCNR 2018) nor the 2018 Pennsylvania State HMP (PEMA 2018) show any sinkholes in Armstrong County Future Occurrence Although sinkhole occurrence will continue to be a possibility in Armstrong County, the probability of a sinkhole or subsidence event is difficult to predict because of the low number of previous events. Areas to monitor for future sinkhole and subsidence events based on their geologic bedrock are listed above in Section The identified hazards of concern for Armstrong County were ranked for relative risk in Section 4.4 of the HMP. The probability of occurrence, or likelihood of the event, is one parameter used for ranking hazards. Based on historical records and reference to the Pennsylvania State Hazard Mitigation Plan, the probability of occurrence for subsidence and sinkhole events in the County is considered possible. Section 4.4 includes further information on PEMA s risk factor methodology and the risk factors used to determine each hazard s risk rank Vulnerability Assessment To understand risk, a community must evaluate the assets that are exposed or vulnerable in the identified hazard area. This section discusses the potential impact of the subsidence and sinkhole hazard on Armstrong County in the following subsections: Overview of vulnerability Data and methodology used for the evaluation Impact on (1) life, health, and safety; (2) general building stock; (3) critical facilities; (4) economy; (5) the environment; and (5) future growth and development Effects of climate change on vulnerability Overview of Vulnerability Table summarizes the municipalities that are potentially vulnerable to sinkholes and subsidence events based on the presence of limestone bedrock and/or abandoned mines. Armstrong County Hazard Mitigation Plan

6 Table Municipalities Vulnerable to Sinkholes and Subsidence Events Municipality Carbonate Rock Abandoned Mine Apollo Borough Applewold Borough Atwood Borough Abandoned Mine noted as Subsidence Area Bethel Township Boggs Township Bradys Bend Township Burrell Township Cadogan Township Cowanshannock Township Dayton Borough East Franklin Township Elderton Borough Ford City Borough Ford Cliff Borough Freeport Borough Gilpin Township Hovey Township Kiskiminetas Township Kittanning Borough Kittanning Township Leechburg Borough Madison Township Mahoning Township Manor Township Manorville Borough North Apollo Borough North Buffalo Township Parker City Parks Township Perry Township Pine Township Plumcreek Township Rayburn Township Redbank Township Rural Valley Borough South Bend Township South Bethlehem Borough South Buffalo Township Sugarcreek Township Valley Township Armstrong County Hazard Mitigation Plan

7 Abandoned Mine noted as Municipality Carbonate Rock Abandoned Mine Subsidence Area Washington Township Wayne Township West Franklin Township West Kittanning Borough Worthington Borough Source: Pennsylvania Bureau of Topographic and Geologic Survey 2001; PADEP 2014 Data and Methodology Unlike the flood, wind, and earthquake hazards, no standard loss estimation models or methodologies exist for the subsidence and sinkhole hazard. To estimate the County s vulnerability, the portion of the region underlain by limestone bedrock is considered exposed to natural subsidence and sink holes. To determine the assets that are exposed to this hazard, available and appropriate bedrock geology spatial data generated by the Pennsylvania Bureau of Topographic and Geologic Survey were overlaid upon the assets. The limitations of this analysis are recognized and are only used to provide a general estimate. Over time, additional data will be collected to allow better analysis for this hazard. Available information reviewed and a preliminary assessment are provided in the sections below. Impact on Life, Health, and Safety To estimate the population exposed to the hazard, the approximate hazard area (limestone bedrock) was overlaid upon the 2010 U.S. Census population data. The Census blocks with their center (centroid) within the boundary were used to calculate the estimated population exposed to this hazard. Please note U.S. Census blocks do not align with the limestone bedrock polygon in the spatial data, and these estimates are for planning purposes only. Only two municipalities have populations exposed to the limestone; 30 people in Kiskiminetas Township (less than 1 percent of the total population) and 22 people in South Bend Township (approximately 1.9 percent of the total population) are exposed to the hazard area. Impact on General Building Stock As noted above, no standard loss estimation models exist for the subsidence and sinkhole hazard. In general, the built environment located on limestone is exposed to this hazard. In an attempt to estimate the general building stock potentially vulnerable to this hazard, the associated building replacement values (buildings and contents) were determined for the identified Census blocks within the approximate hazard area. The Countyprovided spatial layer for building structures was also used to determine the number of structures located within the hazard area. In Kiskiminetas Township, approximately six buildings with an associated replacement cost value of $3.3 million are exposed to the hazard area (less than 1 percent of the total building stock). In South Bend Township, approximately seven buildings with an associated replacement cost value of $2.9 million are exposed to the hazard area (approximately 1.3 percent of the total building count and approximately 2.5 percent of the total replacement cost value). Impact on Critical Facilities There are no critical facilities exposed to the subsidence and sinkhole hazard in Armstrong County. Impact on the Economy Subsidence and sinkholes can severely impact roads and infrastructure. As noted earlier, limestone formations underlie approximately 2.5 percent of the County. However, there are no major roadways in the County located Armstrong County Hazard Mitigation Plan

8 above limestone bedrock. It is not possible to estimate potential future economic losses caused by subsidence and sinkhole events at this time. Impact on the Environment Sinkholes can have negative effects on local groundwater. Groundwater in limestone and other similar carbonate rock formations can be easily polluted, because water moves readily from the earth s surface down through solution cavities and fractures, thus undergoing very little filtration. Sinkholes have the potential to cause damage to chemical infrastructure such as pipelines and facilities that store or transport hazardous materials. The result from a breach of one of these systems may result in a hazardous materials release and damage the environment. Contaminants such as sewage, fertilizers, herbicides, pesticides, or industrial products are of concern. Vegetation is usually damaged during abrupt subsidence events. However, regrowth takes place over time (PEMA 2013). Future Growth and Development Areas targeted for potential future growth and development in the next 5 to 10 years have been identified across the County at the municipal level and are described in Section 4.4 of this Plan. New development occurring within the identified hazard areas may be exposed to risks associated with the subsidence and sinkhole hazard. Effect of Climate Change on Vulnerability Climate change factors such as an extended growing season, higher temperatures, and the possibility of more intense, less frequent summer rainfall may lead to changes in water resource availability. Sinkholes are caused by changes to the water balance of an area including over-withdrawal of groundwater, diverting surface water from a large area and concentrating it in a single point, artificially creating ponds of surface water, and drilling new water wells will cause sinkholes. These actions can also serve to accelerate the natural processes of bedrock degradation, which can have a direct impact on sinkhole creation. The climate of Pennsylvania is already changing and will continue to change over the course of this century. Since 1900, temperatures in the northeastern United States have increased an average of 1.5 F. The majority of this warming has occurred since In terms of winter temperatures, the northeastern United States has seen an increase in the average temperature by 4 F since 1970 (Northeast Climate Impacts Assessment [NECIA] 2007). The projection in the increase of average temperatures may lead to an increase in the frequency of droughts. Sinkhole activity intensifies in some karst areas and increases during periods of drought. With an increase in drought periods, the number of sinkholes can increase (Linares et al. 2016). The potential effects of climate change on Armstrong County s vulnerability to subsidence and sinkhole events will need to be considered as a greater understanding of regional climate change impacts develop. Armstrong County Hazard Mitigation Plan

The Richter Scale. Micro Less than 2.0 Microearthquakes, not felt. About 8,000/day

The Richter Scale. Micro Less than 2.0 Microearthquakes, not felt. About 8,000/day Geologic Hazards General s are very rare in Pennsylvania and have caused very little damage and no reported injuries or casualties. Since the Commonwealth is not on an active fault, the earthquakes that

More information

Geologic Hazards. Montour County Multi-jurisdictional. General. Earthquake

Geologic Hazards. Montour County Multi-jurisdictional. General. Earthquake Geologic Hazards General s are very rare in Pennsylvania and have caused little damage with no reported injuries or causalities. s that do occur in Pennsylvania happen deep within the Earth s crust. This

More information

Multi-Jurisdictional Hazard Mitigation Plan. Table C.10 The Richter Scale. Descriptor Richter Magnitude Earthquake Effects

Multi-Jurisdictional Hazard Mitigation Plan. Table C.10 The Richter Scale. Descriptor Richter Magnitude Earthquake Effects Geologic Hazards Earthquake Earthquakes are very rare in Pennsylvania and have caused little damage, with no reported injuries or causalities. Earthquakes that do occur in Pennsylvania happen deep within

More information

3/15/17. #22 - Subsidence - Rapid Sinkhole at Winter Park, FL in Rapid Subsidence Defined and Illustrated

3/15/17. #22 - Subsidence - Rapid Sinkhole at Winter Park, FL in Rapid Subsidence Defined and Illustrated Web Exercise #3 (Volcanoes) Late- closing at 1:00 today Web Exercise #4 (Landslides) DUE WEDNESDAY Use Hazard City to answer matching question in Part II #22 - Subsidence - Rapid Sinkhole at Winter Park,

More information

Land Subsidence. Land subsidence is defined as the lowering of the land surface.

Land Subsidence. Land subsidence is defined as the lowering of the land surface. Land Subsidence Land subsidence is defined as the lowering of the land surface. Many different factors can cause the land surface to subside. Subsidence can occur rapidly due to: a sinkhole or under ground

More information

Utility Interruption

Utility Interruption 4.3.15 Utility Interruption This section describes the location and extent, range of magnitude, past occurrence, future occurrence, and vulnerability assessment for the utility interruption hazard for

More information

SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE

SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE CHAPTER 9 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE La Conchita slide January 10, 2005 Triggered by heavy rainfall, reactivation along an older landslide surface (35,000 years ago, 6000 years ago, and

More information

5.2 IDENTIFICATION OF HAZARDS OF CONCERN

5.2 IDENTIFICATION OF HAZARDS OF CONCERN 5.2 IDENTIFICATION OF HAZARDS OF CONCERN 2016 HMP Update Changes The 2011 HMP hazard identification was presented in Section 3. For the 2016 HMP update, the hazard identification is presented in subsection

More information

9/13/2011 CHAPTER 9 AND SUBSIDENCE. Case History: La Conchita Landslide. Introduction

9/13/2011 CHAPTER 9 AND SUBSIDENCE. Case History: La Conchita Landslide. Introduction CHAPTER 9 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE Case History: La Conchita Landslide La Conchita: small coastal community 80 km (50 mi) northwest of Los Angeles Landslide occurred on January 10, 2005

More information

SINKHOLES WHERE AND WHY THEY FORM

SINKHOLES WHERE AND WHY THEY FORM SINKHOLES WHERE AND WHY THEY FORM In the wake of the sinkhole that developed beneath a Florida man s bedroom, tragically killing the man as he was sucked into the earth, many people are searching for information.

More information

9/23/2013. Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE. Case History: La Conchita Landslide

9/23/2013. Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE. Case History: La Conchita Landslide Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE Landslide and other ground failures posting substantial damage and loss of life In U.S., average 25 50 deaths; damage more than $3.5 billion

More information

Prepared By: John Blair Sean Donahue Celeste Hoffman Kimberly Klinkers Megan Slater

Prepared By: John Blair Sean Donahue Celeste Hoffman Kimberly Klinkers Megan Slater Prepared By: John Blair Sean Donahue Celeste Hoffman Kimberly Klinkers Megan Slater Green River Basin Location Green River Basin Stratigraphic Correlation Chart showing Study Map Units Sample of Existing

More information

Subsidence is the sinking or collapse of a portion of the land surface. The movement involved in subsidence is essentially vertical; little or no

Subsidence is the sinking or collapse of a portion of the land surface. The movement involved in subsidence is essentially vertical; little or no 1 Subsidence is the sinking or collapse of a portion of the land surface. The movement involved in subsidence is essentially vertical; little or no horizontal motion is involved. It may take the form of

More information

5.2 IDENTIFICATION OF HAZARDS OF CONCERN

5.2 IDENTIFICATION OF HAZARDS OF CONCERN 5.2 IDENTIFICATION OF HAZARDS OF CONCERN 2016 HMP Update Changes The 2011 HMP hazard identification was presented in Section 3. For the 2016 HMP update, the hazard identification is presented in subsection

More information

Florida s Karst Geology

Florida s Karst Geology Florida s Karst Geology Orange Creek Basin Interagency Working Group Public Workshop, November 5 th, 2015 Harley Means, P.G. Assistant State Geologist Florida Geological Survey Karst Karst a type of topography

More information

Impact : Changes to Existing Topography (Less than Significant)

Impact : Changes to Existing Topography (Less than Significant) 4.2 Land Resources 4.2.1 Alternative A Proposed Action Impact 4.2.1-1: Changes to Existing Topography (Less than Significant) Development of the project site would involve grading and other earthwork as

More information

KENTUCKY HAZARD MITIGATION PLAN RISK ASSESSMENT

KENTUCKY HAZARD MITIGATION PLAN RISK ASSESSMENT KENTUCKY HAZARD MITIGATION PLAN RISK ASSESSMENT Presentation Outline Development of the 2013 State Hazard Mitigation Plan Risk Assessment Determining risk assessment scale Census Data Aggregation Levels

More information

5.2. IDENTIFICATION OF NATURAL HAZARDS OF CONCERN

5.2. IDENTIFICATION OF NATURAL HAZARDS OF CONCERN 5.2. IDENTIFICATION OF NATURAL HAZARDS OF CONCERN To provide a strong foundation for mitigation strategies considered in Sections 6 and 9, County considered a full range of natural hazards that could impact

More information

5.2 IDENTIFICATION OF HAZARDS OF CONCERN

5.2 IDENTIFICATION OF HAZARDS OF CONCERN 5.2 IDENTIFICATION OF HAZARDS OF CONCERN 2015 HMP Update Changes The 2010 HMP hazard identification was presented in Section 6. For the 2015 HMP update, the hazard identification is presented in subsection

More information

CLIMATE READY BOSTON. Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016

CLIMATE READY BOSTON. Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016 CLIMATE READY BOSTON Sasaki Steering Committee Meeting, March 28 nd, 2016 Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016 WHAT S IN STORE FOR BOSTON S CLIMATE?

More information

KARST SUBSIDENCE AND ASSOCIATED RISK

KARST SUBSIDENCE AND ASSOCIATED RISK URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE High Performance Centre, University of Pretoria 23 24 January 2014 KARST SUBSIDENCE AND ASSOCIATED RISK THARINA OOSTHUIZEN COUNCIL FOR GEOSCIENCE WHAT IS DOLOMITE

More information

They include earthquakes, volcanic eruptions, floods, landslides, and other processes and occurrences. They are included in the broader concept of.

They include earthquakes, volcanic eruptions, floods, landslides, and other processes and occurrences. They are included in the broader concept of. They include earthquakes, volcanic eruptions, floods, landslides, and other processes and occurrences. They are included in the broader concept of. In general, natural processes are labeled hazardous only

More information

EMERGENCY INVESTIGATION OF EXTREMELY LARGE SINKHOLES, MAOHE, GUANGXI, CHINA

EMERGENCY INVESTIGATION OF EXTREMELY LARGE SINKHOLES, MAOHE, GUANGXI, CHINA EMERGENCY INVESTIGATION OF EXTREMELY LARGE SINKHOLES, MAOHE, GUANGXI, CHINA Mingtang Lei, Xiaozhen Jiang, Zhende Guan Institute of Karst Geology, CAGS, Guilin, China, mingtanglei@hotmail.com Yongli Gao

More information

The Favorability of Florida s Geology to Sinkhole Formation

The Favorability of Florida s Geology to Sinkhole Formation Florida Geological Survey The Favorability of Florida s Geology to Sinkhole Formation Clint Kromhout Alan Baker October 24, 2017 Subsidence Report Database Map of Subsidence Incident Reports taken from

More information

Consists of cliff face (free-face) and talus slope or upper convex slope, a straight slope and a lower concave slope

Consists of cliff face (free-face) and talus slope or upper convex slope, a straight slope and a lower concave slope 1 2 3 4 5 6 7 8 Introduction to Environmental Geology, 5e Chapter 10 Slope Processes, Landslides, and Subsidence Mass wasting: summary in haiku form Mass wasting: downhill quickly like an avalanche, or

More information

INVESTIGATIONS OF LARGE SCALE SINKHOLE COLLAPSES, LAIBIN, GUANGXI, CHINA

INVESTIGATIONS OF LARGE SCALE SINKHOLE COLLAPSES, LAIBIN, GUANGXI, CHINA INVESTIGATIONS OF LARGE SCALE SINKHOLE COLLAPSES, LAIBIN, GUANGXI, CHINA Yongli Gao Department of Geological Sciences, Center for Water Research, University of Texas at San Antonio, TX 78249, USA, yongli.gao@utsa.edu

More information

5.2 IDENTIFICATION OF HAZARDS OF CONCERN

5.2 IDENTIFICATION OF HAZARDS OF CONCERN 5.2 IDENTIFICATION OF HAZARDS OF CONCERN To provide a strong foundation for mitigation actions considered in Sections 6 and 9, County focused on considering a full range of s that could impact area, and

More information

Chapter 14: Groundwater. Fig 14.5b

Chapter 14: Groundwater. Fig 14.5b Chapter 14: Groundwater Fig 14.5b OBJECTIVES Recognize that groundwater is a vital source of accessible freshwater. Describe how groundwater forms below the water table. Explain the origin of aquifers,

More information

STUDY GUIDE FOR CONTENT MASTERY. Movement and Storage of Groundwater

STUDY GUIDE FOR CONTENT MASTERY. Movement and Storage of Groundwater Groundwater SECTION 10.1 Movement and Storage of Groundwater In your textbook, read about the hydrosphere, precipitation and groundwater, and groundwater storage. Use the following terms to complete the

More information

Lecture 15: Subsidence

Lecture 15: Subsidence Lecture 15: Subsidence Key Questions 1. How does removal of groundwater cause subsidence on a regional scale? 2. Under what conditions does a building sink into sediment? 3. Why do clays consolidate more

More information

Hydrogeology of Karst NE Wisconsin. Dr. Maureen A. Muldoon UW-Oshkosh Geology Department

Hydrogeology of Karst NE Wisconsin. Dr. Maureen A. Muldoon UW-Oshkosh Geology Department Hydrogeology of Karst NE Wisconsin Dr. Maureen A. Muldoon UW-Oshkosh Geology Department WI Bedrock Outline Karst Landscapes Existing WQ Data Flow in Karst Aquifers Overview of Silurian Aquifer Water Level

More information

Assumption Parish Hazard Mitigation Plan Update Public Meeting. September 1, 2015 Napoleonville, LA

Assumption Parish Hazard Mitigation Plan Update Public Meeting. September 1, 2015 Napoleonville, LA Assumption Parish Hazard Mitigation Plan Update Public Meeting September 1, 2015 Napoleonville, LA Agenda Hazard Mitigation Planning Process SDMI Staff Risk Assessment SDMI Staff Update on Previous/Current

More information

J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report

J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report Pursuant to: 40 CFR 257.60 40 CFR 257.61 40 CFR 257.62 40 CFR 257.63 40 CFR 257.64 Submitted to: Consumers Energy Company

More information

An Introduction to Field Explorations for Foundations

An Introduction to Field Explorations for Foundations An Introduction to Field Explorations for Foundations J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years

More information

3.18 GEOLOGY AND SOILS

3.18 GEOLOGY AND SOILS 3.18 GEOLOGY AND SOILS This section discusses geologic resource concerns as they relate to the environment, public safety, and project design both during construction and after completion of the project.

More information

RISK ASSESSMENT COMMUNITY PROFILE NATURAL HAZARDS COMMUNITY RISK PROFILES. Page 13 of 524

RISK ASSESSMENT COMMUNITY PROFILE NATURAL HAZARDS COMMUNITY RISK PROFILES. Page 13 of 524 RISK ASSESSMENT COMMUNITY PROFILE NATURAL HAZARDS COMMUNITY RISK PROFILES Page 13 of 524 Introduction The Risk Assessment identifies and characterizes Tillamook County s natural hazards and describes how

More information

West Baton Rouge Parish Hazard Mitigation Plan Update Public Meeting. September 9, 2015 Port Allen, LA

West Baton Rouge Parish Hazard Mitigation Plan Update Public Meeting. September 9, 2015 Port Allen, LA West Baton Rouge Parish Hazard Mitigation Plan Update Public Meeting September 9, 2015 Port Allen, LA Agenda Hazard Mitigation Planning Process SDMI Staff Risk Assessment SDMI Staff Update on Previous/Current

More information

MUG Presentation. Quantifying Habitat Disturbance by Marcellus Shale Drilling Activities in Pennsylvania. Introduction. Previous Work.

MUG Presentation. Quantifying Habitat Disturbance by Marcellus Shale Drilling Activities in Pennsylvania. Introduction. Previous Work. Quantifying Habitat Disturbance by Marcellus Shale Drilling Activities in Pennsylvania Dr. Chad Freed Elisabeth Powell Widener University MUG Presentation and Problem Statement GIS Data Acquisition and

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Soluble rocks. November Overview. What are soluble rocks? What are the hazards from soluble rocks? What is the cost to the UK economy?

Soluble rocks. November Overview. What are soluble rocks? What are the hazards from soluble rocks? What is the cost to the UK economy? Soluble rocks Overview Soluble (or karstic) rocks in the UK cause underground cavities leading to ground collapse, ranging from slight subsidence to dramatic sinkholes. These rocks, in increasing order

More information

Wisconsin s Hydrogeology: an overview

Wisconsin s Hydrogeology: an overview 2012 Soil and Water Conservation Society Conference Stevens Point, WI Feb 9, 2012 Wisconsin s Hydrogeology: an overview Ken Bradbury Wisconsin Geological and Natural History Survey University of Wisconsin-Extension

More information

BUFFALO RIVER COALITION PO Box 101, Jasper, AR (870)

BUFFALO RIVER COALITION PO Box 101, Jasper, AR (870) BUFFALO RIVER COALITION PO Box 101, Jasper, AR 72641 (870) 446-5783 buffalowatershed@gmail.com Presentation before Arkansas Pollution Control and Ecology Commission, April 29, 2016 by Richard Mays on behalf

More information

CHAPTER 7 GEOLOGY AND SOILS

CHAPTER 7 GEOLOGY AND SOILS CHAPTER 7 GEOLOGY AND SOILS 7.1 General Geology of the Area Based on the Geological map compiled by Cornec (2002) the area consists of Miocene/Pleistocene deposits as seen in figure 7.1. These are geologically

More information

IDENTIFICATION OF HAZARDS OF CONCERN

IDENTIFICATION OF HAZARDS OF CONCERN IDENTIFICATION OF HAZARDS OF CONCERN To provide a strong foundation for mitigation strategies considered in Section 6, the Village considered a full range of hazards that could impact the area and then

More information

HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR (c)(1)(i) (xii)

HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR (c)(1)(i) (xii) HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR 257.73(c)(1)(i) (xii) (i) Site Name and Ownership Information: Site Name: E.C. Gaston Steam Plant Site Location:

More information

Hydraulic Impacts of Limestone Quarries and Gravel Pits. Jeff Green Minnesota DNR-Division of Ecological & Water Resources

Hydraulic Impacts of Limestone Quarries and Gravel Pits. Jeff Green Minnesota DNR-Division of Ecological & Water Resources Hydraulic Impacts of Limestone Quarries and Gravel Pits Jeff Green Minnesota DNR-Division of Ecological & Water Resources The Hydraulic Impacts of Limestone Quarries and Gravel Pits Study was funded by

More information

URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE Plant Sciences Auditorium, University of Pretoria January 2014 URBAN HYDROGEOLOGY

URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE Plant Sciences Auditorium, University of Pretoria January 2014 URBAN HYDROGEOLOGY URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE Plant Sciences Auditorium, University of Pretoria 23 24 January 2014 URBAN HYDROGEOLOGY MATTHYS A. DIPPENAAR DEPARTMENT GEOLOGY, UNIVERSITY OF PRETORIA HYDROGEOLOGY

More information

FRACTURE TRACES AND PRODUCTIVITY OF MUNICIPAL WELLS IN THE MADISON LIMESTONE, RAPID CITY, SOUTH DAKOTA

FRACTURE TRACES AND PRODUCTIVITY OF MUNICIPAL WELLS IN THE MADISON LIMESTONE, RAPID CITY, SOUTH DAKOTA Proceedings of the South Dakota Academy of Science, Vol. 87 (2008) 261 FRACTURE TRACES AND PRODUCTIVITY OF MUNICIPAL WELLS IN THE MADISON LIMESTONE, RAPID CITY, SOUTH DAKOTA Perry H. Rahn Department of

More information

STEUBEN COUNTY, NEW YORK. Hazard Analysis Report

STEUBEN COUNTY, NEW YORK. Hazard Analysis Report STEUBEN COUNTY, NEW YORK Hazard Analysis Report Prepared by: April 1, 2014 Background On April 1, 2014 the Steuben County Office of Emergency Management conducted a hazard analysis using the automated

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

Ground Subsidence and Groundwater Troy Thompson

Ground Subsidence and Groundwater Troy Thompson Editor s Note: one year ago New Orleans was suffering from the effects of Hurricane Katrina. As was widely discussed at the time the prolonged flooding that inundated much of the City was due to the fact

More information

Climate change in the U.S. Northeast

Climate change in the U.S. Northeast Climate change in the U.S. Northeast By U.S. Environmental Protection Agency, adapted by Newsela staff on 04.10.17 Word Count 1,109 Killington Ski Resort is located in Vermont. As temperatures increase

More information

Chapter 14. Groundwater

Chapter 14. Groundwater Chapter 14 Groundwater Importance of groundwater! Groundwater is water found in the pores of soil and sediment, plus narrow fractures in bedrock! Groundwater is the largest reservoir of fresh water that

More information

Do Now - APES. Due Next Class. Mining HW. Work on QSC using today s notes

Do Now - APES. Due Next Class. Mining HW. Work on QSC using today s notes Do Now - APES 1. Grab a chromebook 2. Log on to Albert.io & work on The Living World Loss of Biodiversity Soil & Soil Dynamics Fishing (10min) Mining HW Due Next Class Work on QSC using today s notes Do

More information

TABLE OF CONTENTS LIST OF TABLES. Page

TABLE OF CONTENTS LIST OF TABLES. Page TABLE OF CONTENTS Page 11.0 EFFECTS OF THE ENVIRONMENT ON THE PROJECT... 11-1 11.1 Weather Conditions... 11-1 11.2 Flooding... 11-2 11.3 Forest Fires... 11-2 11.4 Permafrost and Subsidence Risk... 11-3

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Groundwater Chapter 10 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois Co Jennifer Cole Northeastern University

More information

Rocks, Minerals, & Mining. (I ain t sayin she a golddigga)

Rocks, Minerals, & Mining. (I ain t sayin she a golddigga) Rocks, Minerals, & Mining (I ain t sayin she a golddigga) The Rock Cycle! Rocks are made up of multiple minerals. Minerals are made up of multiple elements. Rocks and minerals recycle or change due to

More information

Prof. Stephen A. Nelson EENS 111. Groundwater

Prof. Stephen A. Nelson EENS 111. Groundwater Page 1 of 8 Prof. Stephen A. Nelson EENS 111 Tulane University Physical Geology This page last updated on 20-Oct-2003 is water that exists in the pore spaces and fractures in rock and sediment beneath

More information

4.9 GEOLOGY AND SOILS

4.9 GEOLOGY AND SOILS 4.9 GEOLOGY AND SOILS 4.9.1 EXISTING CONDITIONS TOPOGRAPHY AND RELIEF Zone 40 is located in the central portion of Sacramento County. The topography of the county is represented by three physiographic

More information

This material is part of the collection of the Philadelphia Water Department and was downloaded from the website Please contact the

This material is part of the collection of the Philadelphia Water Department and was downloaded from the website  Please contact the This material is part of the collection of the Philadelphia Water Department and was downloaded from the website www.phillyh2o.org Please contact the PhillyH2O webmaster for more information about this

More information

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon By the Oregon Board of Geologist Examiners and the Oregon

More information

Baldwin County, Alabama

Baldwin County, Alabama 2015 Baldwin County, Alabama Multi-Hazard Mitigation Plan I. Comprehensive Plan A multi-jurisdiction plan City of Bay Minette City of Daphne Town of Elberta City of Fairhope City of Foley City of Gulf

More information

Extreme Weather and Climate Change Vulnerability Assessment of Central Texas Transportation Infrastructure

Extreme Weather and Climate Change Vulnerability Assessment of Central Texas Transportation Infrastructure Extreme Weather and Climate Change Vulnerability Assessment of Central Texas Transportation Infrastructure Federal Highway Administration (FHWA) Pilot Project TxDOT Transportation Planning Conference June

More information

Groundwater Vulnerability Mapping Eastern Newfoundland Executive Summary

Groundwater Vulnerability Mapping Eastern Newfoundland Executive Summary Groundwater Vulnerability Mapping Eastern Newfoundland Executive Summary 123102.00 Executive Summary March 2014 ISO 9001 Registered Company Prepared for: Water Resources Management Division Department

More information

HID 362 MESLEKİ İNGİLİZCE 2

HID 362 MESLEKİ İNGİLİZCE 2 HID 362 MESLEKİ İNGİLİZCE 2 Hafta 5 Prof. Dr. N. Nur ÖZYURT 2017-2018 Bahar Dönemi http://www.philippe-crochet.com/galerie/karst/details/18/lapiaz-et-sites-ruiniformes/236104/rr-14-0032-pic-saint-loupherault-figures-de-karstification-sur-la-crete-ouest

More information

B.2 Sources for Hazard Identification, Profiling, and Ranking (Section 3) Overview of Sussex County s History of Hazards

B.2 Sources for Hazard Identification, Profiling, and Ranking (Section 3) Overview of Sussex County s History of Hazards Appendix B Sources B.1 Sources for Planning Process (Section 2) FEMA. Mitigation Planning Guidance (386 Series). Available on the web at: http://www.fema.gov/plan/mitplanning/planning_resources.shtm FEMA

More information

CCR Surface Impoundment Location Restrictions Demonstration. MidAmerican Energy Company, Louisa Generating Station

CCR Surface Impoundment Location Restrictions Demonstration. MidAmerican Energy Company, Louisa Generating Station CCR Surface Impoundment Location Restrictions Demonstration MidAmerican Energy Company, Louisa Generating Station Final October 17, 2018 CCR Surface Impoundment Location Restrictions Demonstration Prepared

More information

CHAPTER GEOLOGICALLY HAZARDOUS AREAS Applicability Regulations.

CHAPTER GEOLOGICALLY HAZARDOUS AREAS Applicability Regulations. CHAPTER 19.07 GEOLOGICALLY HAZARDOUS AREAS 19.07.010 Applicability. Geologically hazardous areas may pose a threat to the health and safety of citizens when incompatible development is sited in areas of

More information

NUTC R367. Assessment of Active Karst Features in Proximity to Paved Roadways

NUTC R367. Assessment of Active Karst Features in Proximity to Paved Roadways Assessment of Active Karst Features in Proximity to Paved Roadways by Neil Anderson NUTC R367 A National University Transportation Center at Missouri University of Science and Technology Disclaimer The

More information

Weathering, Mass Wasting and Karst

Weathering, Mass Wasting and Karst Weathering, Mass Wasting and Karst Capable of wearing down anything that the internal processes can build. Gravity, water, wind and ice Denudation - the overall effect of disintegration, wearing away and

More information

KARST LANDSCAPES Geology & Hydrology. Dr. Gerald E. Weber

KARST LANDSCAPES Geology & Hydrology. Dr. Gerald E. Weber KARST LANDSCAPES Geology & Hydrology Dr. Gerald E. Weber Aerial Oblique Photograph of the UCSC Campus looking northwest Karst A type of topography that is formed on limestone, gypsum, and other soluble

More information

Chapter 13. Groundwater

Chapter 13. Groundwater Chapter 13 Groundwater Introduction Groundwater is all subsurface water that completely fills the pores and other open spaces in rocks, sediments, and soil. Groundwater is responsible for forming beautiful

More information

Miami-Dade College. The student will demonstrate a basic knowledge of the origin and evolution of the Earth and its planetary environment.

Miami-Dade College. The student will demonstrate a basic knowledge of the origin and evolution of the Earth and its planetary environment. Miami-Dade College Common Course Number: GLY 3884 Course Title: Environmental Geology Catalog Course Description: This course focuses on the study of the application of geology to the interactions between

More information

Development of geophysical investigation for verifying treatment efficiency of underground cavities

Development of geophysical investigation for verifying treatment efficiency of underground cavities Development of geophysical investigation for verifying treatment efficiency of underground cavities Hasan A. Kamal* Kuwait Institute for Scientific Research, Infrastructure Risk and Reliability Program,

More information

STRUCTURAL STABILITY ASSESSMENT

STRUCTURAL STABILITY ASSESSMENT STRUCTURAL STABILITY ASSESSMENT CFR 257.73(d) Bottom Ash Pond Complex Cardinal Plant Brilliant, Ohio October, 2016 Prepared for: Cardinal Operating Company Cardinal Plant Brilliant, Ohio Prepared by: Geotechnical

More information

What is fracking? An information flipbook on shale and tight gas drilling and fracking

What is fracking? An information flipbook on shale and tight gas drilling and fracking What is fracking? An information flipbook on shale and tight gas drilling and fracking Gas drilling, Queensland What is Fracking? Fracking is a new way of getting gas out of the ground by cracking the

More information

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Subsurface Investigation and Conceptual Alternatives Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Presented By: Ohio Department of Transportation CH2M HILL CTL Engineering Technos,

More information

CITY OF TUSCALOOSA ORGANIZATION OF 2015 FMP FLOODPLAIN MANAGEMENT PLAN

CITY OF TUSCALOOSA ORGANIZATION OF 2015 FMP FLOODPLAIN MANAGEMENT PLAN CITY OF TUSCALOOSA FLOODPLAIN MANAGEMENT PLAN FMPC Meeting #2 July 8, 2015 ORGANIZATION OF 2015 FMP 2015 Floodplain Management Plan Structure Chapter 1 Introduction Chapter 2 Community Profile Chapter

More information

5.2 IDENTIFICATION OF NATURAL HAZARDS OF CONCERN

5.2 IDENTIFICATION OF NATURAL HAZARDS OF CONCERN 5.2 IDENTIFICATION OF NATURAL HAZARDS OF CONCERN To provide a strong foundation for mitigation strategies considered in Sections 6 and 9, County considered a full range of natural s that could impact area,

More information

The last three sections of the main body of this report consist of:

The last three sections of the main body of this report consist of: Threatened and Endangered Species Geological Hazards Floodplains Cultural Resources Hazardous Materials A Cost Analysis section that provides comparative conceptual-level costs follows the Environmental

More information

265 Dalewood Way alteration permit #2016/02/17/9761 June 30, 2016 Appeal #16-109 Deck at Rear due to conflict with Slope Protection Act A. Executive Summary: We are in receipt of the Notification of Structural

More information

Natural Disasters. in Florida. Severe Thunderstorms

Natural Disasters. in Florida. Severe Thunderstorms Natural Disasters in Florida SC.6.E.7.7 Investigate how natural disasters have affected human life in Florida. Severe Thunderstorms While the typical afternoon thunderstorm in Florida may not appear to

More information

NOAA National Centers for Environmental Information State Summaries 149-FL. Observed and Projected Temperature Change

NOAA National Centers for Environmental Information State Summaries 149-FL. Observed and Projected Temperature Change 19-FL FLORIDA Key Messages Under a higher emissions pathway, historically unprecedented warming is projected by the end of the 1st century. Rising temperatures will likely increase the intensity of naturally-occurring

More information

What we will cover. The Hydrologic Cycle. River systems. Floods. Groundwater. Caves and Karst Topography. Hot springs

What we will cover. The Hydrologic Cycle. River systems. Floods. Groundwater. Caves and Karst Topography. Hot springs Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs On a piece of paper, put these reservoirs of water in to order from largest to

More information

3l NATURAL HAZARDS AND UNSTABLE GROUND

3l NATURAL HAZARDS AND UNSTABLE GROUND Page 1 of Section 3l 3l NATURAL HAZARDS AND UNSTABLE GROUND 3l.1 Introduction A natural hazard is the result of natural processes that form, shape and change the environment and interact or potentially

More information

ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR )

ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR ) PLATTE RIVER POWER AUTHORITY RAWHIDE ENERGY STATION BOTTOM ASH TRANSFER (BAT) IMPOUNDMENTS LARIMER COUNTY, CO ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR 257.62) FOR COAL COMBUSTION RESIDUALS

More information

MICHIGAN GEOLOGICAL SURVEY Coastal Navigator Training St. Joseph, Michigan What do we know about anthropogenic impact(s) to Lake Michigan shorelines?

MICHIGAN GEOLOGICAL SURVEY Coastal Navigator Training St. Joseph, Michigan What do we know about anthropogenic impact(s) to Lake Michigan shorelines? MICHIGAN GEOLOGICAL SURVEY Coastal Navigator Training St. Joseph, Michigan What do we know about anthropogenic impact(s) to Lake Michigan shorelines? Review of a 12 year shoreline study and today, what

More information

HAZARD DESCRIPTION... 1 LOCATION... 1 EXTENT... 1 HISTORICAL OCCURRENCES...

HAZARD DESCRIPTION... 1 LOCATION... 1 EXTENT... 1 HISTORICAL OCCURRENCES... WINTER STORM HAZARD DESCRIPTION... 1 LOCATION... 1 EXTENT... 1 HISTORICAL OCCURRENCES... 3 SIGNIFICANT PAST EVENTS... 4 PROBABILITY OF FUTURE EVENTS... 5 VULNERABILITY AND IMPACT... 5 Hazard Description

More information

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each) Sedimentary Rocks & Surface Processes Quest Name: Earth Science 2013 Block: Date: Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

More information

The headwaters of Blacklegs Creek originate near Parkwood in Indiana County

The headwaters of Blacklegs Creek originate near Parkwood in Indiana County III BASIN DESCRIPTION A. Location, Area and Drainage The headwaters of Blacklegs Creek originate near Parkwood in Indiana County approximately eight (8) miles west of Indiana, Pennsylvania. The main stream

More information

Geology 103 Planet Earth (QR II), Laboratory Exercises 1. Groundwater

Geology 103 Planet Earth (QR II), Laboratory Exercises 1. Groundwater Geology 103 Planet Earth (QR II), Laboratory Exercises 1 Student Name: Section: Karst Landform: Groundwater Anyone who has viewed Chinese landscape scroll paintings will recognize that the mountains are

More information

9. GEOLOGY, SOILS, AND MINERALS

9. GEOLOGY, SOILS, AND MINERALS June 28, 2018 Page 9-1 9. GEOLOGY, SOILS, AND MINERALS This EIR chapter describes the existing geological, soil, and mineral conditions in the planning area. The chapter includes the regulatory framework

More information

Multi-Jurisdictional Hazard Mitigation Plan. Table C.17 Disaster Declarations or Proclamations Affecting Perry County Presidential & Gubernatorial

Multi-Jurisdictional Hazard Mitigation Plan. Table C.17 Disaster Declarations or Proclamations Affecting Perry County Presidential & Gubernatorial Severe Weather General Severe weather affects the entire Commonwealth and can be expected any time of the year. Severe weather for Perry County is considered to include: blizzards and/or heavy snowfall,

More information

3.12 Geology and Topography Affected Environment

3.12 Geology and Topography Affected Environment 3 Affected Environment and Environmental Consequences 3.12 Geology and Topography 3.12.1 Affected Environment 3.12.1.1 Earthquakes Sterling Highway MP 45 60 Project Draft SEIS The Kenai Peninsula is predisposed

More information

Borah Peak Earthquake HAZUS Scenario Project Executive Summary Idaho Bureau of Homeland Security Idaho Geological Survey Western States Seismic

Borah Peak Earthquake HAZUS Scenario Project Executive Summary Idaho Bureau of Homeland Security Idaho Geological Survey Western States Seismic Borah Peak Earthquake HAZUS Scenario Project Executive Summary Idaho Bureau of Homeland Security Idaho Geological Survey Western States Seismic Policy Council 12/30/2008 The HAZUS-MH analysis of the Borah

More information

Assessing Hazards and Risk

Assessing Hazards and Risk Page 1 of 6 EENS 204 Tulane University Natural Disasters Prof. Stephen A. Nelson Assessing Hazards and Risk This page last updated on 07-Jan-2004 As discussed before, natural disasters are produced by

More information

Lines-of-Evidence Approach to the Evaluation of Stray Gas Incidents

Lines-of-Evidence Approach to the Evaluation of Stray Gas Incidents Lines-of-Evidence Approach to the Evaluation of Stray Gas Incidents Lisa Molofsky, Ann Smith, John Connor, Shahla Farhat GSI Environmental Inc. Tom Wagner, Albert Wylie Cabot Oil and Gas Corporation GSI

More information

5.4.9 Severe Winter Weather

5.4.9 Severe Winter Weather 5.4.9 Severe Winter Weather The following section provides the hazard profile (hazard description, location, extent, previous occurrences and losses, probability of future occurrences, and impact of climate

More information

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 5 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Hydrology and Hydraulics Design Report. Background Summary

Hydrology and Hydraulics Design Report. Background Summary To: National Park Services Montezuma Castle National Monument Richard Goepfrich, Facility Manager From: Multicultural Technical Engineers Date: Tuesday - February 13, 2018 Subject: 30% Hydrology and Hydraulics

More information