The Natural Selection of the Chemical Elements

Size: px
Start display at page:

Download "The Natural Selection of the Chemical Elements"

Transcription

1 The Natural Selection of the Chemical Elements The Environment and Life's Chemistry R. J. P. WILLIAMS Emeritus Research Professor, University of Oxford and J. J. R. FRAÜSTO da SILVA Professor of Analytical Chemistry, Instituto Superior Teenico, Universidade Tecnica de Lisboa CLARENDON PRESS OXFORD 1996

2 v/ouccill!* List of units of energy and work and the values of some physical constants xxv Part I The principles of the natural selection of chemical elements into physical states and chemical combinations 1 The development of man's ideas concerning nature The early views The development of modern views The periodic table and the electronic structure of atoms Fields of force Secondary consequences of (orbital) motion restrictions: shapes of atomic combinations Fire (energy), temperature and pressure Light and radiant energy Fields and flow Order, disorder and Organisation of rest masses The evolving universe The limitations to understanding 27 2 Order in chemical Systems: elements and their combinations 32 A Elements and stoichiometric combination of elements Introduction to chemical binding The atomic and physical properties of the elements Atomic sizes and structures of the elements Ionisation potential and electron affinity Empirical covalent and van der Waals radii of atoms Shapes of molecules formed from Single elements The binding energies of the elements Summary of the properties of the elements and their natural selection The combination of different elements stoichiometric and non-stoichiometric Compounds General factors affecting the combination of two different atoms Electronegativity and size 47

3 xiv CONTENTS Combining ratios valence Variable valence in A/B Compounds Available Orbitals: structures Stoichiometric combination of two similar non-metal atoms Small covalent molecules: electronegativity and Charge distribution Shapes of small covalent molecules A m B Bond energy in covalent Compounds Assemblies of molecules: intermolecular forces Hydrogen bonding The formation of liquids: water The different kinds of liquids Hydrogen in Compounds other than water Summary of the outstanding features of non-metal Compounds Stoichiometric combination of very different elements: ionic Compounds Energetics of ionic Compounds Physical properties of ionic solids Variable valence and electronic conductivity in salts Partial covalence in ionic Compounds: coordination chemistry Ligand-fleld effects on structure Ligand-fleld energies 71 B Non-stoichiometric combination of elements Introduction Ternary salts and Silicates Intermediate cases between salts and covalent molecules: covalent solids A m B Combination of like metal atoms: alloys Liquids and Solutions Summary of order 77 3 The balance between order and disorder Introduction Order-disorder balance Spatial arrangements of the particles of a System Changes in entropy with changes in volume of a gas configurational entropy Temperature change and disorder thermal entropy Total entropy change of a System Physical states in balance latent heats Systems out of balance Thermodynamics of mixing Standard states of chemical substances Applications to chemical Systems: thermodynamic stability of Compounds Free energy and chemical equilibrium The equilibrium constant at different temperatures or pressures Chemical change and physical change 107

4 CONTENTS xv 3.6 Energy transfer: work Chemical energy transfer to mechanical energy (pv) Thermodynamic efficiency of transfer of energy: doing work Radiative energy and entropy Energy State distribution in materials: the construction of machines Summary of order/disorder equilibrium Phase equilibria Introduction Phases and chemicals in equilibrium The phase rule Chemical equilibria and components of chemical Systems The operational deflnition of component The number of phases Variability of chemical Systems: examples of Systems of more than one component Unitary Systems Binary Systems Ternary Systems Systems with more than three components Liquid crystals Summary of phase diagrams The effects of gravity The free-energy conditions and phases at equilibrium Stability of phases: free-energy changes with composition The co-operative character of phase transitions Supercooled phases glasses Summary of equilibrium conditions of phases Equilibria in dilute Solutions in water Introduction Factors that affect solubility generally Relative solubility in two liquid phases: partition coefficients Dilute Solutions containing more than one solute Equilibria between acids and bases in aqueous Solutions Formation of precipitates: solubility products Complex ion formation Selectivity of precipitation and complex ion formation Competitive equilibria Proton and hydroxide ion binding Conditional, apparent or effective stability constants Organic molecule associations Organic polymers in Solution Summary of solubility and complex association equilibria Acid-base equilibria and components in Solutions 174

5 xvi CONTENTS 5.7 Equilibria between oxidation states Oxidation-reduction potentials in water The H 2 /0 2 potentials in water at ph = Metal ion oxidation states at ph = C,N,0 and S oxidation states in aqueous Solutions Oxidation states, components and variance Combined acid-base and redox equilibria Redox potentials and complex ion formation The change from the H 2 S/S to the H 2 0/0 2 potential (or vice versa) Summary: variance in Solutions Limited phases, fields and compartments Introduction One-component Systems of limited volume Sizes of phases Shape of a limited phase alone and in contact with a bulk phase Surfaces and shapes of limited phases as variables Fields between limited phases in equilibrium Assemblies of limited phases Total variables in phase Systems of limited volume Factors governing phase interactions in fields: chemical selectivity of surface interactions Matching of shapes of elastic substances at equilibrium Further diversification through barriers: compartments Storage of free energy between compartments: an ability to do work Pressure and concentration gradients between compartments Chemical potential gradients between compartments Storage of mechanical energy (tension) Energy storage in a gravitational fleld The natural selection of chemical elements in compartments Energy storage by dilute components in compartments Osmotic pressure Electrical potential differences Equivalences of free energies Radiation energy stored in compartments Limited phases and compartments in biological Systems Very small phases: large molecules treated as phases 'Phase'behaviour of proteins and nucleotides Ordered sequences in polymers and assemblies An example of equilibrium self-assembly: viruses Summary: the incommensurate increase in variables The evolution of kinetic control and of Organisation 219 A Kinetic principles Introduction Change, time and flow The initial development in the natural selection of the atomic elements 222

6 CONTENTS xvii 7.3 Factors affecting reaction rates Kinetics and natural selection of chemical elements: functional value in living Systems 226 B Chemical kinetic controls Chemical barriers to reaction Molecularity and energy requirements Chemical selection of components for rate control Electron transfer The nature of water: a very special solvent for transport Selected chemical rates of diffusion in water and ion Channels: solvent exchange and message transmission The extension of the selectivity of chemical steps of diffusion: message reception and triggering Diversiflcation of element use through non-exchanging binding Slow exchange, structures and the requirements for catalysts: construction and reaction Systems Kinetics of organic Compounds in traps Chemical change in organic molecules Acid-base reactions: hydrolysis and condensation Oxidation/reduction reactions: further reaction Systems Two-electron changes Free-radical reactions Inorganic elements in organic and biological chemistry: summary of kinetic aspects Kinetic selection of the elements for survival Allosteric control of reactions: feedback to catalysts The effect of temperature Control of energy supply: synthesis Control over molecularity Chemicals and self-assembly of equipment 250 C Physical barriers Physical controls over reaction rates Introduction Diffusion in one phase in a Single compartment Restricted diffusion across boundaries between compartments Diffusion in media formed by different elements The nature of containing vessels: boundaries Control of diffusion in inorganic phases The flow of water The control of diffusion by organic phases Functional advantages of an increase in the number of (communicating) compartments Fields and flow Electronic and electrolytic circuits From simple flow to feedback control Feedback electronic circuits: an illustration Physical fields and feedback: a biological example Geological control and feedback: the physical water cycle on Earth 269

7 7.14 Physical control of diffusion and variance of Systems Physical feedback control in relation to chemical component feedback 2 72 D Organisation Linking metabolic change to creation of structure Nucleation of assemblies Shape Energy, radiation fields and flow in temperature gradients Energy capture and control Energy flow and shape Thermodynamics and Organisation Plans and Information Thermodynamic efficiency and the ability to change State The trapping of energy and the evolution of Organisation: a summary 284 Part II The observed natural selection of chemical elements in both abiotic and biotic Systems during their evolution 8 The evolution of inorganic chemicals on Earth Introduction The formation of the elements in the universe The abundance of elements in the universe The initial formation of Compounds and condensates The affinity of the elements for one another at different temperatures The formation of Earth The formation of sulphides The primitive atmosphere The nature of the early sea The early surface of the Earth Some non-equilibrated inorganic compartments of interest: an aside The later evolution of the Earth's chemicals The atmosphere today The nature of the sea today The nature of freshwater today The crust of Earth today Trace element fractionation in the rocks and soils of the crust The nature of soils and soil water Summary of element Separation in Earth's compartments today The elementary composition of living Systems Clays and sulphides: origins of early life? Conclusion: Earth's evolution 320

8 CONTENTS xix 9 The evolution of organic Compounds Introduction The evolution of carbon chemistry: thermodynamics and kinetics The basic reactions of organic chemistry Major small organic chemicals: abiotic organic chemistry Saturated linear fatty chains (alkanes) Unsaturated and non-linear C/H chains Substitutional derivatives of C/H Compounds Shapes of organic molecules Handedness within shape: optical activity A general summary of organic chemical constructions Basic practices of organic and biological organic chemistry Introduction The apparatus of biological organic chemistry General introduction to bioorganic chemistry Condensation reactions in bioorganic chemistry Polyfunctional condensation Peptides and proteins Nucleic acids Weak bonds and the folded structures of polymers The properties of folded polymers Summary of condensation reactions fntermediates: carriers of fragments: cofactors and coenzymes Driving energy for biological reactions including condensation Introduction Energy from chemicals: disproportionation Initial sources of energy Phosphorus bioorganic chemistry Sulphur bioorganic chemistry Relative thermodynamic and kinetic stability of organic molecules in water Summary of the origins of acid-base organic chemistry Organic redox chemistry Redox reactions at low redox potential Organic redox chemistry and sulphur Free-radical reactions and polymerisations A note on selenium organic chemistry Summary of redox organic chemistry Nature's need for catalysts in organic chemistry Metal organic Compounds in biological catalysts Organometallic and co-ordination Compounds in organic chemistry Organic chemicals in Condensed phases Introduction Self-assembly of organic molecules The phase rule and organic molecules Abiotic organic chemical cycles Summary: the diversity of organic and biological chemistries 374

9 CONTENTS 10 Early biological chemistry: the uptake and incorporation of elements in anaerobic organisms Introduction The biological selection of major elements: general introduction Biological selection of minor elements Examples of essential functions of inorganic elements Osmotic pressure control Electrical neutrality Cross-linking and precipitation Electronic conduction Catalysis Energy capture synthesis and gradients Triggering of mechanical action Summary of required elements Uptake and incorporation mechanisms of the major elements Hydrogen and oxygen uptake and incorporation Uptake and incorporation of carbon and nitrogen: introduction C/H/O incorporation Nitrogen incorporation The uptake and incorporation of sulphur and selenium Interrelationships of C/H/O/N Compound incorporation The incorporation of phosphate Final stages of the incorporation of the major elements in polymers Summary of major element incorporation The uptake and incorporation of electrolytes Introduction to pumps Proton and other ion pumps Biological centres in proteins for metal ion incorporation Incorporation of metals into cofactors Elements in different oxidation states Summary of early element uptake and incorporation and of developing functional use Catalysis and metal ions Fitness of individual sites: the entatic State The incorporation of proteins into compartments Primitive development of energy sources Summary of uptake and incorporation of elements in anaerobic organisms Early cellular Organisation in anaerobes Introduction Co-operative stability in dissipative Systems The beginning of molecular copying Coded polymers: RNA life Syntheses of matching sequences of different polymers The beginnings of translation The selected elements for the coded polymers Control and regulation: introduction 428

10 CONTENTS xxi 11.5 Feedback control of element and small molecule concentrations The cell as a chemostat: feedback to pumps Feedback in metabolic pathways of the elements hydrogen, carbon and oxygen Feedback control of the incorporation of the element nitrogen and of amino acid synthesis Feedback control of nucleotides: incorporation into polymers Different pathways for degradation and synthesis in metabolism Phosphate metabolism and its feedback Additional elements in controls over pathways Redox potential controls Summary of acid-base and redox control The control of shape: mechanical controls Fields, flow and shape Early mineralisation Regulation: introduction Phosphate regulation of genes Other examples of regulation by non-metal elements Regulation by metal cations Redox regulation of protein production: sulphur and iron Control plus regulation an example: nitrogen fixation The different pathways of polymer synthesis and degradation Cross-talk in regulation The Integration of element chemistry in control and regulation: summary The cell cycle: introduction Developmental evolution of anaerobic cells Intracellular vesicles and their membranes Contents of internal vesicles Symbiosis and differentiation Summary The structure and chemistry of organisms after the advent of dioxygen Introduction Developing Organisation The geological record of evolution Development of intracellular compartments in aerobic cells The chemical problems of evolution The introduction of new metabolism Changing element availability with rising dioxygen partial pressure The chemical and biological reactions to dioxygen increase with time Coevolution of the use of new non-metal Compounds and metal elements Energy transduction from dioxygen 484

11 xxii CONTENTS 12.5 New uptake and incorporation of elements The new handling of iron uptake The linking of new iron uptake to phosphate: controls and regulation Iron uptake in higher organisms and its connections The uptake, distribution and incorporation of other elements Changes in the uses of some non-metals The distribution of elements in compartments Element distribution in eukaryote cells New small organic Compounds New proteins and enzymes Metabolite and protein distribution Putting together cells with filaments: multicellular Systems The redox metabolism outside cells Biomineralisation: introduction Biominerals: examples Summary Organisation in advanced organisms Introduction Control and regulation: a reminder The elements in message transmission Single eukaryotic cells: control and regulation The extended use of calcium as a messenger Phosphate metabolic and signalling changes Messages to mechanical devices Multicellular organisms Maintained cell shape: Single nerve cells The functional shapes of multicellular organisms and communication Extracellular fluids and multicellular communication Zinc and its organic messenger network Summary of acid-base messengers Redox Communications: free iron and the new messenger networks Haem iron and the new networks Copper and new messengers Other elements in messenger Systems 531 Interactions between and complexity of messenger Systems The integration of element messages in networks Total integration of element functions Organs and their elements 535 The problem of development Adaptability, differentiation and morphogenesis The problem of the development of an element network Conclusions concerning the element content of organisms The brain: a phenotypical Organisation centre Cellular dependencies: genetic management towards an ecosystem Summary: complexity, management and survival stability The ecosystem and man 547

12 CONTENTS xxiii 14 Man's selection of the chemical elements Introduction The internal chemistry of man The evolution of man's industrial inorganic chemistry Inorganic agricultural developments Catalysis and inorganic materials Man's development of energy sources using chemical elements Culture and inorganic materials The development of industrial organic materials Organometallic and complex ion chemistry: homogeneous catalysts Compartments, catalysts and energy Transfer of material Organisation and control in chemical change Genetic manipulation: a new industry? The parallel and the orthogonal activities of man and biology Element cycles and their evolution Introduction The nature of'cycles' The cycles of the rocks The cycle of water The cycle of air The cycle of oxygen The cycle of hydrogen The cycle of carbon The cycle of nitrogen The cycles of sulphur and phosphorus The cycles of light elements and metal ions The cycling of other elements The birth of cycles Life and the cycles Man's input to cycles The evolving natural selection of the chemical elements and the senses Introduction: summary ofprevious chapters The bases of the initial chemical selection Summary of variance at equilibrium Co-operativity and selected phase formation on Earth Steady states and their survival Flow Systems of many elements Coded Systems: DNA Natural selection and element fitness Optimal co-operativity in a steady State Summary of survival values Changes in components and evolution 616

13 16.11 Development rates and complexity DNA, development and evolution The environment and evolution Assumptions underlying the steady State Resources General considerations concerning waste products Selfish protection by individual species: population increase The natural selection of the elements and the nature of man Understanding Thesenses Thebrain Future selection of the chemical elements 632 Index 635

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

2. In regards to the fluid mosaic model, which of the following is TRUE?

2. In regards to the fluid mosaic model, which of the following is TRUE? General Biology: Exam I Sample Questions 1. How many electrons are required to fill the valence shell of a neutral atom with an atomic number of 24? a. 0 the atom is inert b. 1 c. 2 d. 4 e. 6 2. In regards

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Figure 2.1 Using Figure 2.1, match the following: 1) Lipid. 2) Functional protein. 3) Nucleotide.

More information

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø `1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø Element pure substance only one kind of atom Ø Living things

More information

Chapter 2: Chemical Basis of Life I. Introduction A. The study of chemistry is essential for the study of physiology because

Chapter 2: Chemical Basis of Life I. Introduction A. The study of chemistry is essential for the study of physiology because Shier, Butler, and Lewis: Hole s Human Anatomy and Physiology, 11 th ed. Chapter 2: Chemical Basis of Life Chapter 2: Chemical Basis of Life I. Introduction A. The study of chemistry is essential for the

More information

A Brief Overview of Biochemistry. And I mean BRIEF!

A Brief Overview of Biochemistry. And I mean BRIEF! A Brief Overview of Biochemistry And I mean BRIEF! Introduction A. Chemistry deals with the composition of substances and how they change. B. A knowledge of chemistry is necessary for the understanding

More information

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2 Hole s Human Anatomy and Physiology Eleventh Edition Shier Butler Lewis Chapter 2 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 2 CHEMICAL BASIS OF

More information

Chapter 2: Chemical Basis of Life

Chapter 2: Chemical Basis of Life Chapter 2: Chemical Basis of Life Chemistry is the scientific study of the composition of matter and how composition changes. In order to understand human physiological processes, it is important to understand

More information

Living and nonliving things are all made of elements. It is the way that atoms combine that give every element a different characteristic.

Living and nonliving things are all made of elements. It is the way that atoms combine that give every element a different characteristic. Living and nonliving things are all made of elements. It is the way that atoms combine that give every element a different characteristic. 98% of the body is made of only 6 elements The 6 elements are:

More information

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen These study questions are meant to focus your study of the material for the first exam. The absence here of a topic or point covered in lecture

More information

Biology 30 The Chemistry of Living Things

Biology 30 The Chemistry of Living Things Biology 30 The Chemistry of Living Things Hierarchy of organization: Chemistry: MATTER: Periodic Table: ELEMENT: Ex. oxygen, gold, copper, carbon COMPOUND: Ex. salt (NaCl), H 2 O ELEMENTS ESSENTIAL TO

More information

Biology Reading Assignment: Chapter 9 in textbook

Biology Reading Assignment: Chapter 9 in textbook Biology 205 5.10.06 Reading Assignment: Chapter 9 in textbook HTTP://WUNMR.WUSTL.EDU/EDUDEV/LABTUTORIALS/CYTOCHROMES/CYTOCHROMES.HTML What does a cell need to do? propagate itself (and its genetic program)

More information

Chapter 002 The Chemistry of Biology

Chapter 002 The Chemistry of Biology Chapter 002 The Chemistry of Biology Multiple Choice Questions 1. Anything that occupies space and has mass is called A. Atomic B. Living C. Matter D. Energy E. Space 2. The electrons of an atom are A.

More information

Metabolism and Enzymes

Metabolism and Enzymes Energy Basics Metabolism and Enzymes Chapter 5 Pgs. 77 86 Chapter 8 Pgs. 142 162 Energy is the capacity to cause change, and is required to do work. Very difficult to define quantity. Two types of energy:

More information

Reproduction Chemical Reactions. 8J Light 8G Metals & Their Uses 8C Breathing & Respiration 8D Unicellular Organisms

Reproduction Chemical Reactions. 8J Light 8G Metals & Their Uses 8C Breathing & Respiration 8D Unicellular Organisms Science: Key Stage 3 Based on the Exploring Science Scheme of Learning Term 1 & 2 Term 3 & 4 Term 5 & 6 Year 7 Cells, Tissues & Organs Particles Forces & Motion Reproduction Chemical Reactions Chemical

More information

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter:

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter: Chapter 2.1-2.2 Read text 2.1 and describe why chemistry is important in understanding life. Read text 2.2 and discuss how atomic structure determines how atoms interact. Also describe the types of chemical

More information

Chapter 2. The Chemistry of Life

Chapter 2. The Chemistry of Life Chapter 2 The Chemistry of Life Introduction Cells, tissues and organs composed of chemicals Chemical reactions important for function Chemistry is the study of elements, compounds, chemical reactions,

More information

Chapter 2 Chemical Aspects of Life

Chapter 2 Chemical Aspects of Life Chapter 2 Chemical Aspects of Life Multiple Choice Questions 1. Anything that has weight and occupies space can be described as A. an atom. B. matter. C. a compound. D. a molecule. #1 Learning Outcome:

More information

The Chemistry of Microbiology

The Chemistry of Microbiology PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 2 The Chemistry of Microbiology Atoms Matter anything that takes up space and has mass

More information

10/4/2016. Matter, Energy, and Life

10/4/2016. Matter, Energy, and Life DISCLAIMER: Principles and concepts on atomic structure, the Periodic Table, atoms, ions, ionic and covalent compounds, metals, and nonmetals will not be covered in this course. You are expected to know

More information

Biomolecules. Energetics in biology. Biomolecules inside the cell

Biomolecules. Energetics in biology. Biomolecules inside the cell Biomolecules Energetics in biology Biomolecules inside the cell Energetics in biology The production of energy, its storage, and its use are central to the economy of the cell. Energy may be defined as

More information

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Name: Class: _ Date: _ 2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1) In what

More information

Energy Transformation and Metabolism (Outline)

Energy Transformation and Metabolism (Outline) Energy Transformation and Metabolism (Outline) - Definitions & Laws of Thermodynamics - Overview of energy flow ecosystem - Biochemical processes: Anabolic/endergonic & Catabolic/exergonic - Chemical reactions

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

Figure ) Letter E represents a nucleic acid building block known as a. Answer: nucleotide Diff: 3 Page Ref: 54

Figure ) Letter E represents a nucleic acid building block known as a. Answer: nucleotide Diff: 3 Page Ref: 54 Essentials of Human Anatomy and Physiology, 10e (Marieb) Chapter 2 Basic Chemistry 2.1 Short Answer Figure 2.1 Using Figure 2.1, identify the following: 1) Which letter represents a carbohydrate polymer?

More information

GCSE CHEMISTRY REVISION LIST

GCSE CHEMISTRY REVISION LIST GCSE CHEMISTRY REVISION LIST OCR Gateway Chemistry (J248) from 2016 Topic C1: Particles C1.1 Describe the main features of the particle model in terms of states of matter and change of state Explain, in

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

The Chemistry and Energy of Life

The Chemistry and Energy of Life 2 The Chemistry and Energy of Life Chapter 2 The Chemistry and Energy of Life Key Concepts 2.1 Atomic Structure Is the Basis for Life s Chemistry 2.2 Atoms Interact and Form Molecules 2.3 Carbohydrates

More information

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 2

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 2 PowerPoint Lecture Outlines to accompany Hole s Human Anatomy and Physiology Tenth Edition Shier w Butler w Lewis Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

12U Biochemistry Unit Test

12U Biochemistry Unit Test 1 12U Biology: Biochemistry Test 12U Biochemistry Unit Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

More information

UNIT 1: BIOCHEMISTRY

UNIT 1: BIOCHEMISTRY UNIT 1: BIOCHEMISTRY UNIT 1: Biochemistry Chapter 6.1: Chemistry of Life I. Atoms, Ions, and Molecules A. Living things consist of atoms of different elements 1. An atom is the smallest basic unit of matter

More information

Enduring Understandings & Essential Knowledge for AP Chemistry

Enduring Understandings & Essential Knowledge for AP Chemistry Enduring Understandings & Essential Knowledge for AP Chemistry Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements

More information

Chapter 2 The Chemistry of Life

Chapter 2 The Chemistry of Life Chapter 2 The Chemistry of Life I. Water Liquid Naturally occurring It expands liquid to solid Covers more than 75% of our surface Most abundant in living organisms most important inorganic compound for

More information

2017 Ebneshahidi. Dr. Ali Ebneshahidi

2017 Ebneshahidi. Dr. Ali Ebneshahidi Dr. Ali Ebneshahidi A. Introduction Chemistry science that deals with the composition of substances and the changes that take place in their composition. Organic chemistry chemistry that deals with organic

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Unit 1: Chemistry of Life Guided Reading Questions (80 pts total)

Unit 1: Chemistry of Life Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 1 Exploring Life Unit 1: Chemistry of Life Guided Reading Questions

More information

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111 Ed: Pls provide art About the Authors Preface xvii xvi 1 Matter: Its Properties and Measurement 1 1-1 The Scientific Method 2 1-2 Properties of Matter 4 1-3 Classification of Matter 5 1-4 Measurement of

More information

Chapter 02 Chemical Basis of Life. Multiple Choice Questions

Chapter 02 Chemical Basis of Life. Multiple Choice Questions Seeleys Essentials of Anatomy and Physiology 8th Edition VanPutte Test Bank Full Download: http://testbanklive.com/download/seeleys-essentials-of-anatomy-and-physiology-8th-edition-vanputte-test-bank/

More information

Copy into Note Packet and Return to Teacher

Copy into Note Packet and Return to Teacher Copy into Note Packet and Return to Teacher Section 1: Nature of Matter Objectives: Differentiate between atoms and elements. Analyze how compounds are formed. Distinguish between covalent bonds, hydrogen

More information

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds Section 1 Atoms, Elements, and Compounds Atoms! Chemistry is the study of matter.! Atoms are the building blocks of matter.! Neutrons and protons are located at the center of the atom.! Protons are positively

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

Introduction to Life Science. BSC 1005 Fall 2011 Homework 1! Connect Due Date: 9/18/ :59PM. Multiple Choice Portion

Introduction to Life Science. BSC 1005 Fall 2011 Homework 1! Connect Due Date: 9/18/ :59PM. Multiple Choice Portion Introduction to Life Science BSC 1005 Fall 2011 Homework 1 Connect Due Date: 9/18/2011 11:59PM Instructions Complete this homework assignment as the material is covered in class. You may refer to any of

More information

the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Chemical structure Covalent bond Ionic bond

the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Chemical structure Covalent bond Ionic bond Chemical structure the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Covalent bond bond formed by the sharing of valence electrons between atoms Ionic bond

More information

PRESENTATION TITLE. Chemistry. Chemistry

PRESENTATION TITLE. Chemistry. Chemistry PRESENTATION TITLE Chemistry Chemistry Chemistry is the study of the smallest forms of matter and their interactions. Matter is anything that has mass and takes up space. Generally, chemistry deals with

More information

Basic Chemistry. Chemistry Review. Bio 250: Anatomy & Physiology

Basic Chemistry. Chemistry Review. Bio 250: Anatomy & Physiology Basic Chemistry Bio 250: Anatomy & Physiology Chemistry Review It is going to be your responsibility to review the basic principles of chemistry you learned in BIO 101 This basic set of notes will help

More information

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of Enzyme Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of the process are called substrates and the enzyme

More information

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos Basic Chemistry Chapter 2 BIOL1000 Dr. Mohamad H. Termos Chapter 2 Objectives Following this chapter, you should be able to describe: - Atoms, molecules, and ions - Composition and properties - Types of

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

Lecture 12. Metalloproteins - II

Lecture 12. Metalloproteins - II Lecture 12 Metalloproteins - II Metalloenzymes Metalloproteins with one labile coordination site around the metal centre are known as metalloenzyme. As with all enzymes, the shape of the active site is

More information

AGS Chemistry 2007 Correlated to: Prentice Hall Chemistry (Wilbraham) including AGS Differentiated Instruction Strategies

AGS Chemistry 2007 Correlated to: Prentice Hall Chemistry (Wilbraham) including AGS Differentiated Instruction Strategies - including AGS Differentiated Instruction 1-1 Chemistry 1-1 Chemistry and the Nature of Science Page 3: ELL/ESL Strategy; Page 4: Science ; Pages 5, 6: Applications-Global ; Pages 5, 7: Learning Styles-

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 2 The Chemistry of Biology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ch 2 chemical basis of life Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Fill in the blank or provide a short answer: 1) When a change in matter

More information

Chapter 2: The Chemical Basis of Life

Chapter 2: The Chemical Basis of Life Chapter 2: The Chemical Basis of Life I. Basic Chemistry A. Matter, Mass, and Weight 1. All living and nonliving things are composed of 2. represents the amount of matter. 3. is caused by the gravitational

More information

Chapter 2. Chemical Basis of Life

Chapter 2. Chemical Basis of Life hapter 2 hemical Basis of Life opyright The McGrawill ompanies, Inc. Permission required for reproduction or display. Introduction: A. hemistry deals with the composition of matter and how it changes.

More information

40 46, 51, ,

40 46, 51, , cha02680_fm.indd Page xxvi 12/27/12 4:05 PM GG-009 /Volumes/107/GO01228/CHANG_11E/ANCILLARY/CHANG/007_665610_1_P1 BIG IDEA 1: The chemical elements are fundamental building materials of matter, and all

More information

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I NOTE/STUDY GUIDE: Unit 1-2, Biochemistry Honors Biology I, Mr. Doc Miller, M.Ed. North Central High School Name: Period: Seat #: Date: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE Honors Biology I Unit

More information

The Chemistry of Life

The Chemistry of Life The Chemistry of Life Things you should be able to do 1. Describe how the unique properties of water support life on Earth. 2. Explain how carbon is uniquely suited to form biological macromolecules. 3.

More information

Full file at

Full file at MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is an uncharged particle found in the nucleus of 1) an atom and which has

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science

Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science Highlighted components are included in Tallahassee Museum s 2016 program

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life

Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life 2.1 Multiple Choice Questions 1) A neutral atom must contain. A) an equal number of protons and

More information

2: CHEMICAL COMPOSITION OF THE BODY

2: CHEMICAL COMPOSITION OF THE BODY 1 2: CHEMICAL COMPOSITION OF THE BODY CHAPTER OVERVIEW This chapter provides an overview of basic chemical principles that are important to understanding human physiological function and ultimately homeostasis.

More information

Unit title: Chemistry for Applied Biologists

Unit title: Chemistry for Applied Biologists Unit title: Chemistry for Applied Biologists Unit code: K/601/0292 QCF level: 5 Credit value: 15 Aim This unit covers bonding, thermodynamics, reaction rates, equilibrium, oxidation and reduction and organic

More information

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 1: BIOCHEMISTRY UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. All living matter made up of CHONPS 2. Bonds a. covalent bonds are strong b. hydrogen

More information

The Basics of General, Organic, and Biological Chemistry

The Basics of General, Organic, and Biological Chemistry The Basics of General, Organic, and Biological Chemistry By Ball, Hill and Scott Download PDF at https://open.umn.edu/opentextbooks/bookdetail.aspx?bookid=40 Page 5 Chapter 1 Chemistry, Matter, and Measurement

More information

Metabolism: Energy and Enzymes. February 24 th, 2012

Metabolism: Energy and Enzymes. February 24 th, 2012 Metabolism: Energy and Enzymes February 24 th, 2012 1 Outline Forms of Energy Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration

More information

Unit 1: Chemistry - Guided Notes

Unit 1: Chemistry - Guided Notes Scientific Method Notes: Unit 1: Chemistry - Guided Notes 1 Common Elements in Biology: Atoms are made up of: 1. 2. 3. In order to be stable, an atom of an element needs a full valence shell of electrons.

More information

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space.

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space. Chapter 02 Testbank Student: 1. Anything that occupies space and has mass is called A. an electron. B. living. C. matter. D. energy. E. space. 2. The electrons of an atom are A. always equal to the number

More information

The Nature & Origin of Life

The Nature & Origin of Life The Nature & Origin of Life OCN 201 Biology Section Lecture 1 Grieg Steward Department of Oceanography grieg@hawaii.edu What is Life?!2 What is Life? General Defining Features Of Life: Self-replication

More information

ENV SCI 22 GROUP QUIZ WEEK 2

ENV SCI 22 GROUP QUIZ WEEK 2 ENV SCI 22 GROUP QUIZ WEEK 2 ph OF ACIDS AND BASES 1) A decrease of one unit in the ph scale above represents a tenfold increase in the hydrogen ion concentration of a solution. For example, a solution

More information

Biology Reading Assignments:

Biology Reading Assignments: Biology 205 5.13.08 Reading Assignments: Chapter 3 Energy, Catalysis and Biosynthesis pgs. 83-94; 106-116 (Note the various roles of nucleotide based carrier molecules); work questions 3-2 and 3-3 Chapter

More information

Biological Process Term Enrichment

Biological Process Term Enrichment Biological Process Term Enrichment cellular protein localization cellular macromolecule localization intracellular protein transport intracellular transport generation of precursor metabolites and energy

More information

Section Objectives: Section Objectives: Distinguish mixtures and solutions. Define acids and bases and relate their importance to biological systems.

Section Objectives: Section Objectives: Distinguish mixtures and solutions. Define acids and bases and relate their importance to biological systems. Section Objectives: Relate the structure of an atom to the identity of elements. Relate the formation of covalent and ionic chemical bonds to the stability of atoms. Section Objectives: Distinguish mixtures

More information

Subject Overview Curriculum pathway

Subject Overview Curriculum pathway Subject Overview Curriculum pathway Course Summary Course: A Level Chemistry Overall Summary Unit / Module Exam / Controlled % of course UMS allocation Marks available UMS / RAW mark grade boundaries from

More information

Research Science Biology The study of living organisms (Study of life)

Research Science Biology The study of living organisms (Study of life) Scientific method Why is there a hypothesis and prediction? If only prediction: then there is no way to finish the prediction and conclude whether the results support the hypothesis If surfaces are sampled

More information

Biology Unit 4. Chemistry of Life

Biology Unit 4. Chemistry of Life Biology Unit 4 Chemistry of Life Elements Everything in our universe that has a mass and a volume is made of matter. Matter in its purest form is an element. There are 118 elements on the periodic table,

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Objectives continued- Answer each of the objectives on a separate sheet of paper to demonstrate content mastery. Attach answers to back of packet.

Objectives continued- Answer each of the objectives on a separate sheet of paper to demonstrate content mastery. Attach answers to back of packet. Anatomy and Physiology Chapter 2: Basic Chemistry Name: Objectives- By the end of this chapter I will be able to: 1. Differentiate between matter and energy. 2. Define chemical element, and list the four

More information

Teacher Instructions

Teacher Instructions Teacher Instructions To print handouts for students Go to File print, change Print what: to handouts, change # per page if desired to enlarge slides on page Change Print range to slides and type in slide

More information

Metabolism and enzymes

Metabolism and enzymes Metabolism and enzymes 4-11-16 What is a chemical reaction? A chemical reaction is a process that forms or breaks the chemical bonds that hold atoms together Chemical reactions convert one set of chemical

More information

2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules

2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules All living things are based on atoms and their interactions. Living things consist of atoms of different elements. An atom is the smallest basic unit of matter. An element is one type of atom. ydrogen

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A neutral atom must contain. A) an equal number of protons, neutrons, and electrons B) an equal

More information

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space.

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space. Chapter 02 Testbank Student: 1. Anything that occupies space and has mass is called A. an electron. B. living. C. matter. D. energy. E. space. 2. The electrons of an atom are A. always equal to the number

More information

Compounds Part 1: Ionic Cpds - Formula Units & Nomenclature (29:15) Video Tutorial Lecture Notes

Compounds Part 1: Ionic Cpds - Formula Units & Nomenclature (29:15) Video Tutorial Lecture Notes Exam 1 Video Tutorials and Activities beginning of lecture for exam 1. The materials need to be organized according to the TOC for FULL credit. Refer to the Video/Activity grading rubric. Exam 1 is based

More information

AP Chemistry Standards and Benchmarks

AP Chemistry Standards and Benchmarks Standard: Understands and applies the principles of Scientific Inquiry Benchmark 1: Scientific Reasoning Course Level Benchmarks A. Formulates and revises scientific explanations and models B. Understands

More information

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370 Chapter 2 The Chemistry of Biology Dr. Ramos BIO 370 2 Atoms, Bonds, and Molecules Matter - all materials that occupy space and have mass Matter is composed of atoms. Atom simplest form of matter not divisible

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism Chapter 8 Objectives Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and

More information

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell. I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate

More information

There are two types of polysaccharides in cell: glycogen and starch Starch and glycogen are polysaccharides that function to store energy Glycogen Glucose obtained from primary sources either remains soluble

More information

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis Cell (Outline) - Components of a functional cell - Major Events in the History of Earth: abiotic and biotic phases; anaerobic and aerobic atmosphere - Prokaryotic cells impact on the biosphere - Origin

More information

Matter and Substances Section 3-1

Matter and Substances Section 3-1 Matter and Substances Section 3-1 Key Idea: All matter is made up of atoms. An atom has a positively charges core surrounded by a negatively charged region. An atom is the smallest unit of matter that

More information

Elements and Isotopes

Elements and Isotopes Section 2-1 Notes Atoms Life depends on chemistry. The basic unit of matter is the atom. Atoms are incredibly small The subatomic particles that make up atoms are protons, neutrons, and electrons. Parts

More information

Chapter 02 Chemistry of Life

Chapter 02 Chemistry of Life Chapter 02 Chemistry of Life Multiple Choice Questions 1. The smallest unit of matter is the A. molecule. B. atom. C. compound. D. isotope. HAPS Objective: C.01.03 Compare and contrast the terms atoms,

More information

The following question(s) were incorrectly answered.

The following question(s) were incorrectly answered. Name: Marcie Joseph Module: Cells & chemistry Test topic/animation: My animations/all animations Test type: Multiple choice Score: 48/50 Percent correct: 96% The following question(s) were incorrectly

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Chapter 6 Chemistry in Biology

Chapter 6 Chemistry in Biology Section 1: Atoms, Elements, and Compounds Section 2: Chemical Reactions Section 3: Water and Solutions Section 4: The Building Blocks of Life Click on a lesson name to select. 6.1 Atoms, Elements, and

More information