Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS)

Size: px
Start display at page:

Download "Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS)"

Transcription

1 Vol. 1 No. 1 January 2011 ISSN: pp International Peer Reviewed Journal Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS) ALEJANDRO TONGCO al.tongco@okstate.edu Oklahoma State University Date Submitted: Sept. 1, 2010 Plagiarism Detection: Passed Final Revision Complied: Oct. 6, 2010 Flesch Reading Ease: Gunning Fog Index: Abtract - The paper is an introduction to implementing a basin-wide approach using remote sensing and geographic information systems with a purpose of mitigating flood losses in Cagayan de Oro City. The paper discusses remotely sensed imagery and explores the strategy in building the GIS database for the Cagayan de Oro flood loss reduction project. Keywords - base wide approach, geographic information system INTRODUCTION Losses due to flooding take many forms. These can include loss of life, property, jobs, productive time, and opportunities. Not only flood victims are the ones affected, but concerned relatives and friends as well. Quantifying the physical damage is difficult enough, but the emotional hardships are impossible to measure. The city government, government agencies, NGOs, and other charitable groups may need to spend substantial man-hours, 103

2 millions of pesos in resources, and emotional support to mitigate the difficulties experienced by victims of flood disasters. Those in the lowerincome bracket who unfortunately are the most vulnerable may need even more help. Imagine if these charitable acts could be translated into monetary terms. It could be put to use in many other ways. But losses and hardships can be mitigated, if thorough planning and preparation are done before flood events occur. Some sectors may already be involved in advocacy and awareness, project planning and implementation, as well as disaster response. Regardless, it is a must to study the flooding phenomenon on a holistic scope that is unique to Cagayan de Oro. Flooding mitigating efforts such as levee construction, drainage, and river dredging may help, but they do not address the root cause of the flooding problem. If the causes of flooding are known, and if potential floods can be assessed before they occur, mitigating efforts can be intelligently designed. Knowing about the problem can guide planners to synthesize mitigating strategies to apply before, during, and after the flooding. Nevertheless, one must address the challenges about flooding in CDO on a basin-wide scale. Topics such as general components of flooding, simulating flooding scenarios using new technologies and available satellite imagery, land-use planning and implementation, determining strategic points for early-warning systems, flood plains delineation, formulating guidelines for smooth coordination of various aid sectors during disasters, and assessing the socioeconomic implications of flooding, are just some of the areas that need to be studied in-depth. The Basin-wide Approach The basin-wide approach of analyzing the flooding phenomenon entails examining all the factors that can potentially contribute to the rise of water beyond the normal level within a basin or watershed, and examining their effects on the basin s population and sustainability. Thus, the whole flooding cycle needs to be comprehensively examined (Guidelines for Reducing Flood Losses 2006). Since flooding in the low-lying areas of the city occurs during prolonged and heavy rains within the basin or watersheds, one needs to look at the flooding cycle on a basin-wide scale. A basin or watershed is a low-lying region or area where river and its tributaries drain into (Figure 1). 104

3 Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS) A. Tongco Figure 1: A basin and its watersheds (also known as sub-basins) and stream network. Source: To tackle the problem basin-wide, a delineation of the basin and its watersheds must first be established. Remotely Sensed Imagery One way to determine the delineation of the basin and its watersheds is by the use of a satellite image called digital elevation model or DEM (Figure 2) and a capable GIS or image processing software. Every cell or pixel in a DEM contains an elevation value. The higher the resolution or the smaller the pixel size of the DEM, the greater is the accuracy of the measurements that can be derived. Besides delineating a basin, a DEM can be used to quantify low-lying areas, slopes, stream networks, and water volume flow (together with factors such as rainfall values and land cover) of a small or entire area. 105

4 Figure 2. Digital elevation model (DEM) of the CDO basin area clipped from 30-m spatial resolution elevation mosaic of ASTER GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model). Source: philgis.org. DEMs (Figure 2) can be processed to produce an output as in Figure 3 using basin and watershed delineation procedures of BASINS (Better Assessment Science Integrating point & Non-point Sources) software program of the U.S. Environmental Protection Agency (USEPA) ( datait/models/basins/index.cfm) and ArcGIS 10. The boundary (yellow) of Cagayan de Oro City was copied from Global Administrative Areas (

5 Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS) A. Tongco Bohol Sea Figure 3. The Cagayan de Oro Basin System and various basins that comprise it. Figure 3 shows that several independent basins are contained in the Cagayan de Oro boundary area. The CDO river and its tributaries are in one distinct basin which is composed of several watersheds. The CDO river basin (dark red) is independent of the basins adjacent to it. The latter basins have their own stream network not connected with the CDO river basin network. The purpose of including the adjacent basins in the CDO basin system as shown in the illustration is to show that all these individual basins can potentially contribute to the flooding of metropolitan CDO. The enormity of CDO river basin and its narrow elongated outlet suggest a high likelihood that flooding can happen downstream. The stream network gives a clue where to install early warning sensors. Higher-resolution DEMs and photography, however, are needed to determine the most ideal location after calculating the estimated amount of rainfall that may fall upstream of the sensor. On the other hand, the role of factories and agricultural and animal 107

6 farms in various locations of the watersheds during heavy rainfall needs to be studied to devise efforts to mitigate poisoning the landscape and the population downstream especially during flood events. The flooding magnitude in the basin can further be examined by factors such as land cover and utilization which influence flood volume flow. Land cover and utilization of the entire basin can be determined from multispectral imagery, as in Figure 4. Like DEMs, high-resolution imagery gives more accurate results. Recency of the imagery is likewise important. Figure 4. A multispectral image of the CDO basin system. (Source: Landsat 7 ETM+ [Enhanced Thematic Mapper Plus] 15-m spatial resolution panchromatic band, with 3 spectral bands, taken in nasa.gov/mrsid/mrsid.pl; In Figure 4, the urban areas and bare earth are shown in magenta. Areas in various shades of green are vegetative cover. Clouds are shown as cottonlike white areas. The blue area at the top of the image is Bohol Sea. The blue squiggly lines are streams and rivers. Thus, to assess the possible extent of city flooding before it occurs, one needs to know some basic information such as: where the flood waters may come from within the basins; how much rain may fall at a span of time, what coverage, and where; how fast water rushes to the city at what volume; the size and slope of the watershed; the land cover and land utilization of a specific area of the basin; and flow measurements from gauging sensors at 108

7 Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS) A. Tongco various converging points of the tributaries. Soil type also plays a part in the calculation of surface runoff and resulting flood flow. All these require investments in hardware, software, data, and manpower and are necessary to ultimately lessen the devastating and expensive outcome of floods. This is where the application of a geographic information system (GIS) can play a highly significant role throughout the project cycle and beyond. GIS A GIS is basically an information database consisting of geographically referenced data layers, wherein data in each layer is linked to a graphic (Figure 5). Because of its visual feature, GIS is effective in presenting information that is easy to understand by planners, designers, coordinators, managers, and other stakeholders in flood disaster mitigation projects. A basin-wide GIS can well illustrate the comprehensive nature of the flooding problem and is therefore a valuable tool in explaining pre-disaster scenarios. A GIS allows faster and easier exchange of data to all who may wish to do flood disaster projects. Figure 5. Layers of data simulating a real world. (Source: 109

8 In a GIS, each dataset or layer is tied to a uniform geographic coordinate system. The idea is for all layers to stack on top of each other seamlessly. A combination of same-referenced layers of the basin may be used as desired. A popular example of a layer is a political boundary, such as national, regional, provincial, municipal, barangay, or purok, and densely populated areas. These are called areas or polygons. Another example is river, stream, or roads. These are normally represented as lines at some elevation. A layer can also be a point. An example is the location of early-warning sensors or water depth gages. Raster images such as DEMs, Landsat satellite images, and aerial photos can also be used as layers. By overlaying several layers, one can simulate real-world situations. This is one major usefulness of GIS to simulate and analyze events before they actually happen, avoiding investments which otherwise could be very costly. Building the GIS Database for the CDO Flood Loss Reduction Project A basin-wide GIS database is necessary to support and supply the geospatial data needs of individual, comprehensive, or integrated projects that deal with flood loss mitigation in Cagayan de Oro City. Planners and investigators of flood-related projects need geospatial data to design, implement, manage their projects, as well as to assess their projects performance. These data include the following: administrative boundaries, population density and distribution, basin and watershed delineation (as shown above) and characterization, river network, flood plain delineation, flood-control structures, desired locations of early-warning systems, location and time of rainfall forecasts, and city drainage system. Furthermore, data should include planned evacuation and temporary shelter areas, evacuation routes, capacity of transport vehicles, and locations of hospitals and clinics. As in any information system, GIS requires data as input to produce information. GIS biggest challenge, therefore, is in database construction. Data needs to be collected, verified, processed, standardized, and managed to conform to the needs of project investigators. For a basin-based project, characterizing the watershed or basin could be time-consuming. This entails delineating and assessing the watershed and its resources, including vegetative cover, extent of developed areas, soil type, slope, runoff, waterholding capacity, and geology of the area. Evaluating the basin s land cover and land-use may have to be done regularly every year or two to reflect their timeliness and recalculate flood flow. 110

9 Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS) A. Tongco Using remotely-sensed multi-spectral (multi-band) satellite image data and through image analysis and classification, the concentration, distribution, and types of vegetative cover can be assessed. For output that requires greater detail and recency, one needs to acquire higher-resolution commercially available imagery. Elevation points and contour lines can also be derived from DEMs. A new technology called LiDAR (Light Detection and Ranging) can handle both vegetation canopy classification and elevation variation measurements. Aerial photography is also valuable to assess a landscape. It does not, however, show variation in elevation. But it is quite useful as backdrop for creating vector files and for verification and display. Aerial photographs of landscapes are also used for draping over DEMs to show a realistic 3-D view. Google Earth and ArcGIS Explorer, both free viewers, have produced detailed aerial photography of selected areas of the country, including parts of CDO (Figure 6) that are also viewable in 3-D. Figure 6. A satellite photo of a portion of CDO taken in (Source: Google Earth). Processing these various imageries requires specialized GIS and/or image processing software and skilled manpower. Free software are available but offer limited capabilities. The commercial ones have extensive capabilities but normally at steep price. 111

10 A GIS for the CDO basin system equipped with a comprehensive library of basin-wide geospatial data is definitely a worthwhile investment for CDO. GIS demands centralized data standardization and management. It is a valuable component in any mitigation project or in almost any other basin-based project. Having a central GIS database, delivery of data is easier and faster, data revisions are less expensive, and data duplication efforts are avoided. All these advantages hasten intelligent centralized and uniform planning, implementation, and assessment of disaster mitigation projects that could potentially reduce loss of life and property and lessen the disruption of people s lives. Flooding is a natural occurrence; it will come again. It could come next year or the year after next or sooner. It is not a matter of if but when the next will occur. Note: Pursuant to the international character of this publication, the journal is indexed by the following agencies: (1)Public Knowledge Project, a consortium of Simon Fraser University Library, the School of Education of Stanford University, and the British Columbia University, Canada:(2) E - International Scientific Research Journal Consortium; (3) Journal Seek - Genamics, Hamilton, New Zealand; (4) Google Scholar; (5) Philippine Electronic Journals (PEJ);and,(6) PhilJol by INASP. Acronyms ASTER GDEM Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model BASINS Better Assessment Science Integrating point and Non-point Sources DEM Digital Elevation Model CDO Cagayan de Oro ESRI Environmental Systems Research Institute GADM Global Administrative Areas GIS Geographic Information Systems Landsat 7 ETM+ Enhanced Thematic Mapper Plus LiDAR Light Detection and Ranging NGO Non-government Organization USEPA U.S. Environmental Protection Agency 112

11 Mitigating Flood Losses: An Introduction to Implementing a Basin-wide Approach Using Remote Sensing and Geographic Information Systems (GIS) A. Tongco LITERATURE CITED Guidelines for Reducing Flood Losses. United Nations International Strategy for Disaster Reduction isdr-publication/flood-guidelines/isdr-publication-floods.htm. About the author: Alejandro Tongco has more than six years of experience in GIS. He holds a doctoral degree in engineering and currently works as a research specialist focusing on GIS at Oklahoma State University, U.S.A. He is the founder and project director of the Philippine GIS Data Clearinghouse ( philgis.org), a non-profit portal for free distribution and sharing of Philippine geospatial datasets. Dr Tongco is helping Liceo de Cagayan University build its GIS capability. He can be contacted at al.tongco@okstate.edu. 113

Summary Description Municipality of Anchorage. Anchorage Coastal Resource Atlas Project

Summary Description Municipality of Anchorage. Anchorage Coastal Resource Atlas Project Summary Description Municipality of Anchorage Anchorage Coastal Resource Atlas Project By: Thede Tobish, MOA Planner; and Charlie Barnwell, MOA GIS Manager Introduction Local governments often struggle

More information

ENV208/ENV508 Applied GIS. Week 1: What is GIS?

ENV208/ENV508 Applied GIS. Week 1: What is GIS? ENV208/ENV508 Applied GIS Week 1: What is GIS? 1 WHAT IS GIS? A GIS integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information.

More information

Advanced Image Analysis in Disaster Response

Advanced Image Analysis in Disaster Response Advanced Image Analysis in Disaster Response Creating Geographic Knowledge Thomas Harris ITT The information contained in this document pertains to software products and services that are subject to the

More information

Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS

Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS Risk Analysis V: Simulation and Hazard Mitigation 263 Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS M. Mori Department of Information and Computer Science, Kinki University, Japan

More information

FLOOD HAZARD MAPPING OF DHAKA-NARAYANGANJ-DEMRA (DND) PROJECT USING GEO-INFORMATICS TOOLS

FLOOD HAZARD MAPPING OF DHAKA-NARAYANGANJ-DEMRA (DND) PROJECT USING GEO-INFORMATICS TOOLS FLOOD HAZARD MAPPING OF DHAKA-NARAYANGANJ-DEMRA (DND) PROJECT USING GEO-INFORMATICS TOOLS Md. Aminul Islam MEE07178 Supervisor: Prof. Kuniyoshi TAKEUCHI ABSTRACT Dhaka-Narayanganj-Demra (DND) Project is

More information

Use of Geospatial data for disaster managements

Use of Geospatial data for disaster managements Use of Geospatial data for disaster managements Source: http://alertsystemsgroup.com Instructor : Professor Dr. Yuji Murayama Teaching Assistant : Manjula Ranagalage What is GIS? A powerful set of tools

More information

SUPPORTS SUSTAINABLE GROWTH

SUPPORTS SUSTAINABLE GROWTH DDSS BBUUN NDDLLEE G E O S P AT I A L G O V E R N A N C E P A C K A G E SUPPORTS SUSTAINABLE GROWTH www.digitalglobe.com BRISBANE, AUSTRALIA WORLDVIEW-3 30 CM International Civil Government Programs US

More information

GIS and Remote Sensing

GIS and Remote Sensing Spring School Land use and the vulnerability of socio-ecosystems to climate change: remote sensing and modelling techniques GIS and Remote Sensing Katerina Tzavella Project Researcher PhD candidate Technology

More information

Data Quality and Uncertainty

Data Quality and Uncertainty Data Quality and Uncertainty The power of GIS analysis is based on the assembly of layers of data, but as data layers increase, errors multiply - quality decreases. Garbage in, garbage out. High quality

More information

EO Information Services. Assessing Vulnerability in the metropolitan area of Rio de Janeiro (Floods & Landslides) Project

EO Information Services. Assessing Vulnerability in the metropolitan area of Rio de Janeiro (Floods & Landslides) Project EO Information Services in support of Assessing Vulnerability in the metropolitan area of Rio de Janeiro (Floods & Landslides) Project Ricardo Armas, Critical Software SA Haris Kontoes, ISARS NOA World

More information

GIS in Weather and Society

GIS in Weather and Society GIS in Weather and Society Olga Wilhelmi Institute for the Study of Society and Environment National Center for Atmospheric Research WAS*IS November 8, 2005 Boulder, Colorado Presentation Outline GIS basic

More information

Welcome to NR502 GIS Applications in Natural Resources. You can take this course for 1 or 2 credits. There is also an option for 3 credits.

Welcome to NR502 GIS Applications in Natural Resources. You can take this course for 1 or 2 credits. There is also an option for 3 credits. Welcome to NR502 GIS Applications in Natural Resources. You can take this course for 1 or 2 credits. There is also an option for 3 credits. The 1st credit consists of a series of readings, demonstration,

More information

Pierce Cedar Creek Institute GIS Development Final Report. Grand Valley State University

Pierce Cedar Creek Institute GIS Development Final Report. Grand Valley State University Pierce Cedar Creek Institute GIS Development Final Report Grand Valley State University Major Goals of Project The two primary goals of the project were to provide Matt VanPortfliet, GVSU student, the

More information

GEOMATICS. Shaping our world. A company of

GEOMATICS. Shaping our world. A company of GEOMATICS Shaping our world A company of OUR EXPERTISE Geomatics Geomatics plays a mayor role in hydropower, land and water resources, urban development, transport & mobility, renewable energy, and infrastructure

More information

USE OF RADIOMETRICS IN SOIL SURVEY

USE OF RADIOMETRICS IN SOIL SURVEY USE OF RADIOMETRICS IN SOIL SURVEY Brian Tunstall 2003 Abstract The objectives and requirements with soil mapping are summarised. The capacities for different methods to address these objectives and requirements

More information

DATA SOURCES AND INPUT IN GIS. By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore

DATA SOURCES AND INPUT IN GIS. By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore DATA SOURCES AND INPUT IN GIS By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore 1 1. GIS stands for 'Geographic Information System'. It is a computer-based

More information

3D BUILDING GIS DATABASE GENERATION FROM LIDAR DATA AND FREE ONLINE WEB MAPS AND ITS APPLICATION FOR FLOOD HAZARD EXPOSURE ASSESSMENT

3D BUILDING GIS DATABASE GENERATION FROM LIDAR DATA AND FREE ONLINE WEB MAPS AND ITS APPLICATION FOR FLOOD HAZARD EXPOSURE ASSESSMENT 3D BUILDING GIS DATABASE GENERATION FROM LIDAR DATA AND FREE ONLINE WEB MAPS AND ITS APPLICATION FOR FLOOD HAZARD EXPOSURE ASSESSMENT Jojene R. Santillan, Meriam Makinano-Santillan, Linbert C. Cutamora,

More information

Technical Drafting, Geographic Information Systems and Computer- Based Cartography

Technical Drafting, Geographic Information Systems and Computer- Based Cartography Technical Drafting, Geographic Information Systems and Computer- Based Cartography Project-Specific and Regional Resource Mapping Services Geographic Information Systems - Spatial Analysis Terrestrial

More information

GIS = Geographic Information Systems;

GIS = Geographic Information Systems; What is GIS GIS = Geographic Information Systems; What Information are we talking about? Information about anything that has a place (e.g. locations of features, address of people) on Earth s surface,

More information

Mapping Coastal Change Using LiDAR and Multispectral Imagery

Mapping Coastal Change Using LiDAR and Multispectral Imagery Mapping Coastal Change Using LiDAR and Multispectral Imagery Contributor: Patrick Collins, Technical Solutions Engineer Presented by TABLE OF CONTENTS Introduction... 1 Coastal Change... 1 Mapping Coastal

More information

An Introduction to Geographic Information System

An Introduction to Geographic Information System An Introduction to Geographic Information System PROF. Dr. Yuji MURAYAMA Khun Kyaw Aung Hein 1 July 21,2010 GIS: A Formal Definition A system for capturing, storing, checking, Integrating, manipulating,

More information

Progress Report. Flood Hazard Mapping in Thailand

Progress Report. Flood Hazard Mapping in Thailand Progress Report Flood Hazard Mapping in Thailand Prepared By: Mr. PAITOON NAKTAE Chief of Safety Standard sub-beuro Disaster Prevention beuro Department of Disaster Prevention and Mitigation THAILAND E-mail:

More information

Submitted to. Prepared by

Submitted to. Prepared by Prepared by Tim Webster, PhD Candace MacDonald Applied Geomatics Research Group NSCC, Middleton Tel. 902 825 5475 email: tim.webster@nscc.ca Submitted to Harold MacNeil Engineering Manager Halifax Water

More information

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY CO-439 VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY YANG X. Florida State University, TALLAHASSEE, FLORIDA, UNITED STATES ABSTRACT Desert cities, particularly

More information

Frank Hegyi President, Ferihill Technologies Ltd Victoria, B.C.

Frank Hegyi President, Ferihill Technologies Ltd Victoria, B.C. REMOTE SENSING TECHNIQUES IN ENVIRONMENTAL MONITORING By Frank Hegyi President, Ferihill Technologies Ltd Victoria, B.C. ABSTRACT Increasing public awareness about environmental concerns is creating pressures

More information

Remote Sensing and GIS Applications for Hilly Watersheds SUBASHISA DUTTA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI

Remote Sensing and GIS Applications for Hilly Watersheds SUBASHISA DUTTA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI Remote Sensing and GIS Applications for Hilly Watersheds SUBASHISA DUTTA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI Deciding Alternative Land Use Options in a Watershed Using GIS Source: Anita Prakash

More information

An Internet-based Agricultural Land Use Trends Visualization System (AgLuT)

An Internet-based Agricultural Land Use Trends Visualization System (AgLuT) An Internet-based Agricultural Land Use Trends Visualization System (AgLuT) Prepared for Missouri Department of Natural Resources Missouri Department of Conservation 07-01-2000-12-31-2001 Submitted by

More information

A Comprehensive Inventory of the Number of Modified Stream Channels in the State of Minnesota. Data, Information and Knowledge Management.

A Comprehensive Inventory of the Number of Modified Stream Channels in the State of Minnesota. Data, Information and Knowledge Management. A Comprehensive Inventory of the Number of Modified Stream Channels in the State of Minnesota Data, Information and Knowledge Management Glenn Skuta Environmental Analysis and Outcomes Division Minnesota

More information

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Rajesh VijayKumar Kherde *1, Dr. Priyadarshi. H. Sawant #2 * Department of Civil Engineering,

More information

The 3D Elevation Program: Overview. Jason Stoker USGS National Geospatial Program ESRI 2015 UC

The 3D Elevation Program: Overview. Jason Stoker USGS National Geospatial Program ESRI 2015 UC + The 3D Elevation Program: Overview Jason Stoker USGS National Geospatial Program ESRI 2015 UC + 2 A little history USGS has a long, proud tradition of mapmaking (2009) + 3 The changing times Mapping

More information

Natural and Human Influences on Flood Zones in Wake County. Georgia Ditmore

Natural and Human Influences on Flood Zones in Wake County. Georgia Ditmore Natural and Human Influences on Flood Zones in Wake County Georgia Ditmore Prepared for GEOG 591 December 5, 2014 2 Table of Contents Introduction.3 Objectives...5 Methods...6 Conclusion.11 References

More information

Land Accounts - The Canadian Experience

Land Accounts - The Canadian Experience Land Accounts - The Canadian Experience Development of a Geospatial database to measure the effect of human activity on the environment Who is doing Land Accounts Statistics Canada (national) Component

More information

Techniques for Science Teachers: Using GIS in Science Classrooms.

Techniques for Science Teachers: Using GIS in Science Classrooms. Techniques for Science Teachers: Using GIS in Science Classrooms. After ESRI, 2008 GIS A Geographic Information System A collection of computer hardware, software, and geographic data used together for

More information

Existing NWS Flash Flood Guidance

Existing NWS Flash Flood Guidance Introduction The Flash Flood Potential Index (FFPI) incorporates physiographic characteristics of an individual drainage basin to determine its hydrologic response. In flash flood situations, the hydrologic

More information

The Road to Data in Baltimore

The Road to Data in Baltimore Creating a parcel level database from high resolution imagery By Austin Troy and Weiqi Zhou University of Vermont, Rubenstein School of Natural Resources State and local planning agencies are increasingly

More information

THE 3D SIMULATION INFORMATION SYSTEM FOR ASSESSING THE FLOODING LOST IN KEELUNG RIVER BASIN

THE 3D SIMULATION INFORMATION SYSTEM FOR ASSESSING THE FLOODING LOST IN KEELUNG RIVER BASIN THE 3D SIMULATION INFORMATION SYSTEM FOR ASSESSING THE FLOODING LOST IN KEELUNG RIVER BASIN Kuo-Chung Wen *, Tsung-Hsing Huang ** * Associate Professor, Chinese Culture University, Taipei **Master, Chinese

More information

Introduction-Overview. Why use a GIS? What can a GIS do? Spatial (coordinate) data model Relational (tabular) data model

Introduction-Overview. Why use a GIS? What can a GIS do? Spatial (coordinate) data model Relational (tabular) data model Introduction-Overview Why use a GIS? What can a GIS do? How does a GIS work? GIS definitions Spatial (coordinate) data model Relational (tabular) data model intro_gis.ppt 1 Why use a GIS? An extension

More information

Dr. S.SURIYA. Assistant professor. Department of Civil Engineering. B. S. Abdur Rahman University. Chennai

Dr. S.SURIYA. Assistant professor. Department of Civil Engineering. B. S. Abdur Rahman University. Chennai Hydrograph simulation for a rural watershed using SCS curve number and Geographic Information System Dr. S.SURIYA Assistant professor Department of Civil Engineering B. S. Abdur Rahman University Chennai

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki March 17, 2014 Lecture 08: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

Introduction to GIS I

Introduction to GIS I Introduction to GIS Introduction How to answer geographical questions such as follows: What is the population of a particular city? What are the characteristics of the soils in a particular land parcel?

More information

UNITED NATIONS E/CONF.96/CRP. 5

UNITED NATIONS E/CONF.96/CRP. 5 UNITED NATIONS E/CONF.96/CRP. 5 ECONOMIC AND SOCIAL COUNCIL Eighth United Nations Regional Cartographic Conference for the Americas New York, 27 June -1 July 2005 Item 5 of the provisional agenda* COUNTRY

More information

Introduction. Elevation Data Strategy. Status and Next Steps

Introduction. Elevation Data Strategy. Status and Next Steps 1 2 Introduction Elevation Data Strategy Status and Next Steps 3 Canada is the 2nd largest country in the world - 9.9 million sq km Surrounded by 3 oceans with 202 000 km of coastline Population over 35

More information

A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS

A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS ROMAN P., I. 1, OROS C., R. 2 ABSTRACT. A simple GIS method for obtaining flooded areas. This paper presents a method for obtaining flooded areas near to

More information

USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN

USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN CO-145 USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN DING Y.C. Chinese Culture University., TAIPEI, TAIWAN, PROVINCE

More information

GIS Techniques for Floodplain Delineation. Dean Djokic

GIS Techniques for Floodplain Delineation. Dean Djokic GIS Techniques for Floodplain Delineation Dean Djokic (ddjokic@esri.com) Content What is a floodplain? How to get a floodplain? What can GIS do for floodplain modeling? Simple GIS techniques for floodplain

More information

Terrain and Satellite Imagery in Madre de Dios, Peru

Terrain and Satellite Imagery in Madre de Dios, Peru Rhett Butler/mongabay.com Terrain and Satellite Imagery in Madre de Dios, Peru Katherine Lininger CE 394 GIS for Water Resources Term Paper December 1, 2011 Introduction Informal and small-scale gold mining

More information

Manitoba s Elevation (LiDAR) & Imagery Datasets. Acquisition Plans & Opportunities for Collaboration

Manitoba s Elevation (LiDAR) & Imagery Datasets. Acquisition Plans & Opportunities for Collaboration Manitoba s Elevation (LiDAR) & Imagery Datasets Acquisition Plans & Opportunities for Collaboration Manitoba Planning Conference May 2017 Presentation Outline Manitoba s Elevation (LiDAR) and Imagery Datasets

More information

Basics of GIS. by Basudeb Bhatta. Computer Aided Design Centre Department of Computer Science and Engineering Jadavpur University

Basics of GIS. by Basudeb Bhatta. Computer Aided Design Centre Department of Computer Science and Engineering Jadavpur University Basics of GIS by Basudeb Bhatta Computer Aided Design Centre Department of Computer Science and Engineering Jadavpur University e-governance Training Programme Conducted by National Institute of Electronics

More information

FLOOD HAZARD AND RISK ASSESSMENT IN MID- EASTERN PART OF DHAKA, BANGLADESH

FLOOD HAZARD AND RISK ASSESSMENT IN MID- EASTERN PART OF DHAKA, BANGLADESH FLOOD HAZARD AND RISK ASSESSMENT IN MID- EASTERN PART OF DHAKA, BANGLADESH Muhammad MASOOD MEE07180 Supervisor: Prof. Kuniyoshi TAKEUCHI ABSTRACT An inundation simulation has been done for the mid-eastern

More information

Assessment of spatial analysis techniques for estimating impervious cover

Assessment of spatial analysis techniques for estimating impervious cover University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2006 Assessment of spatial analysis techniques for estimating impervious

More information

Display data in a map-like format so that geographic patterns and interrelationships are visible

Display data in a map-like format so that geographic patterns and interrelationships are visible Vilmaliz Rodríguez Guzmán M.S. Student, Department of Geology University of Puerto Rico at Mayagüez Remote Sensing and Geographic Information Systems (GIS) Reference: James B. Campbell. Introduction to

More information

Transactions on Information and Communications Technologies vol 18, 1998 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 18, 1998 WIT Press,   ISSN STREAM, spatial tools for river basins, environment and analysis of management options Menno Schepel Resource Analysis, Zuiderstraat 110, 2611 SJDelft, the Netherlands; e-mail: menno.schepel@resource.nl

More information

Features and Benefits

Features and Benefits Autodesk LandXplorer Features and Benefits Use the Autodesk LandXplorer software family to help improve decision making, lower costs, view and share changes, and avoid the expense of creating physical

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki November 17, 2017 Lecture 11: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data

Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data Jeffrey D. Colby Yong Wang Karen Mulcahy Department of Geography East Carolina University

More information

MISSOURI LiDAR Stakeholders Meeting

MISSOURI LiDAR Stakeholders Meeting MISSOURI LiDAR Stakeholders Meeting East-West Gateway June 18, 2010 Tim Haithcoat Missouri GIO Enhanced Elevation Data What s different about it? Business requirements are changing.fast New data collection

More information

River Inundation and Hazard Mapping a Case Study of North Zone Surat City

River Inundation and Hazard Mapping a Case Study of North Zone Surat City River Inundation and Hazard Mapping a Case Study of North Zone Surat City Patel Chandresh G, Assistant Professor, Ganpat University, Kherva Dr.P.J. Gundaliya, Associate Professor, LDCE, Ahmedabad Abstract:

More information

Urban Tree Canopy Assessment Purcellville, Virginia

Urban Tree Canopy Assessment Purcellville, Virginia GLOBAL ECOSYSTEM CENTER www.systemecology.org Urban Tree Canopy Assessment Purcellville, Virginia Table of Contents 1. Project Background 2. Project Goal 3. Assessment Procedure 4. Economic Benefits 5.

More information

Popular Mechanics, 1954

Popular Mechanics, 1954 Introduction to GIS Popular Mechanics, 1954 1986 $2,599 1 MB of RAM 2017, $750, 128 GB memory, 2 GB of RAM Computing power has increased exponentially over the past 30 years, Allowing the existence of

More information

Louisiana Transportation Engineering Conference. Monday, February 12, 2007

Louisiana Transportation Engineering Conference. Monday, February 12, 2007 Louisiana Transportation Engineering Conference Monday, February 12, 2007 Agenda Project Background Goal of EIS Why Use GIS? What is GIS? How used on this Project Other site selection tools I-69 Corridor

More information

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques İrfan Akar University of Atatürk, Institute of Social Sciences, Erzurum, Turkey D. Maktav & C. Uysal

More information

Data Quality and Uncertainty. Accuracy, Precision, Data quality and Errors

Data Quality and Uncertainty. Accuracy, Precision, Data quality and Errors Data Quality and Uncertainty The power of GIS analysis is based on the assembly of layers of data, but as data layers increase, errors multiply (and quality decreases). Garbage in, garbage out. High quality

More information

Huron Creek Watershed 2005 Land Use Map

Huron Creek Watershed 2005 Land Use Map Huron Creek Watershed 2005 Land Use Map Created By: Linda Kersten, 12/20/06 Created For: MTU Introduction to GIS Class (FW 5550) The Huron Creek Watershed Advisory Committee Michigan Technological University,

More information

NR402 GIS Applications in Natural Resources

NR402 GIS Applications in Natural Resources NR402 GIS Applications in Natural Resources Lesson 1 Introduction to GIS Eva Strand, University of Idaho Map of the Pacific Northwest from http://www.or.blm.gov/gis/ Welcome to NR402 GIS Applications in

More information

Roles of NGII in successful disaster management

Roles of NGII in successful disaster management The Second UN-GGIM-AP Plenary Meeting Roles of NGII in successful disaster management Republic of Korea Teheran Iran 28 October 2013 Sanghoon Lee, Ph.D. NGII Outline Type of Disasters Occur in Korea Practical

More information

ISO Swift Current LiDAR Project 2009 Data Product Specifications. Revision: A

ISO Swift Current LiDAR Project 2009 Data Product Specifications. Revision: A ISO 19131 Swift Current LiDAR Project 2009 Data Product Specifications Revision: A Data product specifications: Swift Current LiDAR Project 2009 - Table of Contents- 1. Overview... 4 1.1. Informal description...

More information

CENTRAL TEXAS HILL COUNTRY FLOOD

CENTRAL TEXAS HILL COUNTRY FLOOD CENTRAL TEXAS HILL COUNTRY FLOOD Term project report DECEMBER 7, 2018 UNIVERSITY OF TEXAS AT AUSTIN CE394K: GIS in Water Resources Engineering RIFAAI Mohamed Talha Table of Contents Introduction... 3 Context...

More information

Disaster Risk Assessment: Opportunities for GIS and data management with Open DRI

Disaster Risk Assessment: Opportunities for GIS and data management with Open DRI Disaster Risk Assessment: Opportunities for GIS and data management with Open DRI Jacob Opadeyi Department of Geomatics Engineering and Land Management, The University of the West Indies, St. Augustine,

More information

Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities

Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities Shirish Ravan shirish.ravan@unoosa.org UN-SPIDER United Nations Office for Outer Space Affairs (UNOOSA) UN-SPIDER

More information

Geospatial natural disaster management

Geospatial natural disaster management Geospatial natural disaster management disasters happen. are you ready? Natural disasters can strike almost anywhere at any time, with no regard to a municipality s financial resources. These extraordinarily

More information

DRAFT Methodology for Remote Sensing and GIS Analysis for Multiple Indicator Rapid Need Assessment (MIRA)

DRAFT Methodology for Remote Sensing and GIS Analysis for Multiple Indicator Rapid Need Assessment (MIRA) DRAFT Methodology for Remote Sensing and GIS Analysis for Multiple Indicator Rapid Need Assessment (MIRA) Context and background/introduction: The Multi-sector Initial Rapid Assessment (MIRA) is the first

More information

ESTIMATING LAND VALUE AND DISASTER RISK IN URBAN AREA IN YANGON, MYANMAR USING STEREO HIGH-RESOLUTION IMAGES AND MULTI-TEMPORAL LANDSAT IMAGES

ESTIMATING LAND VALUE AND DISASTER RISK IN URBAN AREA IN YANGON, MYANMAR USING STEREO HIGH-RESOLUTION IMAGES AND MULTI-TEMPORAL LANDSAT IMAGES ESTIMATING LAND VALUE AND DISASTER RISK IN URBAN AREA IN YANGON, MYANMAR USING STEREO HIGH-RESOLUTION IMAGES AND MULTI-TEMPORAL LANDSAT IMAGES Tanakorn Sritarapipat 1 and Wataru Takeuchi 1 1 Institute

More information

Physical Geography: Patterns, Processes, and Interactions, Grade 11, University/College Expectations

Physical Geography: Patterns, Processes, and Interactions, Grade 11, University/College Expectations Geographic Foundations: Space and Systems SSV.01 explain major theories of the origin and internal structure of the earth; Page 1 SSV.02 demonstrate an understanding of the principal features of the earth

More information

Data sources and classification for ecosystem accounting g

Data sources and classification for ecosystem accounting   g Data sources and classification for ecosystem accounting Ken Bagstad 23 February 2015 Wealth Accounting and the Valuation of Ecosystem Services www.wavespartnership.org Data sources and classification

More information

Emergency Planning. for the. Democratic National. Convention. imaging notes // Spring 2009 //

Emergency Planning. for the. Democratic National. Convention. imaging notes // Spring 2009 // Emergency Planning for the Democratic National Convention The DRAPP Demonstrates Partnership among Local, Regional, State, Utility and Federal Governments 14 imaging notes // Spring 2009 // www.imagingnotes.com

More information

PUBLIC OUTREACH THROUGH GIS

PUBLIC OUTREACH THROUGH GIS PUBLIC OUTREACH THROUGH GIS Tim Witt, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. E-mail: tw501@jaguar1.usouthal.edu. In this paper, I propose a few ways, by using GIS

More information

Flood Hazard Vulnerability Mapping Using Remote Sensing and GIS: A Case Study of Surat Dhruvesh KM 1*, Praful MU 2 and Aditya MV 1 1

Flood Hazard Vulnerability Mapping Using Remote Sensing and GIS: A Case Study of Surat Dhruvesh KM 1*, Praful MU 2 and Aditya MV 1 1 Flood Hazard Vulnerability Mapping Using Remote Sensing and GIS: A Case Study of Surat Dhruvesh KM 1*, Praful MU 2 and Aditya MV 1 1 CU Shah University, Wadhwan, India 2 ISTAR-CVM, Vallabh Vidyanagar,

More information

Introduction to Geographic Information Systems (GIS): Environmental Science Focus

Introduction to Geographic Information Systems (GIS): Environmental Science Focus Introduction to Geographic Information Systems (GIS): Environmental Science Focus September 9, 2013 We will begin at 9:10 AM. Login info: Username:!cnrguest Password: gocal_bears Instructor: Domain: CAMPUS

More information

DEVELOPMENT OF ARCGIS-CUSTOMIZED TOOL FOR FLOOD RISK ASSESSMENT AND REPORT GENERATION IN BUTUAN CITY

DEVELOPMENT OF ARCGIS-CUSTOMIZED TOOL FOR FLOOD RISK ASSESSMENT AND REPORT GENERATION IN BUTUAN CITY DEVELOPMENT OF ARCGIS-CUSTOMIZED TOOL FOR FLOOD RISK ASSESSMENT AND REPORT GENERATION IN BUTUAN CITY Alexander T. Demetillo, Michelle V. Japitana, Dennis Y. Villanueva and Cherry Mae P. Tulfo CLAIMS-GIS

More information

Spatial Process VS. Non-spatial Process. Landscape Process

Spatial Process VS. Non-spatial Process. Landscape Process Spatial Process VS. Non-spatial Process A process is non-spatial if it is NOT a function of spatial pattern = A process is spatial if it is a function of spatial pattern Landscape Process If there is no

More information

International Journal of Intellectual Advancements and Research in Engineering Computations

International Journal of Intellectual Advancements and Research in Engineering Computations ISSN:2348-2079 Volume-5 Issue-2 International Journal of Intellectual Advancements and Research in Engineering Computations Agricultural land investigation and change detection in Coimbatore district by

More information

Quality and Coverage of Data Sources

Quality and Coverage of Data Sources Quality and Coverage of Data Sources Objectives Selecting an appropriate source for each item of information to be stored in the GIS database is very important for GIS Data Capture. Selection of quality

More information

Imagery and the Location-enabled Platform in State and Local Government

Imagery and the Location-enabled Platform in State and Local Government Imagery and the Location-enabled Platform in State and Local Government Fred Limp, Director, CAST Jim Farley, Vice President, Leica Geosystems Oracle Spatial Users Group Denver, March 10, 2005 TM TM Discussion

More information

McHenry County Property Search Sources of Information

McHenry County Property Search Sources of Information Disclaimer: The information in this system may contain inaccuracies or typographical errors. The information in this system is a digital representation of information derived from original documents; as

More information

Rio Santa Geodatabase Project

Rio Santa Geodatabase Project Rio Santa Geodatabase Project Amanda Cuellar December 7, 2012 Introduction The McKinney research group (of which I am a part) collaborates with international and onsite researchers to evaluate the risks

More information

EBA Engineering Consultants Ltd. Creating and Delivering Better Solutions

EBA Engineering Consultants Ltd. Creating and Delivering Better Solutions EBA Engineering Consultants Ltd. Creating and Delivering Better Solutions ENHANCING THE CAPABILITY OF ECOSYSTEM MAPPING TO SUPPORT ADAPTIVE FOREST MANAGEMENT Prepared by: EBA ENGINEERING CONSULTANTS LTD.

More information

Yanbo Huang and Guy Fipps, P.E. 2. August 25, 2006

Yanbo Huang and Guy Fipps, P.E. 2. August 25, 2006 Landsat Satellite Multi-Spectral Image Classification of Land Cover Change for GIS-Based Urbanization Analysis in Irrigation Districts: Evaluation in Low Rio Grande Valley 1 by Yanbo Huang and Guy Fipps,

More information

Systems (GIS) - with a focus on.

Systems (GIS) - with a focus on. Introduction to Geographic Information Systems (GIS) - with a focus on localizing the MDGs Carmelle J. Terborgh, Ph.D. ESRI www.esri.com Flying Blind Jul 24th 2003 The Economist We Live in Two Worlds Natural

More information

USING HYPERSPECTRAL IMAGERY

USING HYPERSPECTRAL IMAGERY USING HYPERSPECTRAL IMAGERY AND LIDAR DATA TO DETECT PLANT INVASIONS 2016 ESRI CANADA SCHOLARSHIP APPLICATION CURTIS CHANCE M.SC. CANDIDATE FACULTY OF FORESTRY UNIVERSITY OF BRITISH COLUMBIA CURTIS.CHANCE@ALUMNI.UBC.CA

More information

Geo-spatial Analysis for Prediction of River Floods

Geo-spatial Analysis for Prediction of River Floods Geo-spatial Analysis for Prediction of River Floods Abstract. Due to the serious climate change, severe weather conditions constantly change the environment s phenomena. Floods turned out to be one of

More information

Waterborne Environmental, Inc., Leesburg, VA, USA 2. Syngenta Crop Protection, LLC, North America 3. Syngenta Crop Protection, Int.

Waterborne Environmental, Inc., Leesburg, VA, USA 2. Syngenta Crop Protection, LLC, North America 3. Syngenta Crop Protection, Int. Application of High Resolution Elevation Data (LiDAR) to Assess Natural and Anthropogenic Agricultural Features Affecting the Transport of Pesticides at Multiple Spatial Scales Josh Amos 1, Chris Holmes

More information

Using Remote Sensing to Analyze River Geomorphology

Using Remote Sensing to Analyze River Geomorphology Using Remote Sensing to Analyze River Geomorphology Seeing Water from Space Workshop August 11 th, 2015 George Allen geoallen@unc.edu Rivers impact: Geology Ecology Humans The atmosphere River Geomorphology

More information

Yaneev Golombek, GISP. Merrick/McLaughlin. ESRI International User. July 9, Engineering Architecture Design-Build Surveying GeoSpatial Solutions

Yaneev Golombek, GISP. Merrick/McLaughlin. ESRI International User. July 9, Engineering Architecture Design-Build Surveying GeoSpatial Solutions Yaneev Golombek, GISP GIS July Presentation 9, 2013 for Merrick/McLaughlin Conference Water ESRI International User July 9, 2013 Engineering Architecture Design-Build Surveying GeoSpatial Solutions Purpose

More information

Determination of Urban Runoff Using ILLUDAS and GIS

Determination of Urban Runoff Using ILLUDAS and GIS Texas A&M University Department of Civil Engineering Instructor: Dr. Francisco Olivera CVEN689 Applications of GIS to Civil Engineering Determination of Urban Runoff Using ILLUDAS and GIS Tae Jin Kim 03.

More information

Write a report (6-7 pages, double space) on some examples of Internet Applications. You can choose only ONE of the following application areas:

Write a report (6-7 pages, double space) on some examples of Internet Applications. You can choose only ONE of the following application areas: UPR 6905 Internet GIS Homework 1 Yong Hong Guo September 9, 2008 Write a report (6-7 pages, double space) on some examples of Internet Applications. You can choose only ONE of the following application

More information

Flood Hazard Inundation Mapping. Presentation. Flood Hazard Mapping

Flood Hazard Inundation Mapping. Presentation. Flood Hazard Mapping Flood Hazard Inundation Mapping Verne Schneider, James Verdin, and JeradBales U.S. Geological Survey Reston, VA Presentation Flood Hazard Mapping Requirements Practice in the United States Real Time Inundation

More information

GIS & Remote Sensing in Mapping Sea-Level Rise (SLR)

GIS & Remote Sensing in Mapping Sea-Level Rise (SLR) Joe McGuire NRS-509 Concepts in GIS & Remote Sensing Professors August & Wang Due 12/10/2015 11:30am GIS & Remote Sensing in Mapping Sea-Level Rise (SLR) The ever-present threat of global warming and a

More information

Geography General Course Year 12. Selected Unit 3 syllabus content for the. Externally set task 2019

Geography General Course Year 12. Selected Unit 3 syllabus content for the. Externally set task 2019 Geography General Course Year 12 Selected Unit 3 syllabus content for the Externally set task 2019 This document is an extract from the Geography General Course Year 12 syllabus, featuring all of the content

More information

A Help Guide for Using gssurgo to Find Potential Wetland Soil Landscapes

A Help Guide for Using gssurgo to Find Potential Wetland Soil Landscapes A Help Guide for Using gssurgo to Find Potential Wetland Soil Landscapes Wetland Mapping Consortium Webinar September 17, 2014 Dr. John M. Galbraith Crop & Soil Environmental Sciences Virginia Tech Wetland

More information

A MODEL FOR RISES AND DOWNS OF THE GREATEST LAKE ON EARTH

A MODEL FOR RISES AND DOWNS OF THE GREATEST LAKE ON EARTH A MODEL FOR RISES AND DOWNS OF THE GREATEST LAKE ON EARTH Parviz Tarikhi Iranian Remote Sensing Center, Iran May 2005 1 Figure 1: West of Novshahr in the Iranian coast of Caspian; the dam constructed to

More information