Trent Hare, Lisa Gaddis, Sue LaVoie, Chris Isbell, Moses Milazzo, Sam Lawrence

Size: px
Start display at page:

Download "Trent Hare, Lisa Gaddis, Sue LaVoie, Chris Isbell, Moses Milazzo, Sam Lawrence"

Transcription

1 Trent Hare, Lisa Gaddis, Sue LaVoie, Chris Isbell, Moses Milazzo, Sam Lawrence PDS Cartography and Imaging Sciences Node The Imaging Node (IMG, PDS-IMG or just Imaging )

2 Curator of NASA's primary digital image collections from 23 planetary missions 850 TB, growing ~120 TB/yr Develops & supports archive standards Image data formats Documentation of observation and acquisition parameters, image properties, etc. (metadata) Image calibration, documentation Supports development & delivery of archives Images from landed & orbital cameras, metadata Cartographic products such as mosaics, maps, geospatial databases, etc. Links to heritage, publications, figures, etc. Serves processed, derived data products Digital cartographic mosaics, maps, software, etc. When ISIS is used, supports pipeline processing from raw to calibrated, photometrically corrected, mapprojected products PDS Imaging Node 2

3 Science Discipline Focus: Cartography & Imaging Sciences Interdisciplinary expertise Instrument/image geometry, cartographic data acquisition & processing Orbital & landed camera instrument design, data processing & calibration Detailed geometric & physical characterization of cameras Planetary remote sensing at UVVIS to thermal to RADAR wavelengths Single, multi- and hyperspectral images Cartographic & geospatial data analysis Geographic information systems, geologic & thematic mapping, 3D terrain mapping & analysis, slope & hazard mapping, site characterization Data engineering & informatics, data mining Wide planetary target coverage Terrestrial planetary surfaces Mercury, Venus, Earth, Moon, Mars Icy and outer Solar System satellites, asteroids, dwarf planets Mars moons Phobos and Deimos, asteroids Gaspra, Ida 9 moons of Jupiter (Io, Europa, Ganymede, Callisto, etc.) 23 moons of Saturn (Titan, Enceladus, Iapetus, etc.) 5 moons of Uranus (Ariel, Titania, etc.) 2 moons of Neptune (Triton, Nereid) Vesta; Ceres, Pluto (TBD) PDS Imaging Node 3

4 Mission Interface Assist imaging instrument teams to ensure cost-effective data delivery to PDS and public Lead node for Europa mission Data Delivery & Cartographic Support Planetary image data in raw & derived formats Leverage ISIS mission pipelines Improved ancillary data (pointing, calibration) from radiometric, geodetic & cartographic processing, restoration, scientific research, etc. Data User Support Online data archives, tutorials, state-of-the-art search & retrieval tools Support for simple to complex data interaction by users Provide training, expert assistance to users for cartographic and scientific data analysis LPSC, Planetary Data Users Workshops (next one in 2017), etc. PDS Imaging Node 4

5 INFRASTRUCTURE SOFTWARE Integrated Software for Imagers and Spectrometers (ISIS 3.0) Free For planetary image data 2- and 3-D data, multi- & hyperspectral data 21 NASA and non-us missions Geospatial Data Abstraction Library (GDAL) Free Translation library for geospatial raster & vector data Supported by Esri ArcMap, QGIS, etc. Converts PDS & ISIS images into GeoTIFF, GeoJPEG2000, HDF, FITS, ENVI, etc. PDS Imaging Node 5

6 CARTOGRAPHIC SERVICES (1 OF 3) Planetary Image Locator Tool (PILOT) Uses Unified Planetary Coordinates (UPC) database to standardize coordinates Supports PDS image data for which there is an ISIS3 camera model Accurate, detailed surface placement 94% of Imaging Node data holdings supported Geospatial and parameter search of PDS EDR image archives Ties to online POW processing tools Projection on the Web (POW) Uses ISIS3 cartographic software Pipeline data processing from raw to fully processed data products 25+ instruments supported, TB/mo PDS Imaging Node 6

7 CARTOGRAPHIC SERVICES (2 OF 3) Map-a-Planet 2 (MAP2) Map-projected mosaics & derived data Basemaps for EDR searches at IMG and GEO Standardized Web Mapping Services (WMS) for ~all mapped bodies Map-based data extraction & processing of image products Imaging Node Annex Archives and delivers geospatial products derived from PDS data Mosaics, maps, shapefiles, tables Retains heritage to source data & metadata Links to publications, accuracy information, etc. Mosaics: ~20 TB/mo, Processing: ~10 TB/mo PDS Imaging Node 7

8 CARTOGRAPHIC SERVICES (2 OF 3) Planetary Maps (PMAPS) Single map-based interface for MAP2 & Annex cartographic products Standardized Web Mapping Services (WMS) for ~all mapped bodies Integrates planetary geospatial products with nomenclature Mosaics (global, regional), geologic maps, topographic models, etc. Supports map-based data extraction of image products PNG, TIFF, JPG, etc. Currently in development Release date May 2016 Mercury, Venus, Moon, Mars, etc. PDS Imaging Node 8

9 CARTOGRAPHIC SERVICES (3 OF 3) Planetary Image Atlas Faceted searches based on image label data, geographic coordinates, etc. Products linked to IAU planetary nomenclature database Supports landmark feature classification and searches Landmarks Web Services Image content identification tool (craters, dunes, ridges, streaks) Integrated with the Atlas Marsviewer Stand-alone image viewing tool for Mars insitu missions PDS Imaging Node 9

10 OTHER PDS NODES Geosciences Node Orbital Data Explorer(s) Mars, Moon, Mercury, Venus Cross-mission and instrument data search, display, download tool ESRI-based Web service, uses UPC database Ring-Moon Systems Node OPUS data search tool Enhanced geometric metadata for planets, satellites, rings Emphasis on Cassini ISS & VIMS Selection of data by image acquisition constraints PDS Imaging Node 10

11 EXTERNAL PARTNERS JMARS (ASU) Standalone GIS (Java) Mission planning and data analysis tool Mars, Earth, Moon, Mercury, Venus, etc. LROC Lunaserv (ASU) Web map service, fast renders Rasters, vectors, annotation, illumination, etc. Moon, Mars LMMP Data Portal (JPL) Integrated viewing of lunar global data Mosaics, DEMs, gravity, hazard maps, slopes, etc. Supports traverse planning, landing site characterization, etc. PDS Imaging Node 11

12 PDS SUPPORTS PLANETARY CARTOGRAPHIC SCIENCES Extensive image data archives Many products with standardized and/or improved geometry Derived products linked to PDS heritage, processing history, etc. Enhanced data access & retrieval Sophisticated search and visualization tools Map-based searches, identification of just the right product Integrated support for GIS tools and services User training and proposal support Online tools and tutorials pages Help for Proposers guidance For hands-on training and support, attend the 3 rd Planetary Data Workshop June 2017, Flagstaff, AZ Contact me if you need to deliver cartographic data products or need help finding them! PDS Imaging Node 12

13 CONTACT INFORMATION PI, Science Lead: Lisa Gaddis USGS Astrogeology Science Center, Flagstaff, AZ Co-I, Technical Lead: Susan LaVoie Jet Propulsion Laboratory, Pasadena, CA PDS Imaging Node 13

Small Bodies Assessment Group USGS ISIS Update

Small Bodies Assessment Group USGS ISIS Update Small Bodies Assessment Group USGS ISIS Update Titus, Archinal, Becker, Hare, Kestay, Sides Ensures that usable data are returned and archived for any conceivable usage, now or in the future. Sam Lawrence

More information

Solar System. The Solar System. Nebular animation. Planets drawn to scale. Mercury. Mariner 10. Chapter 22 Pages

Solar System. The Solar System. Nebular animation. Planets drawn to scale. Mercury. Mariner 10. Chapter 22 Pages The Solar System Chapter 22 Pages 612-633 Solar System Planets drawn to scale Nebular animation Distances not to scale Earth approximately 12,800 km diameter Earth is about 150,000,000 km from Sun Mercury

More information

1/13/16. Solar System Formation

1/13/16. Solar System Formation Solar System Formation 1 Your Parents Solar System 21 st Century Solar System 2 The 21 st Century Solar System Sun Terrestrial Planets Asteroid Belt Jovian Planets Kuiper Belt Oort Cloud The Solar System:

More information

Planetary Geologic Mapping: Process, product, and relevance to scientific research

Planetary Geologic Mapping: Process, product, and relevance to scientific research Planetary Geologic Mapping: Process, product, and relevance to scientific research J. A. Skinner, Jr. Map Coordinator Astrogeology Science Center U. S. Geological Survey Flagstaff, AZ S. Lawrence PCGMWG

More information

Mapping and Planetary Spatial Infrastructure Team

Mapping and Planetary Spatial Infrastructure Team Mapping and Planetary Spatial Infrastructure Team INTRODUCTION SSB study on NASA PSD R&A Reorganization National Academy of Sciences, 13 May 2016 Jani Radebaugh, janirad@byu.edu Introducing the Mapping

More information

Hi-resolution Solar System textures for SpaceEngine 0.98

Hi-resolution Solar System textures for SpaceEngine 0.98 Hi-resolution Solar System textures for SpaceEngine 0.98 These addons Solar System HD and Solar System Ultra contains hi-resolution maps of some planets, moons and asteroids of the Solar System. The maps

More information

Planetary Science Big Data

Planetary Science Big Data Planetary Science Big Data Michael H. New, Ph.D. Planetary Data System Program Scientist 16 Feb 2016 NASA Ad Hoc Big Data Task Force 1 PSD Data Policies All science data returned from NASA missions are

More information

The Outer Planets (pages )

The Outer Planets (pages ) The Outer Planets (pages 720 727) Gas Giants and Pluto (page 721) Key Concept: The first four outer planets Jupiter, Saturn, Uranus, and Neptune are much larger and more massive than Earth, and they do

More information

ASTR 380 Possibilities for Life in the Outer Solar System

ASTR 380 Possibilities for Life in the Outer Solar System ASTR 380 Possibilities for Life in the Outer Solar System Possibility of Life in the Inner Solar System The Moon, Mercury, and the Moons of Mars Deimos NO LIFE NOW or EVER This is a 98% conclusion! Phobos

More information

Low Cost Breakthroughs in Planetary Atmospheres and Interior Structures With Precision-Radio-Equipped Small Spacecraft

Low Cost Breakthroughs in Planetary Atmospheres and Interior Structures With Precision-Radio-Equipped Small Spacecraft Low Cost Breakthroughs in Planetary Atmospheres and Interior Structures With Precision-Radio-Equipped Small Spacecraft Sami Asmar, David Atkinson, David Bell, James Border, Ivan Grudinin, Joseph Lazio,

More information

Addressing Strategic Planning for Planetary Spatial Data Infrastructure

Addressing Strategic Planning for Planetary Spatial Data Infrastructure Addressing Strategic Planning for Planetary Spatial Data Infrastructure Samuel J. Lawrence Justin Hagerty Lisa Gaddis Brent Archinal Jani Radebaugh Shane Byrne Sarah Sutton Daniella DellaGiustina Brad

More information

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Definition of a dwarf planet 1. Orbits the sun 2. Is large enough to have become round due to the

More information

USGS ISIS mapping program USGS Support for Small Bodies. Titus, Becker, Kestay, Milazzo, Sides SBAG#16 Thursday, January 12-13:45

USGS ISIS mapping program USGS Support for Small Bodies. Titus, Becker, Kestay, Milazzo, Sides SBAG#16 Thursday, January 12-13:45 USGS ISIS mapping program USGS Support for Small Bodies Titus, Becker, Kestay, Milazzo, Sides SBAG#16 Thursday, January 12-13:45 Asteroid Resource Assessment Geologic Mapping Cradle-to-Grave and Beyond

More information

Celestial Objects. Background Questions. 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe?

Celestial Objects. Background Questions. 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe? Background Questions Celestial Objects 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe? 3. Describe the Galileo probe mission. 4. What are scientists

More information

The Importance and Challenge of Building a Planetary Spatial Data Infrastructure

The Importance and Challenge of Building a Planetary Spatial Data Infrastructure The Importance and Challenge of Building a Planetary Spatial Data Infrastructure Jani Radebaugh Chair Mapping and Planetary Spatial Infrastructure Team Planetary Advisory Committee NASA HQ, Feb. 23, 2018

More information

Space Physics THE MOONS OF THE PLANETS 1

Space Physics THE MOONS OF THE PLANETS 1 Space Physics THE MOONS OF THE PLANETS 1 Neeke Katharina Rothe 2010/10/18 1 Kjell Rönnmark, Umeå Universitet, fysik Contents 1 Planets 2 2 Natural Satellite 2 3 The moons 3 3.1 Earth-Moon............................

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

Chapter 7 Our Planetary System

Chapter 7 Our Planetary System Chapter 7 Our Planetary System What does the solar system look like? Earth, as viewed by the Voyager spacecraft Eight major planets with nearly circular orbits Pluto is smaller than the major planets and

More information

Sun Mercury Venus. Earth Mars Jupiter

Sun Mercury Venus. Earth Mars Jupiter Sun Mercury Venus Earth Mars Jupiter Venus is the hottest planet in our solar system. The thick clouds on Venus hold the heat in. The sun s lights reflect off Venus s clouds making it look like the brightest

More information

Name Class Date. For each pair of terms, explain how the meanings of the terms differ.

Name Class Date. For each pair of terms, explain how the meanings of the terms differ. Skills Worksheet Chapter Review USING KEY TERMS For each pair of terms, explain how the meanings of the terms differ. 1. terrestrial planet and gas giant 2. asteroid and comet 3. meteor and meteorite Complete

More information

Technologies for Transparency Dynamic Open Data Publishing with Open APIs

Technologies for Transparency Dynamic Open Data Publishing with Open APIs International Open Government Data Conference Technologies for Transparency Dynamic Open Data Publishing with Open APIs Kendall Clark, Cofounder and Managing Principal, Clark & Parsia LLC Dan Melton, Ph.D.,

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton Summer 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Choice of Coordinate Systems for Planetary Mapping by the Europa Clipper Project

Choice of Coordinate Systems for Planetary Mapping by the Europa Clipper Project Choice of Coordinate Systems for Planetary Mapping by the Europa Clipper Project Cynthia Phillips and Haje Korth 3 August 2017 Table of contents - Background on coordinate systems - Historical coordinate

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Planets. Chapter 5 5-1

Planets. Chapter 5 5-1 Planets Chapter 5 5-1 The Solar System Terrestrial Planets: Earth-Like Jovian Planets: Gaseous Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto Inferior Planets Superior Planets Inferior

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 16 4 Moons SECTION Our Solar System California Science Standards 8.2.g, 8.4.d, 8.4.e BEFORE YOU READ After you read this section, you should be able to answer these questions: How did Earth s moon

More information

SOLAR SYSTEM B Division

SOLAR SYSTEM B Division SOLAR SYSTEM B Division Team Name: Team #: Student Names: IMAGE SHEET A E B C D F G H Spectrum I Spectrum II SS2014 Spectrum III Spectrum IV Spectrum V Spectrum VI 1. A. What satellite is pictured in Image

More information

THE PLANETARY SCIENTIST'S COMPANION

THE PLANETARY SCIENTIST'S COMPANION THE PLANETARY SCIENTIST'S COMPANION Katharina Lodders Bruce Fegley, Jr. New York Oxford Oxford University Press 1998 Contents 1 Technical data Table 1.1 The Greek alphabet 1 Table 1.2 Prefixes used with

More information

Chapter 8 2/19/2014. Lecture Outline. 8.1 The Galilean Moons of Jupiter. Moons, Rings, and Plutoids. 8.1 The Galilean Moons of Jupiter

Chapter 8 2/19/2014. Lecture Outline. 8.1 The Galilean Moons of Jupiter. Moons, Rings, and Plutoids. 8.1 The Galilean Moons of Jupiter Lecture Outline Chapter 8 Moons, Rings, and Plutoids All four Jovian planets have extensive moon systems, and more are continually being discovered. The Galilean moons of Jupiter are those observed by

More information

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises 4. THE SOLAR SYSTEM 1.1. THE SUN The sun is the star located in the center of the solar system. The sun is a yellow star, since its superficial temperature is about 5.500 C (although, the temperature can

More information

Our Solar System and Its Place in the Universe

Our Solar System and Its Place in the Universe Our Solar System and Its Place in the Universe The Formation of the Solar System Our Solar System includes: Planets Dwarf Planets Moons Small Solar System bodies Sun Outer portion created Planets and their

More information

Name: Date: Hour: 179 degrees celsius. 5% of Earth A 70 pound person would weigh 27 pounds on Mercury.

Name: Date: Hour: 179 degrees celsius. 5% of Earth A 70 pound person would weigh 27 pounds on Mercury. Planet Exploration- http://www.kidsastronomy.com/solar_.htm Mercury 1 87.9 days 58.6 days 57 million Km 465 degrees celsius Minimum -184 degrees celsius 179 degrees celsius Moons Terrestrial or Gaseous?

More information

Astronomy November, 2016 Introduction to Astronomy: The Solar System. Mid-term Exam 3. Practice Version. Name (written legibly):

Astronomy November, 2016 Introduction to Astronomy: The Solar System. Mid-term Exam 3. Practice Version. Name (written legibly): Astronomy 101 16 November, 2016 Introduction to Astronomy: The Solar System Mid-term Exam 3 Practice Version Name (written legibly): Honor Pledge: On my honor, I have neither given nor received unauthorized

More information

Exploring our Solar System and Beyond

Exploring our Solar System and Beyond Exploring our Solar System and Beyond AFCEA Larry James, Deputy Director February 18, 2016 Jason 3 Launch January 17, 2016 JPL Science and Exploration Thrusts 1 2 3 4 Journey to Mars Formation of and life

More information

What is the Solar System?

What is the Solar System? What is the Solar System? Our Solar System is one of many planetary systems. It consists of: The Sun Eight planets with their natural satellites Five dwarf planets Billions of asteroids, comets and meteors

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 28. Search for life on jovian moons. March

More information

Astronomy Test Review. 3 rd Grade

Astronomy Test Review. 3 rd Grade Astronomy Test Review 3 rd Grade Match the vocabulary word to its definition. Outer Planets The path a planet takes around the sun. Inner Planets Orbit Sun The center of our solar system. Small, rocky

More information

GeoSUR SRTM 30-m / TPS

GeoSUR SRTM 30-m / TPS GeoSUR SRTM 30-m / TPS Wm Matthew Cushing (USGS) 16 May 2013 U.S. Department of the Interior U.S. Geological Survey SRTM Mission Shuttle Radar Topography Mission (SRTM) Space Shuttle Endeavour during the

More information

Yes, inner planets tend to be and outer planets tend to be.

Yes, inner planets tend to be and outer planets tend to be. 1. Planet Density Make some general comments about inner and outer planets density Inner Planets Density Outer Planets Density Is there a pattern or a trend in planet density? Yes, inner planets tend to

More information

Solar System Research Teacher Notes The Sun

Solar System Research Teacher Notes The Sun The Sun G-type main sequence star (G2V), also known as a yellow dwarf Mass = 1.99 x 10 30 kg or 333,000 Earths. Volume = 1.41 x 10 18 km 3 or 1,300,000 Earths. Density (average) = 1.41 g/cm 3 or 0.255

More information

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons The Moons Jupiter & Saturn Earth 1 Mars 2 Jupiter 63 Saturn 47 Uranus 27 Neptune 13 Pluto 3 Moons of the Planets Galileo (1610) found the first four moons of Jupiter. Total 156 (as of Nov. 8, 2005) Shortened

More information

Introduction to Planetary Volcanism

Introduction to Planetary Volcanism Introduction to Planetary Volcanism SUB G&ttlngen 204459 028 Gregory Mursky University of Wisconsin Milwaukee 96 A11088 Prentice Hall Upper Saddle River, New Jersey 07458 ' Preface Introduction 1 Historical

More information

ESASky, ESA s new open-science portal for ESA space astronomy missions

ESASky, ESA s new open-science portal for ESA space astronomy missions ESASky, ESA s new open-science portal for ESA space astronomy missions Bruno Merín ESAC Science Data Centre European Space Agency bruno.merin@esa.int Visit to NAOC, Beijing, 19/05/2017 ESA UNCLASSIFIED

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial planets are made mostly of rock and have similar characteristics to Earth. There are four terrestrial

More information

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects. The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which

More information

Outer Solar System. Jupiter. PHY outer-solar-system - J. Hedberg

Outer Solar System. Jupiter. PHY outer-solar-system - J. Hedberg Outer Solar System 1. Jupiter 1. Pressure & Density & size 2. Jupiter's Magnetosphere 3. Juno Mission 4. Jovian Satellites 2. Saturn 1. The Rings! 2. Saturn's Moons 3. Titan 3. Uranus 4. Neptune 5. Dwarf

More information

Universe Now. 4. Solar System II: Jovian planets

Universe Now. 4. Solar System II: Jovian planets Universe Now 4. Solar System II: Jovian planets An overview of the known Solar System The Sun 4 terrestrial planets: Mercury, Venus, The Earth, Mars 4 Jovian planets: Jupiter, Saturn, Uranus, Neptune 5

More information

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0. Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.387 astronomical units Diameter: 4,879.4 km (3,031.92 miles)

More information

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune Summer 2015 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

MAPSIT and a Roadmap for Lunar and Planetary Spatial Data Infrastructure

MAPSIT and a Roadmap for Lunar and Planetary Spatial Data Infrastructure MAPSIT and a Roadmap for Lunar and Planetary Spatial Data Infrastructure B. Archinal for the MAPSIT Steering Committee barchinal@usgs.gov LEAG Columbia, MD 2017 October 10 Outline Who are we again? What

More information

CARTOGRAPHIC SUPPORT FOR SCHOOL COURSE ON GEOGRAPHY OF EXTRATERRESTRIAL TERRITORIES

CARTOGRAPHIC SUPPORT FOR SCHOOL COURSE ON GEOGRAPHY OF EXTRATERRESTRIAL TERRITORIES CARTOGRAPHIC SUPPORT FOR SCHOOL COURSE ON GEOGRAPHY OF EXTRATERRESTRIAL TERRITORIES Kira B. Shingareva Bianna V. Krasnopevtseva Moscow State University for Geodesy and Cartography (MIIGAiK), Moscow, Russia,

More information

Charting the Solar System

Charting the Solar System Diameter (km) Surface Temperature Interior Temperature Charting the Solar System (Source: http://solarsystem.nasa.gov; http://solarviews.com) Rotation (length of day ) The Sun 1,391,940 11,000 o F 28,000,000

More information

Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Lesson 4 Chapter Wrap-Up

Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Lesson 4 Chapter Wrap-Up Chapter Introduction Lesson 1 The Structure of the Solar System Lesson 2 The Inner Planets Lesson 3 The Outer Planets Lesson 4 Dwarf Planets and Other Objects Chapter Wrap-Up NASA/JPL/USGS What kinds of

More information

Scope and Sequence: Semester I

Scope and Sequence: Semester I www.homeschoolastronomy.com Scope and Sequence: Semester I A list of ideas, concepts and topics covered in the course in addition to recommendations on the order in which they are taught. Tour of the Solar

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

The Jovian Planets and Their Moons

The Jovian Planets and Their Moons The Jovian Planets and Their Moons Jupiter 1 Physical Properties of Earth and Jupiter Jupiter Earth Equatorial lradius 11.2 R Earth 6378 km Mass 318 M Earth 5.976 10 24 kg Average Density 1.34 g/cm 3 5.497

More information

solar system outer planets Planets located beyond the asteroid belt; these are known as the gas giants. CELESTIAL BODIES

solar system outer planets Planets located beyond the asteroid belt; these are known as the gas giants. CELESTIAL BODIES solar system Region of our galaxy under the influence of the ; includes eight planets and their natural satellites as well as one dwarf planet, two plutoids, asteroids and comets. outer planets Planets

More information

When you have completed this workbook, you should know and understand the following:

When you have completed this workbook, you should know and understand the following: Name When you have completed this workbook, you should know and understand the following: Standard Description Passed SciBer Text III.1.a III.1.b. Understand and correctly use unit vocabulary. List the

More information

The Gas Giants Astronomy Lesson 13

The Gas Giants Astronomy Lesson 13 The Gas Giants Astronomy Lesson 13 The four outer planets: Jupiter, Saturn, Uranus, and Neptune, are much larger and more massive than Earth, and they do not have solid surfaces. Because these planets

More information

TEKS Cluster: Space. identify and compare the physical characteristics of the Sun, Earth, and Moon

TEKS Cluster: Space. identify and compare the physical characteristics of the Sun, Earth, and Moon 5.8 Earth and space. The student knows that there are recognizable patterns in the natural world and among the Sun, Earth, and Moon system. 5.8(C) 5.8(D) demonstrate that Earth rotates on its axis once

More information

PHYS133 Lab 2 Scale Model of the Solar System

PHYS133 Lab 2 Scale Model of the Solar System PHYS133 Lab 2 Goals: To get an idea of the scale of the solar system with the sizes of the planets. To be able to correctly change from real distances to scale distances. What You Turn In: The tables,

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

11.2 A Wealth of Worlds: Satellites of Ice and Rock

11.2 A Wealth of Worlds: Satellites of Ice and Rock 11.2 A Wealth of Worlds: Satellites of Ice and Rock Our goals for learning: What kinds of moons orbit the jovian planets? Why are Jupiter's Galilean moons so geologically active? What is remarkable about

More information

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is 8-3 Escape Speed Vocabulary Escape Speed: The minimum speed an object must possess in order to escape from the gravitational pull of a body. In Chapter 6, you worked with gravitational potential energy

More information

Name: Pd Parent Signature of completion:

Name: Pd Parent Signature of completion: Chap 18: Draw or Download a picture showing the order of the planets Section 1: The Nine Planets (452-462) Read Measuring Interplanetary Distances and look at figure 2 on pg 45 What is an astronomical

More information

PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B

PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. The clouds of Jupiter are composed

More information

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0.

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0. Mercury Mercury is the closest planet to the sun. It is extremely hot on the side of the planet facing the sun and very cold on the other. There is no water on the surface. There is practically no atmosphere.

More information

Label next 2 pages in ISN Gas Giants. Make sure the following assignments are turned in:

Label next 2 pages in ISN Gas Giants. Make sure the following assignments are turned in: Do Now: Label next 2 pages in ISN Gas Giants Make sure the following assignments are turned in: A3K Article Analysis Small Group Test Corrections Form (if applicable) Astronomical Bodies in The Solar System

More information

Mercury from Messenger

Mercury from Messenger Mercury from Messenger 2 Mercury Surface Details 3 Leaving Mercury 4 Venus Volcano 5 Mars Gully Channels 6 Mars Lava Channels 7 Mars Sand Dunes 8 Mars Streaks on Slopes 9 Mars Slope Streaks 10 Mars North

More information

CVtpf 2-1. Section 1 Review. 3. Describe How did the process of outgassing help shape Earth's atmosphere?

CVtpf 2-1. Section 1 Review. 3. Describe How did the process of outgassing help shape Earth's atmosphere? ----------------------------- ---------- ------ Section 1 Review CVtpf 2-1 -- SECTION VOCABULARY planet a celestial body that orbits the sun, is round because of its own gravity, and has cleared the neighborhood

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distribution of the Celestial Bodies in the Solar System

Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distribution of the Celestial Bodies in the Solar System Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distribution of the Celestial Bodies in the Solar System Hartmut Müller Global Scaling Research Institute in memoriam Leonhard

More information

GEOMATICS. Shaping our world. A company of

GEOMATICS. Shaping our world. A company of GEOMATICS Shaping our world A company of OUR EXPERTISE Geomatics Geomatics plays a mayor role in hydropower, land and water resources, urban development, transport & mobility, renewable energy, and infrastructure

More information

Web-enabled GIS Services

Web-enabled GIS Services Austin Davis Research Geographer US Army Engineer Research and Development Center, Environmental Laboratory (EL) Waterways Experiment Station (WES), Vicksburg, Mississippi Environmental Systems Branch

More information

Did you know that ALL Jovian Planets have rings??

Did you know that ALL Jovian Planets have rings?? Outer Planets Did you know that ALL Jovian Planets have rings?? Jupiter: faint, dusty rings Saturn: bright, spectacular rings Uranus: dark, thin rings Neptune: dark, thin rings & ring arcs PLANET DATA

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

About the Midterm. Same rules. About the same length/structure Objects in the Solar System through Stars & Galaxy Classification. Use your index card!

About the Midterm. Same rules. About the same length/structure Objects in the Solar System through Stars & Galaxy Classification. Use your index card! ABOUT THE MIDTERM About the Midterm Same rules Use your index card! About the same length/structure Objects in the Solar System through Stars & Galaxy Classification roughly 33% Solar System topics & 67%

More information

Deimos picture taken on the Viking Mission

Deimos picture taken on the Viking Mission 2.1n demonstrate an understanding that some planets have satellite systems with a variety of origins and structures (including Mars and Neptune) Mars has two moons which are incredibly small named Phobos

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

Stern/March 09. Century. Alan Stern

Stern/March 09. Century. Alan Stern Planet Categorization & Planetary Science: Coming of Age in the 21 st Stern/March 09 Century Alan Stern Nicolaus Copernicus 1473-1543 Stern/March 09 AAS Meeting, 1930 Our Solar System Before 1930: A Tidy

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

These modules are covered with a brief information and practical in ArcGIS Software and open source software also like QGIS, ILWIS.

These modules are covered with a brief information and practical in ArcGIS Software and open source software also like QGIS, ILWIS. Online GIS Training and training modules covered are: 1. ArcGIS, Analysis, Fundamentals and Implementation 2. ArcGIS Web Data Sharing 3. ArcGIS for Desktop 4. ArcGIS for Server These modules are covered

More information

Science : Introduction to Astronomy. Lecture 4 : Overview of the Solar System, The Sun, and the Inner Planets.

Science : Introduction to Astronomy. Lecture 4 : Overview of the Solar System, The Sun, and the Inner Planets. Science 3210 001 : Introduction to Astronomy Lecture 4 : Overview of the Solar System, The Sun, and the Inner Planets Robert Fisher Items! First Midterm in two weeks.! Homeworks / textbooks Review Week

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

Moons of Sol Lecture 13 3/5/2018

Moons of Sol Lecture 13 3/5/2018 Moons of Sol Lecture 13 3/5/2018 Tidal locking We always see the same face of the Moon. This means: period of orbit = period of spin Top view of Moon orbiting Earth Earth Why? The tidal bulge in the solid

More information

MAPSIT and the Importance of Planetary Spatial Data Infrastructure for Venus. Jani Radebaugh MAPSIT Chair VEXAG, JHUAPL, Nov 2017

MAPSIT and the Importance of Planetary Spatial Data Infrastructure for Venus. Jani Radebaugh MAPSIT Chair VEXAG, JHUAPL, Nov 2017 MAPSIT and the Importance of Planetary Spatial Data Infrastructure for Venus Jani Radebaugh MAPSIT Chair VEXAG, JHUAPL, Nov 2017 Motivation and Rationale Mosaics, geologic maps, derived regional and global

More information

Overview of Lunar Science Objectives. Opportunities and guidelines for future missions.

Overview of Lunar Science Objectives. Opportunities and guidelines for future missions. Overview of Lunar Science Objectives. Opportunities and guidelines for future missions. Chip Shearer Institute of Meteoritics University of New Mexico Albuquerque, New Mexico 87131 A rich scientific target

More information

Sun and Planets. Sun and planets formed around 4.55 billion years ago Planets are by-products of star formation. Images: NASA

Sun and Planets. Sun and planets formed around 4.55 billion years ago Planets are by-products of star formation. Images: NASA Sun and Planets Sun and planets formed around 4.55 billion years ago Planets are by-products of star formation Lots of them initially Mercury, Mars may be a single formation Venus and Earth are numerous

More information

Stern/March 09. Alan Stern

Stern/March 09. Alan Stern Stern/March 09 Planet Categorization & Planetary Science: Coming of Age in the 21 st Century Alan Stern Stern/March 09 Planet Classification Stern/March 09 Planet Classification Some Planets Are Small,

More information

Assessment Vocabulary Instructional Strategies

Assessment Vocabulary Instructional Strategies Inner Planets and the similarities for each of the inner planets? (Mercury, Venus, Earth, and Mars - such as Size, atmosphere, moons/rings, ) What are the unique characteristics and details of each of

More information

Our Solar System!!! Solar System scaled to accurate size, not distance from the Sun.

Our Solar System!!! Solar System scaled to accurate size, not distance from the Sun. Our Solar System!!! Solar System scaled to accurate size, not distance from the Sun. The Order of the Solar System Although not to scale, this diagram shows where all the objects in our Solar System are

More information

NASA Planetary Science Programs

NASA Planetary Science Programs NASA Planetary Science Programs James L. Green NASA, Planetary Science Division February 19, 2015 Presentation at OPAG 1 Outline Mission events Passed FY15 Budget elements President s FY16 Budget Discovery

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

Part 4: Exploration 1

Part 4: Exploration 1 Part 4: Exploration 1 Reaction Engine An engine, such as a jet or rocket engine, that ejects gas at high velocity and develops its thrust from the resulting reaction This movement follows Newton s Third

More information

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 11 Jupiter MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Jupiter is noticeably oblate because: A) it has a

More information

Section 37 Kepler's Rules

Section 37 Kepler's Rules Section 37 Kepler's Rules What is the universe made out of and how do the parts interact? That was our goal in this course While we ve learned that objects do what they do because of forces, energy, linear

More information

Lab #8. The Moons of the Outer Planets

Lab #8. The Moons of the Outer Planets Lab #8 The Moons of the Outer Planets Introduction In this lab, we will explore the outer planets and their fascinating moons using the latest information on the Web. There are several processes at work

More information

Astronomers Universe. More information about this series at

Astronomers Universe. More information about this series at Astronomers Universe More information about this series at http://www.springer.com/series/6960 ThiS is a FM Blank Page John Wilkinson The Solar System in Close-Up John Wilkinson Castlemaine, Victoria Australia

More information

Space and Space Travel ESS 102

Space and Space Travel ESS 102 Space and Space Travel ESS 102 Instructor for today and about 20% of future lectures Dr. Jeremy Thomas (jnt@u.washington.edu, JHN 270D, 685-1777) Feel free to contact me about any aspects of the course.

More information