Name: KEY Period: 1. Know all vocabulary definitions. 2. Name 4 chemical properties & 4 physical properties of matter.

Size: px
Start display at page:

Download "Name: KEY Period: 1. Know all vocabulary definitions. 2. Name 4 chemical properties & 4 physical properties of matter."

Transcription

1 Name: KEY Period: Chapter 4 The Properties of Matter and the Analysis of Glass Review 1. Know all vocabulary definitions. 2. Name 4 chemical properties & 4 physical properties of matter. Chemical: burning, rusting, decomposing, and color change Physical: weight, volume, color, boiling & melting point 3. Name 4 types of chemical reactions and give ABCD diagram for each. Synthesis : A + B à AB Single Replacement: AB + C à CB + A Decomposition: AB à A + B Double Replacenent: AB + CD à AD + BC *PPT has Single Replacement as AB + C à AC + B and Double Replacement as AB + CD à AC + BD; technically these are incorrect. 4. Name the 3 basic units of measurement for length, mass, and volume in the metric system. Length = meter Mass = gram Volume = liter 5. What is the relationship between cm 3, cc, and ml for liquids in the metric system? 1cm 3 = 1cc = 1 ml 6. Be able to perform metric conversions using King Henry and the Ladder Method (or method of your choice). a km = 657,000,000 mm or 6.75 x 10 6 mm b dg (decigrams) = Dg (dekagrams) 7. Be able to perform conversions using the Factor Label Method (Dimensional Analysis). a. Know how many centimeters are in 1 inch: 2.54 cm = 1 inch b. How many days are in 555,555 seconds? 555,555 s 1 min 1 hr 1 day = days 60 s 60 min 24 hr c. How many centimeters are in 3545 feet? 3545 ft 12 in 2.54 cm = 108,051.6 ~ 108,100 cm 1 ft 1 in 8. Compare attractive forces and density in the three state of matter. a. Which state has the strongest attractive forces between molecules? solid b. Which state has the weakest attractive forces between molecules? gas c. Which state is generally considered the most dense (higher density)? solid d. Which state is generally considered the least dense (lower density)? gas e. Which state has no specific shape and no specific volume? gas f. Which state has a specific shape and a specific volume? solid g. Which state takes the shape of its container and has a specific volume? liquid 1

2 9. Describe the two models of the behavior of light. Light behaves as a continuous wave and as a stream of discrete energy particles known as photons. 10. As electromagnetic radiation moves through space, its behavior can be described as that of a continuous wave. 11. Once radiation is absorbed by a substance, it is best described as discrete particles of light known as photons. 12. Understand how the frequency, wavelength, and energy of light are related. a. Draw a wave that has high frequency. b. Draw a wave that has low frequency. c. Referring to your diagrams above, high frequency means that the wavelength is always (shorter or longer) than low frequency waves. d. The higher the frequency, the (higher or lower) the energy of the wave. 13. What is the difference between the electromagnetic spectrum and the visible spectrum? The electromagnetic spectrum is the entire range of radiation in the universe; whereas, the visible spectrum is only a small part of radiation within the larger electromagnetic spectrum. In addition, the visible spectrum is the only part of the larger spectrum that we can actually see. 14. List the radiation types in order from the most dangerous (highest energy/highest frequency/shortest wavelength) to least dangerous (lowest energy/lowest frequency/longest wavelength). Gamma rays, X- rays, Ultraviolet, Visible Light, Infrared, Microwaves, Radiowaves 15. List the colors of the visible spectrum in order from highest energy/highest frequency/shortest wavelength to the lowest energy/lowest frequency/longest wavelength. Violet, Indigo, Blue, Green, Yellow, Orange, Red 2

3 16. The most commonly used temperature scale in science is the Celsius scale. a. Celsius scale freezing point of water = 0 C ; boiling point = 100 C. b. Fahrenheit scale freezing point of water = 32 F ; boiling point = 212 F. 17. What is the difference between mass and weight? Mass is the amount of matter an object contains and does not take gravity into consideration. Weight is the force with which gravity attracts a body. a. What is the mass of a 7000 kg elephant on the Jupiter? The elephant s mass on Jupiter is still 7000 kg because mass is independent of gravity anywhere in the universe. 18. A 0.39 g glass fragment is placed in a test tube containing 5.0 ml of water. Once in the test tube, the water level rises to a volume of 7.0 ml. What is the density of the glass fragment? D = m 0.39 g = 0.39 g = g ~ 0.20 g V (7 ml 5 ml) 2 ml ml ml 19. Generally speaking, how does temperature affect the density of a substance? As temperature increases of the substance, the density decreases. a. Which is more dense, a substance at 100F or at 40F? 40 F 20. Why do light waves bend when traveling from one medium such as air into another medium such as water? Light waves travel in air at a constant velocity until they penetrate another medium at which point the waves are suddenly slowed, causing the rays to bend. 21. What is the difference between refraction and refractive index? Refraction is the bending of light waves because of a change in velocity as it penetrates another medium. Refractive index (RI) is the ratio of the velocity of light in a vacuum (air) to the velocity of light in the medium. 22. What two factors can cause refractive index to vary? Both temperature changes and wavelength changes can cause refractive index to vary. 23. How does a crystalline solid like calcite refract a beam of light? Crystalline solids refract a beam of light in two different light- ray components. a. What does this refraction result in? It results in a double refraction and a dual image. b. What does birefringence have to do with your answer in a. Birefringence is the numerical difference between the two refractive indices of the double refraction that occurs. c. What kind of a solid is glass considered? Glass is a noncrystalline solid called an amorphous solid. 3

4 d. Does glass exhibit birefringence? No. Only crystalline solids exhibit double refraction and have birefringence. 24. Describe 5 characteristics of glass in general: Hard, brittle, amorphous substance, mostly sand, and mixed with various metal oxides. 25. What is in soda- lime glass? Soda is added to make it more workable and lime added to make it less dissolvable in water. a. Give 2 examples of this glass: windows and bottles 26. What is in borosilicate glass? Boron oxide added to withstand high heat. a. Give 2 examples of this glass: test tubes and headlights 27. How is tempered glass made? It is made by rapid heating and cooling, repeatedly. a. How does tempered glass break? Tempered auto windows break into small square- like pieces without sharp edges. Pyrex tempered cookware breaks into 1-2 large pieces instead of numerous very sharp pieces. b. Give 3 example of this glass: shower doors, side & rear auto windows, pyrex cookware 28. How is laminated glass made? It is made by placing a plastic film between two pieces of glass. a. Give an example: windshields 29. What are the two most important physical properties used to identify and compare glass fragments? Refractive index and density a. These two physical properties ( ARE or ARE NOT ) considered intensive physical properties. 30. What is the Flotation Method used for? It is used to determine and compare the densities of glass. a. When the standard/reference sample of glass is suspended in the liquid medium, what does this say about their densities? The standard/reference sample and liquid medium have the same/similiar density. b. If the evidence sample of glass is now added to the liquid medium and it also is suspended, what does this say? The evidence sample, standard/reference sample, and the liquid medium all have the same/similar density; therefore, the evidence is the same kind of glass as the standard/reference glass sample. c. And if the evidence sample floats on top of the liquid medium? The evidence sample is less dense than the liquid medium and therefore not the same density as the standard/reference sample and not the same kind of glass. d. And if the evidence sample sinks to the bottom? It is more dense than the medium and not the same density or kind of glass. 4

5 31. What is the Immersion Method used for? It is used to determine the refractive index (RI) of a glass fragment. a. When the evidence sample is immersed in the liquid oil medium and the Becke Line around the sample disappears, what does this say about their refractive indices? The evidence and the liquid oil have the same RI. Since the RI of the liquid will be known, we now know the RI of the glass. b. And if the Becke Line is inside the border of the sample? The RI of the glass is higher than the RI of the liquid. c. And if the Becke Line is outside the border of the sample? The RI of the liquid is higher than the RI of the glass. *ALWAYS REMEMBER: Line inside glass = glass RI is higher : Line outside glass = medium (liquid oil) RI is higher d. What is the benefit of using the GRIM- 3 for RI determination? The analyst can view a large image of the glass fragment to see the Becke line disappear, and the computer automatically adjusts the temperature of the oil and calculates the precise RI at the match point. 32. What is the difference between the radial and the concentric cracks? Radial cracks radiate out from the center of impact like spokes on a wheel. Concentric cracks form circles around the center of the impact. a. Which cracks form first? Radial b. On what side of the glass do they form? Reverse (opposite) side of the impact force c. Which cracks form second? Concentric d. On what side of the glass do they form? On the same side as the impact force e. What is the 3R Rule used for? Used to determine the direction of impact force on glass f. State the 3R Rule: Radial cracks form a Right angle on the Reverse side of the force. g. The term right angle means ( PERPENDICULAR or PARALLEL ). h. What happens on the concentric edges of glass? Concentric cracks form a right angle on the same side of the force. i. Apply the 3R Rule and draw the correct fracture pattern on the radial edge and on the concentric edges of glass fragments: Concentric Radial Impact Force Impact Force 5

6 33. When given multiple gunshot penetrations, how do you determine which shot was first? Fractures from the first impact act as barriers stopping fractures from the second impact. Look for radial fracture lines that abruptly stop when coming in contact with radial fractures from the first impact. 34. Which side ( ENTRANCE or EXIT ) of the glass will a high- velocity projectile, such as a bullet or bb gun pellet, leave a wider hole? 35. What is the only way to link two glass fragments to a common source? By physically matching the evidence glass to the broken glass from the crime scene like a puzzle. 36. If there is a possibility that glass fragments can be pieced together for an individual fit, how should the glass be collected? All the glass found at the scene and all the glass from the suspect needs to be collected. 37. If an individual fit is not possible, what glass should be collected? A representative sample of broken glass from the scene and all the glass from the suspect needs to be collected. 38. What containers are best suited for collection of glass? Packaged in solid containers to avoid further breakage. 39. If a suspect s shoes and/or clothing is to be collected for glass fragments, how should it be packaged? The shoes should be individually wrapped in paper and the clothing in different paper. 6

Physical Properties: Glass and Soil

Physical Properties: Glass and Soil chapter 4 Physical Properties: Glass and Soil Key Terms amorphous solid atom Becke line birefringence Celsius scale chemical property concentric fracture crystalline solid density density-gradient tube

More information

Matter Stations. January 2, 2018

Matter Stations. January 2, 2018 Matter Stations January 2, 2018 Station 1: What is Matter? A. For Vocabulary Chart: MATTER B. Activity: 1. Separate the different cards into Matter and Non Matter. 2. Pick three substances that are matter

More information

Topic 5 Practice Test

Topic 5 Practice Test Base your answers to questions 1 and 2 on the diagram below, which represents the greenhouse effect in which heat energy is trapped in Earth's atmosphere 1. The Earth surface that best absorbs short-wave

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation.

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. Light & Atoms Electromagnetic [EM] Waves Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. These have both and electric part and a magnetic part

More information

Republic of Somaliland. Somaliland National Examination Board. Form Four. Physics Examination. June 2009 TIME 2 HOURS

Republic of Somaliland. Somaliland National Examination Board. Form Four. Physics Examination. June 2009 TIME 2 HOURS Name..... Total Score School... Roll No... Republic of Somaliland Form Four Physics Examination June 2009 TIME 2 HOURS Plus 10 minutes for reading through the paper Total time 2 Hours and 10 Minutes INSTRUCTIONS

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Heat and Temperature

Heat and Temperature Heat and Temperature Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Intro: Discussion A person from Seattle

More information

6 th Grade Introduction to Chemistry

6 th Grade Introduction to Chemistry Lesson 1 (Describing Matter) 6 th Grade Introduction to Chemistry Matter anything that has mass and takes up space All the stuff in the natural world is matter. Chapter 1: Introduction to Matter Chemistry

More information

What is the current atomic model?

What is the current atomic model? 4.1 Atoms Basic Units of Matter What is the current atomic model? Matter is anything that has mass and takes up space, such as gases, solids, and liquids. Matter is not sound, heat, or light these are

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L What Is Light? (P ) What Is Light? What Is Light?

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L What Is Light? (P ) What Is Light? What Is Light? SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L What Is Light? (P.380-391) What Is Light? For centuries, scientists have tried to understand the nature of light and its properties. Some of these properties are

More information

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

More information

Honors Chemistry Chapter 2 Problem Handout Solve the following on separate sheets of paper. Where appropriate, show all work. 1. Convert each of the

Honors Chemistry Chapter 2 Problem Handout Solve the following on separate sheets of paper. Where appropriate, show all work. 1. Convert each of the Honors Chemistry Chapter 2 Problem Handout Solve the following on separate sheets of paper. Where appropriate, show all work. 1. Convert each of the following quantities to the required unit. a. 12.75

More information

Chapter 3 Metric Units and Conversions

Chapter 3 Metric Units and Conversions Chapter 3 Metric Units and Conversions 3.1 The Metric System and Prefixes Metric system: a simple decimal system of measurement that uses the following basic units: Quantity Basic Unit Symbol length meter

More information

CHAPTER 6 - WATER (continued)

CHAPTER 6 - WATER (continued) CHAPTER 6 - WATER (continued) Metric Is Beautiful Water freezes at: Water boils at: Fahrenheit 32 ºF 212 ºF Centigrade* 0 ºC 100 ºC *aka the Celsius scale, after its creator, Swedish astronomer Anders

More information

Density and Differentiation. Science Starter and Vocabulary

Density and Differentiation. Science Starter and Vocabulary Density and Differentiation Science Starter and Vocabulary Science Starter Answer the following and turn in. You have 5 minutes to complete. Use complete sentences to answer the following question. Be

More information

Measurement Matter and Density. Name: Period:

Measurement Matter and Density. Name: Period: Measurement Matter and Density Name: Period: Studying Physics and Chemistry Physics Tells us how fast objects move or how much it takes to get objects to, turn or stop. Chemistry Explains how different

More information

PROPERTIES OF MATTER Review Stations

PROPERTIES OF MATTER Review Stations PROPERTIES OF MATTER Review Stations PROPERTIES OF MATTER STATION 1 Where did the water droplets on the outside of this cup come from? Answer: The droplets came from the air surrounding the cup. What phase

More information

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy Q: What is energy? Energy is the ability to do work. Q: What is work? Work is done when a force causes an object to move. Q: Potential Energy The energy of an object due to its position, shape, or condition

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

Name Date Class. Electromagnetic Spectrum. Colors

Name Date Class. Electromagnetic Spectrum. Colors b e n c h m a r k t e s t : p h y s i c a l s c i e n c e Multiple Choice Directions: Use the diagram below to answer question 1. Electromagnetic Spectrum Radio waves A B C D Gamma rays Long Wavelength

More information

Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Chapter 16 Temperature and Heat 16-1 Temperature and the Zeroth Law of Thermodynamics Definition of heat: Heat is the energy transferred between objects because of a temperature difference. Objects are

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

PROPERTIES OF MATTER STATION 1. Where did the water droplets on the outside of this cup come from? What phase change is this?

PROPERTIES OF MATTER STATION 1. Where did the water droplets on the outside of this cup come from? What phase change is this? PROPERTIES OF MATTER STATION 1 Where did the water droplets on the outside of this cup come from? What phase change is this? PROPERTIES OF MATTER STATION 2 Make a copy of this graph on your paper. Label

More information

FCAT REVIEW Physical Science: Force and Energy

FCAT REVIEW Physical Science: Force and Energy FCAT REVIEW Physical Science: Force and Energy Force and Motion A force is a push or pull that starts, stops, or changes the direction of an object. Some examples of contact forces are gravity and friction.

More information

Grade 7 Physical Pretest

Grade 7 Physical Pretest Grade 7 Physical Pretest Select the best answer to each question. 1. Energy from the sun arrives as electromagnetic radiation with a wide range of wavelengths and frequencies. Of the four wave types listed,

More information

Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity.

Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity. Middle School Curriculum Standards: Chemistry and Physics Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity. Objects in the

More information

Electromagnetic Radiation (EMR)

Electromagnetic Radiation (EMR) Electromagnetic Radiation (EMR) It is kind of energy with wave character ( exactly as sea waves ) that can be characterized by : Wavelength ( ) : The distance between two identical points on the wave.

More information

All matter is made of moving particles

All matter is made of moving particles All matter is made of moving particles I. Kinetic Theory of matter all particles in matter are constantly in motion a. Kinetic Energy is motion energy b. Therefore all particles in solids, liquids and

More information

Energy and Insolation Review 2

Energy and Insolation Review 2 Energy and Insolation Review 2 The diagram below shows a container of water that is being heated. 1. The movement of water shown by the arrows is most likely caused by (1) density differences (2) insolation

More information

Matter Study Guide. Important Vocabulary: Must be able to define and apply these words

Matter Study Guide. Important Vocabulary: Must be able to define and apply these words Matter Study Guide Objective: TEKS 4.5(a) The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected

More information

2 Standards of Measurement

2 Standards of Measurement What You ll Learn the SI units and symbols for length, volume, mass, density, time, and temperature how to convert related SI units 2 Standards of Measurement (A), 2(D), 2(C), 2(E) Before You Read If someone

More information

Science 350 Week 1 Module 1 Schedule

Science 350 Week 1 Module 1 Schedule Science 350 Week 1 Module 1 Schedule Date: Day 1 1 Day 2 2 Day 3 3 Day 4 4 Day 5 5 pp. 1 7 (top) pp. 7 13 ( Manipulating Units through pp. 13 19 ( More Complex through pp. 19 25 ( Making Measurements through

More information

Physical Science Jeopardy!

Physical Science Jeopardy! Physical Science Jeopardy! Properties of Matter Light and EM Spectrum Atoms & Periodic Table Heat Transfer Forces 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30 40 40 40 40 40 50 50 50 50 50 10- Jan noticed

More information

Section 1: The Science of Energy¹

Section 1: The Science of Energy¹ SECTION1: THE SCIENCE OF ENERGY Section 1: The Science of Energy¹ What Is Energy? Energy is the ability to do work or the ability to make a change. Everything that happens in the world involves the exchange

More information

How do we get information about heavenly bodies when they are so far??

How do we get information about heavenly bodies when they are so far?? In Astronomy the most common unit to measure distances is---- Light Year: It is the distance traveled by light in one year. Speed of light ~ 300,000 kilometers/sec So in one hour lights travels = 300,000

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 9

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 9 ASTRONOMY 161 Introduction to Solar System Astronomy Class 9 Light Monday, January 29 Look, but don t touch. - Astronomers Motto Light: Key Concepts (1) Visible light is just one form of electromagnetic

More information

NSTA 2012 WARDS Natural Science Kathy Mirakovits, Workshop Leader

NSTA 2012 WARDS Natural Science Kathy Mirakovits, Workshop Leader NSTA 2012 WARDS Natural Science Kathy Mirakovits, Workshop Leader Read Scenario Victim: Tim Suspect: John Evidence/Science to Process Note/Chromatography Separation Chemistry, Mathematics Broken Glass/Density

More information

Chemistry Mid-Term Practice Exam

Chemistry Mid-Term Practice Exam Chemistry Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. A measure of the 3-D space matter occupies is a. density. c. volume.

More information

A simple equation of what happens when you add baking soda to vinegar:

A simple equation of what happens when you add baking soda to vinegar: What s the Matter? Matter is anything that takes up space and has mass. Mass is the stuff that matter is made of, or the amount of particles in a substance or object. Matter has physical and chemical properties

More information

Singler/Grant Applied ES2 Midyear Topic Outline Midyear Date: Friday 1/19/2018 8:00 a.m. Location: Room B330

Singler/Grant Applied ES2 Midyear Topic Outline Midyear Date: Friday 1/19/2018 8:00 a.m. Location: Room B330 Name: Singler/Grant Applied ES2 Midyear Topic Outline Midyear Date: Friday 1/19/2018 8:00 a.m. Location: Room B330 Bring pencils and a calculator. You may prepare & use 1 handwritten 4 x 6 note card. UNIT

More information

Name Quarterly Practice # 1 Period

Name Quarterly Practice # 1 Period Name Quarterly Practice # 1 Period 1. Based on data collected during a laboratory investigation, a student determined an experimental value of 322 joules per gram for the heat of fusion of H2O. Calculate

More information

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid Experiment 2 - Using Physical Properties to Identify an Unknown Liquid We usually think of chemists as scientists who do things with chemicals. We can picture a chemist's laboratory with rows of bottles

More information

Color. 3. Why are the color labels in the table above plural (i.e., Reds rather than Red )?

Color. 3. Why are the color labels in the table above plural (i.e., Reds rather than Red )? NS D3 Electron Energy and Light Name From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by hydrogen and other atoms has played a key role in understanding

More information

Preview of Period 4: Transfer of Thermal Energy

Preview of Period 4: Transfer of Thermal Energy Preview of Period 4: Transfer of Thermal Energy 4.1 Temperature and Thermal Energy How is temperature measured? What temperature scales are used? 4.2 How is Thermal Energy Transferred? How do conduction,

More information

ELECTROMAGNETIC WAVES AND CLIMATE (MODIFIED FOR ADEED)

ELECTROMAGNETIC WAVES AND CLIMATE (MODIFIED FOR ADEED) (MODIFIED FOR ADEED) Science Concept: Different frequencies of electromagnetic radiation behave differently in the atmosphere. Objectives: The student will: explain interactions between different frequencies

More information

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date 1. How are different types of radiation arranged along the electromagnetic spectrum? A. By how fast they travel incorrect answer B. By their sources incorrect answer C. By the amount of energy they carry

More information

13 + Entrance Examination

13 + Entrance Examination 13 + Entrance Examination Paper 1 Physics - Level 2 Total marks: 60 Time allowed: 40 minutes Calculators may be used Full name. 1. Circle the correct answer for each of the following questions: a. On Earth

More information

What Is Air Temperature?

What Is Air Temperature? 2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

A. blue B. green C. red D. violet

A. blue B. green C. red D. violet 1. A chemistry class determines that each atom of a metallic element contains 26 protons and 30 neutrons. When the teacher asks the class what the element is, half the class says iron and half the class

More information

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36 CHEM 1411. Chapter 6. Basic Quantum Chemistry (Homework). WL36 1. The Bohr model of the hydrogen atom found its greatest support in experimental work on the photoelectric effect. A) True B) False 2. A

More information

Solution 3: A glass prism deviates the violet light most and the red light least.

Solution 3: A glass prism deviates the violet light most and the red light least. EXERCISE- 6 (A) Question 1: Name three factors on which the deviation produces by a prism depends and state how does it depend on the factors stated by you. Solution 1: The deviation produced by the prism

More information

5) If you count 7 pennies, you can only report one significant figure in that measurement. Answer: FALSE Diff: 1 Page Ref: 2.3

5) If you count 7 pennies, you can only report one significant figure in that measurement. Answer: FALSE Diff: 1 Page Ref: 2.3 Introductory Chemistry, 4e (Tro) Chapter 2 Measurement and Problem Solving True/False Questions 1) Numbers are usually written so that the uncertainty is in the last reported digit. Diff: 1 Page Ref: 2.1

More information

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system

More information

Hot Sync. Materials Needed Today

Hot Sync. Materials Needed Today Chapter 4 Lesson 2 Materials Needed Today Please take these materials out of your backpack. Pencil Blank sheet of paper for notes. Hot Sync Friday 1/10/14 Answer the following questions in complete sentences

More information

CP Chemistry Semester 1 Final Review KEY. Unit 1

CP Chemistry Semester 1 Final Review KEY. Unit 1 CP Chemistry Semester 1 Final Review KEY Unit 1 Practice Problems 1. What tool do you use to measure volume of water? Describe how to make a proper measurement of a volume of water using a 50 ml graduated

More information

Physics Curriculum Map - Norwell High School SUBJECT: Physics Grade Level: 11 or 12. Month or Unit: September

Physics Curriculum Map - Norwell High School SUBJECT: Physics Grade Level: 11 or 12. Month or Unit: September SUBJECT: Physics Grade Level: 11 or 12 Month or Unit: September Scientific Inquiry Skills Scientific literacy can be achieved as students inquire about chemical phenomena. The curriculum should include

More information

Unit 6 Forces in Nature gravity; Law of Universal Gravitation; current; series/parallel circuits; magnets; electromagnets

Unit 6 Forces in Nature gravity; Law of Universal Gravitation; current; series/parallel circuits; magnets; electromagnets 8 th grade Physical Science comprehensive study guide Unit 2 Nature of Matter atoms/molecules; atomic models; physical/chemical properties; physical/chemical changes; types of bonds; periodic table; states

More information

Producing and Harnessing Light

Producing and Harnessing Light Chemical Dominoes Activity 5 Producing and Harnessing Light GOALS In this activity you will: Describe the relationship between energy, frequency, and wavelength of electromagnetic radiation. Explain how

More information

Chapter 4 Lesson 2 Notes

Chapter 4 Lesson 2 Notes Chapter 4 Lesson 2 Notes How were electrons discovered? Scientists have put together a detailed model of atoms and their parts. Here is the journey of atom parts. How were electrons discovered? (cont.)

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 of 19 Boardworks Ltd 2016 The Electromagnetic Spectrum 2 of 19 Boardworks Ltd 2016 Detecting waves beyond the visible spectrum 3 of 19 Boardworks Ltd 2016 Invisible light

More information

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Physics Common Assessment Unit 5-8 3rd Nine Weeks 1) What is the direction of the force(s) that maintain(s) circular motion? A) one force pulls the object inward toward the radial center while another force pushes the object at a right angle to the first

More information

Light is an electromagnetic wave (EM)

Light is an electromagnetic wave (EM) What is light? Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

bending. Special types of physical changes where any object changes state, such as when water freezes or evaporates, are sometimes called change of st

bending. Special types of physical changes where any object changes state, such as when water freezes or evaporates, are sometimes called change of st Physical and Chemical Properties and Changes The properties of a substance are those characteristics that are used to identify or describe it. When we say that water is "wet", or that silver is "shiny",

More information

Chapter 1 Heating Processes

Chapter 1 Heating Processes Chapter 1 Heating Processes Section 1.1 Heat and temperature Worked example: Try yourself 1.1.1 CALCULATING THE CHANGE IN INTERNAL ENERGY A student places a heating element and a paddle wheel apparatus

More information

Exam 2. Study Question. Conclusion. Question. Question. study question continued

Exam 2. Study Question. Conclusion. Question. Question. study question continued PS 110A-Hatch-Exam 2 Review - 1 Exam 2 Take exam in Grant Bldg. starting Friday, 13 th, through Monday, 16 th (by 4:00 pm). No late fee associated with Monday, before 4:00. Allow at least 1 hour for exam.

More information

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle! 9/16/08 Tuesday Announce: Observations? Milky Way Center movie Moon s Surface Gravity movie Questions on Gravity from Ch. 2 Ch. 3 Newton Movie Chapter 3 Light and Atoms Copyright (c) The McGraw-Hill Companies,

More information

Chapter 26: Properties of Light

Chapter 26: Properties of Light Lecture Outline Chapter 26: Properties of Light This lecture will help you understand: Electromagnetic Waves The Electromagnetic Spectrum Transparent Materials Opaque Materials Seeing Light The Eye Electromagnetic

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Ch 1: Introduction: Matter and Measurement

Ch 1: Introduction: Matter and Measurement AP Chemistry: Introduction: Matter and Measurement Lecture Outline 1.1 The Study of Chemistry Chemistry study of properties of materials and changes that they undergo. Can be applied to all aspects of

More information

Hopkins 8th Benchmark Review (Hopkin8BenchmarkReview1)

Hopkins 8th Benchmark Review (Hopkin8BenchmarkReview1) Name: Date: 1. Based on the following characteristics, classify the state of matter. A. gas B. solid C. plasma D. liquid high energy found in stars consists of freely moving charged particles 2. What is

More information

Properties of Matter Lab What is the Matter? Three States of Matter 1. What are the three states of matter?

Properties of Matter Lab What is the Matter? Three States of Matter 1. What are the three states of matter? Name: Properties of Matter Lab What is the Matter? Three States of Matter 1. What are the three states of matter? 2. Which state of matters volume can easily be changed? Period: 3. Compare the densities

More information

Chapter 17 Practice Questions KEY

Chapter 17 Practice Questions KEY Chapter 17 Practice Questions KEY 1. Long wavelength Medium wavelength Short wavelength 1. Long wavelength Radio, Microwave Medium wavelength Infrared, Visible, Ultraviolet Short wavelength X ray, gamma

More information

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model Unit 3 Chapter 4 Electrons in the Atom Electrons in the Atom (Chapter 4) & The Periodic Table/Trends (Chapter 5) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the electrons

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 Chemistry - the study of matter, its behavior and interactions. matter - anything that takes up space and has mass mass - the substance which makes up the

More information

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

Distinguishing Glass Fragments

Distinguishing Glass Fragments Activity 2 Distinguishing Glass Fragments GOALS In this activity you will: Experimentally determine the density of a solid without a definite shape. Understand the difference between intensive and extensive

More information

Geology Rocks Minerals Earthquakes Natural Resources. Meteorology. Oceanography. Astronomy. Weather Storms Warm fronts Cold fronts

Geology Rocks Minerals Earthquakes Natural Resources. Meteorology. Oceanography. Astronomy. Weather Storms Warm fronts Cold fronts Geology Rocks Minerals Earthquakes Natural Resources Meteorology Weather Storms Warm fronts Cold fronts Oceanography Mid ocean ridges Tsunamis Astronomy Space Stars Planets Moon Prologue 1 Prologue I.

More information

How many ml of M sodium hydroxide is required to completely react with 15.0 ml of 2.00 M sulfuric acid?

How many ml of M sodium hydroxide is required to completely react with 15.0 ml of 2.00 M sulfuric acid? 147 EXAMPLE PROBLEM: How many ml of 0.250 M sodium hydroxide is required to completely react with 15.0 ml of 2.00 M sulfuric acid? 1 - Convert 15.0 ml to moles using concentration (2.00 mol acid per liter).

More information

Metric System. An Overview of the Concepts of Mass, Volume, Length, Temperature, and Density

Metric System. An Overview of the Concepts of Mass, Volume, Length, Temperature, and Density Metric System An Overview of the Concepts of Mass, Volume, Length, Temperature, and Density Length Definition The distance between two points along a straight line Meters (m) base unit Measuring track

More information

What is Matter? Matter is anything that has mass and takes up space (volume). Chemistry is the study of matter s properties & how it changes.

What is Matter? Matter is anything that has mass and takes up space (volume). Chemistry is the study of matter s properties & how it changes. What is Matter? Matter is anything that has mass and takes up space (volume). Chemistry is the study of matter s properties & how it changes. Examples Air Water Copper Aluminum Plastic Jupiter (the planet)

More information

Chapter 14 Heat and Temperature Notes

Chapter 14 Heat and Temperature Notes Chapter 14 Heat and Temperature Notes Section 1: Temperature The degree of or of an object. Related to the of an object s atoms or molecules What makes something hot? o Particles that make up o They have

More information

Length is the distance from one point to another. Length has standard units of measurement such as inches or centimeters.

Length is the distance from one point to another. Length has standard units of measurement such as inches or centimeters. Page 1 Measurements are a standard set by different cultures to address their own needs. In the United States, we use the U. S. Customary system of units. However, the metric system is used worldwide.

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

Fundamental Forces of the Universe

Fundamental Forces of the Universe Fundamental Forces of the Universe There are four fundamental forces, or interactions in nature. Strong nuclear Electromagnetic Weak nuclear Gravitational Strongest Weakest Strong nuclear force Holds the

More information

progressive electromagnetic wave

progressive electromagnetic wave LECTURE 11 Ch17 A progressive electromagnetic wave is a self-supporting, energy-carrying disturbance that travels free of its source. The light from the Sun travels through space (no medium) for only 8.3

More information

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium Chapter 16 Sound Waves Sound waves are caused by vibrations and carry energy through a medium An example of a compressional wave Waves can spread out in all directions Their speed depends on its medium

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

Foundations of Chemistry

Foundations of Chemistry Foundations of Chemistry Physical Changes Key Concepts How can a change in energy affect the state of matter? What happens when something dissolves? What is meant by conservation of mass? What do you think?

More information