Counting Polynomials and Related Indices by Edge Cutting Procedures

Size: px
Start display at page:

Download "Counting Polynomials and Related Indices by Edge Cutting Procedures"

Transcription

1 MATCH Commuicatios i Mathmatical ad i Computr Chmistry MATCH Commu. Math. Comput. Chm. 64 (010) ISSN Coutig Polyomials ad Rlatd Idics by Edg Cuttig Procdurs M. V. Diuda Faculty of Chmistry ad Chmical Egirig, Babs-Bolyai Uivrsity, 40008, Cluj, Romaia (Rcivd Jauary 13, 010) Abstract. A topological idx is a umric quatity drivd from th structur of a graph G(V,E) which is ivariat up to automorphisms of th cosidrd graph. O of th most famous topological idics is th Wir idx W(G); it quals th sum of distacs btw all uordrd pairs of vrtics of G. A rlatd umbr is th Szgd idx SZ(G), which is th sum of all products of o-quidistat, proximal vrtics u (), v () with rspct to th two ds of ay dg =(u,v) i G. Third is th Cluj idx CJ S(G), calculatd from th first drivativ of CJ (x) polyomial. A forth idx, calld Cluj-Ilmau CI(G), is calculatd from th first ad scod drivativs of th Omga ( x) polyomial, which couts th opposit dg strips i G. All ths idics ad rlatd polyomials ar drivd hr by dg cuttig procdurs i som bipartit graphs ad/or partial cubs. A clar rlatdss amog ths dscriptors was stablishd ad xmplifid. Thir us i corrlatig various physico-chmical or biological proprtis with th molcular structur hav b xtsivly prov. 1. Itroductio O of th most famous topological idics is th Wir idx, itroducd by Harold Wir. 1 Th Wir idx quals th sum of topological distacs btw all uordrd pairs of vrtics of G: WG ( ) d ( uv, ) (1) ( uv, ) V( G) G Th Szgd idx is aothr topological idx dfid by Iva Gutma as: Sz ( G ) u() v() () ( uv, ) E( G) whr u () is th umbr of vrtics of G lyig closr to u tha to v ad v () is th umbr of vrtics of G lyig closr to v tha to u.

2 -570- W proposd Cluj matrics ad idics i viw of xtdig th dfiitio of Wir matrics, proposd by Radi 3,4 to cycl-cotaiig graphs, othr tha th Szgd idx did. A Cluj fragmt 5-9 CJ i, j, p collcts vrtics v lyig closr to i tha to j, th dpoits of a path p(i,j). Such a fragmt collcts th vrtx proximitis of i agaist ay vrtx j, joid by th path p, with th distacs masurd i th subgraph D (G-p) : CJ v v V ( G); D ( i, v) D ( j, v) (3) i, j, p ( Gp) ( Gp) I trs, CJ i, j, p dots sts of (coctd) vrtics v joid with j by paths p goig through i. Th path p(i,j) is charactrizd by a sigl dpoit, which is sufficit to calculat th usymmtric matrix UCJ. I graphs cotaiig rigs, th choic of th appropriat path is quit difficult, thus that path which provids th fragmt of maximum cardiality is cosidrd: [UCJ] i, j max CJ p i, j,p (4) Wh path p blogs to th st of distacs DI(G), th suffix DI is addd to th am of matrix, as i UCJDI. Wh path p blogs to th st of dtours DE(G), th suffix is DE. Wh th matrix symbol is ot followd by a suffix, it is implicitly DI. Th Cluj matrics ar dfid i ay graph ad, xcpt for som symmtric graphs, ar usymmtric ad ca b symmtrizd by th Hadamard (pair-wis) multiplicatio 10 with thir trasposs: SM p = UM (UM) T (5) If th matrics calculatd o dgs (i.., o adjact vrtx pairs) ar rquird, th matrics calculatd o paths must b multiplid by th adjaccy matrix A (which has th o-diagoal tris of 1 if th vrtics ar joid by a dg ad, othrwis, zro): SM = SM p A (6) Th Cluj idics, calculatd as half sum of th matrix tris, prviously usd i corrlatig studis publishd by TOPO GROUP Cluj, wr calculatd i th symmtric matrics, thus ivolvig a multiplicativ opratio. Also, th symbol CJ

3 -571- (Cluj) is usd hr for th prviously dotd CF (Cluj fragmtal) matrics ad idics. I this papr, th usymmtric matrix dfid o distacs ad calculatd o dgs UCJ will b usd to compar th cofficits of th Cluj polyomials 11,1 with thos obtaid by a cuttig procdur (s blow): UCJ = UCJ p A (7). Basic dfiitios Lt G(V,E) b a coctd bipartit pla graph, with th vrtx st V(G) ad dg st E(G). Two dgs =(x,y) ad f=(u,v) of G ar i rlatio opposit, op f, if thy ar opposit dgs of a fac i G. Assumig that facs ar isomtric subgraphs of G, th rlatio op implis th coditio of topologically paralll dgs : 13 d( x, v) d( x, u) 1 d( y, v) 1 d( y, u) (8) Rlatio op is rflxiv ad symmtric but, i gral, is ot trasitiv. It will partitio th dgs st E(G) ito opposit dg strips ops, S(G)={ S 1, S,..., S }, as follows. (i) Ay two subsqut dgs of a ops ar i op rlatio; (ii) Ay thr subsqut dgs of such a strip blog to adjact facs; (iii) Th ops is ta as maximum possibl, irrspctiv of th startig dg. (iv) Th choic about th maximum siz of fac/rig, ad th fac/rig mod coutig, will dcid th lgth of th strip. Thr ar graphs i which op is trasitiv ad ops suprimpos ovr th orthogoal cut strips ocs, C(G)={ c 1, c,..., c }, dfid by rlatio co. 13,14 I such a graph, rlatio op, dfid locally (o facs), bcoms a global proprty, li th corlatio ad th graph is a co-graph or a partial cub. Th its orthogoal cuts form a partitio of th dgs i G: E( G) c1c... c, ci cj, i j. Th ocs ca b obtaid by a orthogoal dg-cuttig procdur (s blow). A subgraph H G is calld isomtric, if d ( u, v) d ( u, v), for ay ( uv, ) H; it is covx if ay shortst path i G btw vrtics of H blogs to H. A graph G is a partial cub if it is mbddabl i th -cub Q, which is th rgular graph whos vrtics ar all biary strigs of lgth, two strigs big H G

4 -57- adjact if thy diffr i xactly o positio. 15 Th distac fuctio i th -cub is th Hammig distac. A hyprcub ca also b xprssd as th Cartsia product: Q K i 1 For ay dg =(u,v) of a coctd graph G lt uv dot th st of vrtics lyig closr to u tha to v: w V( G) d( w, u) d( w, v) uv. It follows that wv( G) d( w, v) d( w, u) 1. Th sts (ad subgraphs) iducd by ths uv vrtics, uv ad vu, ar calld smicubs of G; th smicubs ar opposit ad disjoit os. 16,17 A graph G is bipartit if ad oly if, for ay dg of G, th opposit smicubs dfi a partitio of G: v V( G). Ths smicubs ar just th vrtx uv vu proximitis of (th dpoits of) dg =(u,v), which th Cluj polyomials cout (s blow). Th rlatio co is rlatd to ~ (Djoovi 18 ) ad (Wilr 19 ) rlatios: 0 i a coctd bipartit graph, co = ~ =. For two dgs =(u,v) ad f=(x,y) of G th thta rlatio is dfid as: f if d( u, x) d( v, y) d( u, y) d( v, x). A bipartit graph G is a co-graph if ad oly if it is a partial cub, ad all its smicubs ar covx; rlatio co / is th trasitiv. 17 A co-graph ca also b o-bipartit. 3. Cluj ad rlatd polyomials by th cuttig procdur Th Cluj polyomials ar dfid 11,1,1, o th basis of Cluj matrics as: CJ ( x) m( ) x (9) Thy cout th smicub or proximity p of th vrtx i with rspct to ay vrtx j i G, joid to i by a dg {p,i } (th Cluj-dg polyomials) or by a path {p p,i } (th Cluj-path polyomials), ta as th shortst (i.., distac DI) or th logst (i.., dtour DE) paths. I q. (9), th cofficits m() ca b calculatd from th tris of usymmtric Cluj matrics by th TOPOCLUJ softwar program. 3 Th summatio rus ovr all {p} i G. I bipartit graphs, th smicubs coutd by CJ polyomial ca b stimatd by a orthogoal dg-cuttig procdur.,4-6 To prform it, ta a straight li

5 To ay orthogoal cut c, =1,,.., max two umbrs ar associatd: first o rprsts th umbr of dgs itrsctd or th cuttig cardiality c whil th scod (i roud bracts, i Figur 1) is v or th umbr of poits lyig to th lft had with rspct to c. Out of CJ polyomial, thr ar othr topological dscriptors that cout th smicubs i G (s Figur 1, th polyomial xpots), thy diffrig oly i th mathmatical opratio usd i r-composig th dg cotributios to th global graph proprty. Bcaus th opposit smicubs dfi a partitio of vrtics i a bipartit graph, it is asily to idtify th two smicubs: uv = v ad vu = v-v or vicvrsa sgmt, orthogoal to th dg, ad itrsct ad all its paralll dgs (i a polygoal pla graph). Th st of ths itrsctios is calld a orthogoal cut (oc for short) of G, with rspct to (Figur 1). CJ S(x) = 3 3(x 5 +x 11 )+ 3 6(x 16 +x 110 )+ 3 8(x 31 +x 95 )+ 3 8(x 47 +x 79 ) (x 63 +x 63 ) CJ S (1) = 194; CJ S (1) = PI v (x) = 3 3(x )+ 3 6(x )+ 3 8(x )+ 3 8(x ) (x ) PI v (1) = 194; PI v (1) = CJ P(x) = 3 3(x 5 11 )+ 3 6(x )+ 3 8(x )+ 3 8(x ) (x ) CJ P (1) = W(x) = 3 (x 5 11 )+ 3 (x )+ 3 (x )+ 3 (x )+ 3 1(x ) W (1) = H`(1) = ( x) = 3 x 3 +3 x 6 +( )x 8 = 6x 3 +6x 6 +15x 8 CI( G) 9046 Figur 1. Cuttig procdur i th calculus of svral topological dscriptors

6 (ii) Pair-wis summatio, with th polyomial calld (vrtx) Padmaar- Iva 8 by Ashrafi 9-3 (ad symbolizd PI v ): Th cofficits of ths dscriptors ar calculatd (with som xcptios) as th product of thr umbrs (i th frot of bracts - right had part of Figur 1) with th maig: (i) symmtry of G; (ii) occurrc of c (i th whol structur) ad (iii). Rsumig to th mathmatical opratio usd i r-composig th graph smicubs, four polyomials ca b dfid accordig to: (i) Summatio, ad th polyomial is calld Cluj-Sum, by Diuda t al. 11,1,1,,7 (ad symbolizd CJ S): v v v CJ S( x) x x (10) PI ( x) x v v( vv ) (11) (iii) Pair-wis product, whil th polyomial is calld Cluj-Product (ad symbolizd CJ P) 5-9,,6 or also Szgd polyomial (ad symbolyzd SZ): 30-3 CJ P( x) SZ( x) x v ( vv ) (1) (iv) Sigl dg pair-wis product ad th polyomial is calld Wir W(x): W( x) x v ( vv ) (13) Th first drivativ (i x=1) of a (graph) coutig polyomial provids sigl umbrs, oft calld topological idics. Som commts ar ow wlcom. It is ot difficult to s that th first drivativ (i x=1) of th first two polyomials givs o ad th sam valu, howvr, thir scod drivativ is diffrt (s Figur 1) ad th followig rlatios hold i ay graph: 1 CJ S(1) PI (1) ; CJ S(1) PI (1) (14) v Th umbr of trms, giv by CJ S(1)= is twic th umbr giv by PI v (1) bcaus, i th last cas, th two dpoit cotributios ar pair-wis summd for ay dg i a bipartit graph (s (10) ad (11)). It is ot difficult to obsrv th first drivativ (i x=1) of PI v (x) tas th maximal valu i bipartit graphs: v

7 whr u,v, v,u cout th o-quidistat vrtics with rspct to th dpoits of th dg =(u,v) whil m(u,v) is th umbr of quidistat vrtics vs. u ad v. Howvr, it is ow that, i bipartit graphs, thr ar o quidistat vrtics vs. ay dg, so that th last trm i (16) will miss. Th valu of PI v (G) is thus maximal i bipartit graphs, amog all graphs o th sam umbr of vrtics; th rsult of (16) ca b usd as a critrio for chcig th bipatity of a graph. Th third polyomial uss th pair-wis product; otic that Cluj-Product CJ P(x) is prcisly th (vrtx) Szgd polyomial SZ v (x), dfid by Ashrafi t al This coms out from th rlatios btw th basic Cluj (Diuda 5,34,35 ) ad Szgd (Gutma,35 -s rlatio ()) idics: PI (1) v E( G) V ( G) (15) v It ca also b s by cosidrig th dfiitio of th corrspodig idx, as writt by Ili: 33 PI ( G) PI (1) V E m v v uv, vu, uv, uv uv (16) CJ P(1) CJ DI( G) SZ( G) SZ (1) (17) v All th first thr polyomials (ad thir drivd idics) do ot cout th quidistat vrtics, a ida itroducd i Chmical Graph Thory by Gutma. Th last polyomial w call Wir, bcaus it is calculatd as Wir did i calculatig th idx W(G) i tr graphs: multiply th umbr of poits lyig to th lft ad to th right of ach dg (actually rad orthogoal cut c ): WG ( ) W(1) v ( vv) (18) whr v ad v-v ar th cardialitis of th disjoit smicubs formig a partitio with rspct to ach dg i c ta, howvr, as a sigl dg (as i trs). I fact, th rlatio (18) couts paths xtral to th orthogoal cuts c, as th Wir matrix W, proposd by Radi, dos. Th both dscriptors ar rstrictivly dfid: oly i trs (th matrix W) ad oly i partial cubs (th polyomial W(x)). Not that tr graphs ar partial cubs. Th both abov dscriptors cout vrtics (ot dgs). I th opposit, th Hosoya polyomial H(x) couts dgs (ot vrtics), by worig o th Distac D matrix: 15,35 H( x) m( ) x (19)

8 -576- whr th xpot dots th shortst paths (btw pairs of vrtics i G) of xtt, whil m() couts th umbr of -paths. Th dfiitio of W(G), as giv i rlatio (1), is thus rlatd to th (first drivativ H`(1) of ) Hosoya polyomial. Clarly, th both polyomials will provid th sam valu of W(G) i trs/partial cubs, accordig to th thorm of Kli, Gutma ad Luovits, 41 which stats th quality of sums of th itral paths (collctd by D &D p matrics) ad th xtral paths (giv by W &W p matrics): 4 WG ( ) W(1) H(1) (0) Klavžar 5 statd that, i calculatig th idx W(G), th orthogoal cut procdur is applicabl oly i partial cubs. Thus, w ca writ th followig Propositio 1: A bipartit graph i which th rlatio (0) holds is a partial cub. From th abov discussio, th propositio appars at last cocivabl. Mor ovr, th uppr bod of th products i rlatio (18) is rachd for v =v/ ad th umbr of ths maximal lgth ocs is limitd by th symmtry of G. Thus, a graph i which th followig iquality holds is ot a partial cub: 6 WG ( ) SG ( ) ( v/) (1) Howvr, a valu of W(G) lowr tha th abov bod ad, dos ot sur G is a partial cub. I such a cas, tryig to prform th cuttig procdur, a valu v >v/ will idicat a o-covx, o-isomtric subgraph ad thus a graph which is ot a partial cub. Th fial proof is th chcig of trasitivity of co-rlatio. A last rmar o W(x): i partial cubs, its xpots ar idtical to thos i CJ P(x) =SZ(x) whil th cofficits ar thos i th abov polyomials, dividd by. 4. Omga ad rlatd polyomials by th cuttig procdur Lt s ow rtur to Figur 1 ad itroduc th last dscriptor: th Omga polyomial. Dot by m(s) or simply m th umbr of ops of lgth s= s ad dfi th Omga polyomial as: 16,17,43-5

9 -577- s ( x) ms ( ) x () s Th xpots cout just th itrsctd dgs by th cut-li, which is ot dd to b orthogoal o all th dgs of a ops (s abov); th cofficits m(s) ar asily coutd from th symmtry of G. I partial cubs, othr two rlatd polyomials 16,17 ca b calculatd o ops: s ( x) ms x (3) s s ( x) ms x (4) s Th (x) couts quidistat dgs whil (x) o-quidistat dgs. Thus, Omga ad its rlatd polyomials cout dgs ot vrtics. Thir first drivativ (i x=1) provids sigl umbr topological dscriptors: (1) m s E ( ) s (5) (1) m s ( ) s (6) (1) ms ( s ) ( G ) (7) s O Omga polyomial, th Cluj-Ilmau idx, 13 CI=CI(G), was dfid: { } CI( G) [ (1)] [ (1) (1)] (8) A polyomial rlatd to (x) was dfid by Ashrafi 53 as: PI ( x) x u (, ) v (, ) (9) E( G) whr (,u) is th umbr of dgs lyig closr to th vrtx u tha to th v vrtx. Its first drivativ (i x=1) provids th PI(G) idx proposd by Khadiar. 8,54 Propositio. I co-graphs/partial cubs, th quality CI( G) ( G) holds. This ca b dmostratd by xpadig dfiitio (8), CI calculatio ladig to ( G) : 16,17 CI( G) ms m s m s ( s 1) m s ( G) s s s (30) s Rlatio (30) is valid oly i th assumptio c s, which provids th sam valu for th xpot s ad this is prcisly achivd i co-graphs/partial cubs.

10 -578- A graph, of which ( x) ca b writt xactly i th trms of ( x), accordig to th pair rlatios {()&(3)}, will prcisly show th quality CI( G) ( G) cf (30). Th rlatdss of th two polyomials (ad idtity CI( G) ( G) ) is providd rathr by th quality of cardialitis s c tha by th corrspodig sts suprpositio s c, th coditio {()&(3)} big thus cssary but ot sufficit i ordr a graph to b dclard co-graph/partial cub. Fially, th trasitivity of ops/ocs must b prov. Not that thr is ot ow a simpl procdur to stablish th partial cub status. 17 Th quality CI( G) ( G) ca appar v th pair rlatios {()&(3)} ar ot rlatd. This is bcaus th quidistac rlatio qd ivolvs both coditios for topologically paralll (rlatio (8)) ad prpdicular (rlatio (31)) dgs: d( u, x) d( u, y) d( v, x) d( v, y) (31) I such a cas, th idx quality ca b cosidrd as a cas of dgracy. If th graph is co-graph/partial cub, th all of its smicubs ar covx. 17,0 Furthr, a orthogoal dg-cuttig procdur ca b usd to gt th ops. I gral, ( G) PI( G), th diffrc btw th two idics origiatig i th diffrt dfiitio (Ashrafi 44 ) of dg distac: th distac from a vrtx z to a dg ( u, v) is ta as th miimum distac btw th giv poit ad th two dpoits of : d(,) z mi{(, d z u), d(,)} z v (3) Th, th dg =(u,v) ad f=(x,y) ar i rlatio qd f if: d( x, ) d( y, )ad d( u, f) d( v, f) (33) Rlatios (8)&(31) ar strogr tha rlatios (3)&(33), i bipartit graphs thy suprimposig to ach othr (but ot i gral graphs) ad ( G) PI( G). Sic ay partial cub is also a bipartit graph, th i partial cubs/co-graphs th followig tripl quality holds: 16,17,6 CI( G) ( G) PI ( G) (34) I th opposit, i gral graphs, th quality chags to th corrspodig iquality: CI( G) ( G) PI ( G) (35)

11 -579- Rsumig, th status of co-graph/partial cub caot b dcidd by a simpl ad rapid critrio/coditio. Out of various algorithms proposd to rach this tas, th tstig of trasitivity of ocs is th last proof. To rduc th umbr of graphs tstd, th coditios {(0)&(30)}, ca b cosidrd, udr th rsrv thy ar cssary but ot sufficit. 5. Applicatios I th followig, w apply th cuttig procdur o two classs of structurs: (i) pcu cubic t ad (ii) topological aocos. Formulas ar giv symbolically, i viw of asily udrstadig th cuttig procdurs (i associatio with th graphs i figurs) ad oly i fial, at th first drivativ calculatio, th t paramtr ar substitutd. Numrical xampls ar giv Cuttig procdur i pcu cubic t W apply ow th orthogoal cuttig procdur i th pcu cubic twor, apparig i crystal structur (Figur ); amog various ocs, th ctral o is dotd by =0. Th formulas for th t paramtrs ad topological dscriptors ar giv i Tabl 1. C(3,3,3) C =1 C =0 Figur. Cuttig procdur i pcu cubic t Tabl 1. Nt paramtrs ad topological dscriptors i pcu cubic lattic. Typ Formulas vca ( ( )) 3 vca ( ( )) V( Ca ( )) ( a 1) Ca ( ( )) Ca ( ( )) EG ( ) 3 aa ( 1) v v ( C( a)) ( a 1)

12 -580- v v C a a s ( ( )) ( 1) / ( C( a)) ( a 1) Wir ( a1)/ (( v/) v( vv ) W ( C( a, odd), x) 3x 6 x 1 3 (( a1) /) WCaodd ( (, ), x) 3x ( a1)/ 3 ( a1) [( a1) ( a1) ] 6 x 1 ( a1)/ 3 3 W( C( a, odd),1) 3[( a1) /] 6 ( a1) [( a1) ( a1) ] a/ W ( C( a, v), x) 6 x 1 a/ W ( C( a, v), x) 6 x 1 v ( vv ) 1 3 ( a1) [( a1) ( a1) ] ( (, ),1) a/ 6 ( 1) [( 3 1) ( 1) ] 1 W C a v a a a 5 W( C( a),1) (1/) a( a)( a 1) Exampls: a=4; W(x) = 6x x 3750 ; W '(1) = a=5; W(x) = 6x x x ; W '(1) = Szgd SZCa ( ( ), x) ( Ca ( )) WCa ( ( ), x) ( a1) WCa ( ( ), x) 7 SZ(1) ( a 1) W ( C( a)) (1 / ) a( a )( a 1) Exampls: a=4; SZ(x)=150x x 3750 ; SZ' (1) = a=5; SZ(x)=16x x x ; SZ '(1) = Cluj ( a1)/ v/ v vv CJ S CJ S( C( a, odd), x) 6 [ x ( x x )] 1 3 ( a1) / CJ S( C( a, odd), x) 6( a 1) [ x ( a1)/ ( a1) ( x 3 [( a1) ( a1) ] x )] 1 a/ v v v CJ ( (, ), ) 6 ( S C a v x x x ) 1 a/ a ( 1) [( a1) 3 a ( 1) ] CJS( C( a, v), x) 6( a 1) ( x x ) 1 a v CJ ( ( ), ) 6 S C a x x 1 a a ( 1) CJS( C( a), x) 6( a 1) x CJS(1) v 3 a( a 1) ( a 1) 3 a( a 1) Exampls: a=4; CJ S(x)=150x x x x 5 ; CJ S '(1)= a=5; CJ S(x)=16x x x x x 36 ; CJ S '(1)=

13 -581- Omga ( b1)( c1) ( a1)( c1) ( a1)( b1) (C( abc,, ), x) ax bx c x ( a1)( c1) ( a1) (C( aac,, ), x) ax c x ( a 1) (C( aaa,, ), x) 3a x ( Ca ( ),1) 3 aa ( 1) ( Ca ( ),1) 3 a( a1) ( a ) 4 CI( C( a)) 3 a(3a 1)( a 1) Exampls: 5 a=4; ( x) 1 x ; (1) 300; CI a=5; ( x) 15 x ; (1) 540; CI Cuttig procdur i aocos Coical ao-structurs hav b rportd i Naoscic sic 1968, 55,56 bfor th discovry of fullrs. If a graphit sht is dividd ito six sctors, ach with a agl of 60º, ad if m of ths sctors (with m=1 to 3) ar dltd squtially, th daglig bods big fusd togthr, thr classs of graphs, associatd to sigl-walld aocos, ar obtaid; thir apx polygo will b a ptago (a=5), a squar (a=4) or a triagl (a=3), rspctivly. O ca xtd th costructio pricipl ad accpt i th family of topological cos structurs havig th apx polygo a 6 ; of cours, that co with a=6 is just th pla graphit sht whil thos havig largr polygos will show a saddl shap. I th rct yars, svral rsarchrs hav cosidrd th mathmatical proprtis of such aostructurs Figur 3 givs thr xampls of such topological cos, with th applicatio of th cuttig procdurs i viw of drivig som importat topological dscriptors. Figur 3. Cuttig procdur i aocos of apx a=4,6 ad 8

14 -58- Formulas, rfrrig to t paramtrs ad dscriptors ar giv i th Tabls ad 3, alog with som umrical xampls, i Tabl 4. Tabl. Nt paramtrs ad topological dscriptors i bipartit (partial cubs) aocos Typ Formulas for Cos C(a,); a=v; a>4. va (, ) va (, ) a ( 1) a (, ) a (, ) ( a/ )(3 5 ) h h h 0 h0 1 v v (i1) () i1 s ( 1) CJ S(x) CJS( x) CJS0( x) CJS( x) v/ v/ CJS0( x) [( a / )( h0 1) ( a 6)( 1)] ( x x ) v/ v/ CJ S ( x) ( a /) ( x x ) 0 0 CJ S ( x) a ( h v 1) ( x v v x ) 1 CJ S ( x) a v ( x v v x ) 1 v/ v/ ( ) ( /) 0 ( ) ( v v v) 1 3 ( 1) ( ) a v ( / )(3 5 ) 3 v (1) (1) ( / )( 1) (3 ) ( v/) ( ) ( /) 0 ( ) v( vv) (1) ( / 4)( 1) ( CJ S x a x x a x x CJ S(1) v ( a / )(3 5 ) a( 1) ( a / )( 1) (3 ) PI v (x) PI x x a x PI CJ S v a CJ P(x) CJ P x a x a x CJ P a a a a 1a 19 3a 3a 6 aa ) CJP(, x) s W ( x) Wir ( v/) v( vv) W( x) ( a/)( x ) a x 1 (1) ( /)( /) ( ) ( a,,1) (1/10) ( 1)( W a v a v v v W C a a a 15a a 45a 45a76 140a 15 a )

15 ( s,,1) (1/15) ( 1)( W C s s s s 45s 0s 1945s70s15 s) W C 4 3 ( 3,,1) (1/ 5)( 1)( ) Omga 1 ( 1) ( x) ( a/) x ax (1) ( a/ )(3 5 ) CI a a a a a a 3 ((, ) (1/1) ( 1)( ) Tabl 3. Nt paramtrs ad topological dscriptors i bipartit (o-partial cubs) aocos Typ Formulas for Cos C(4,). v(4, ) v(4, ) 4( 1) (4, ) (4, ) (3 5 ) s 1 v v ( ) =odd: =v: last ormal cut 0 ( 1)/ 0 / corrctd cut c 0 1 ( 3)/ c 0 1 ( )/ corrctio c ( c) 1 c ( c) 1 1 CJ c S(x) v/ v/ v CJ S( C(4, ), x) 4( 1)( x x ) 4 ( x vv x ) 1 v vv v( c) 4 ( c) ( x x ) 4 c ( x vv( c) x ) c c CJ S( C(4, ),1) v (3 5 ) 4( 1) 8(3 )( 1) 3 CJ P(x) c 1 ( v/) CJ P( C(4, ), x) 4( 1) x 4 v( vv) x 1 v( vv) ( v( c) )( vv( c) ) 4 ( c) x 4c x c c 3 ( (4, v),1) 16 (538 / 5) (419 /15) 370 CJ P C (1669 / 6) (557 / 5) (557 / 30) ( (4, odd ),1) (31/ ) (53 / 5) (813 / 30) 370 CJ P C Omga 1 ( 1) ( x) ( a/) x ax (1669 / 6) (557 / 5) (557 / 30) (1) ( a/ )(3 5 ) CI a a a a a a 3 ((, ) (1/1) ( 1)( ) As ca b s from Tabls ad 3, Omga polyomial is calculatd by th sam gral formula i ay cos with a 4, a=v.

16 -584- It is importat to s that if G allows a orthogoal cut th { } { c } { s }; howvr, i cos with a=4 ad a=odd, a dtail o ths sts is dd. I all cos, with a 4, a=itgr, th quality CI( G) ( G) holds, by th followig rasos: (i) cos with v a 4 ar partial cubs; (ii) cos with odd a 4 ar uios of partial cubs i o-bipartit graphs ({ c } { s } ad co is trasitiv, thus th cos ar co-graphs, but ot partial cubs); (iii) cos with a 4 show s c (but { c } { s }, c is o-trasitiv ad th bipartit graphs ar ot co-graphs or partial cubs), th last cas big cosidrd as a cas of dgracy. I cos with a=3, CI( G) ( G) bcaus s c (ad th o-bipartit graphs ar ot co-graphs or partial cubs). I ay co with a=v (i.., bipartit graphs), th quality ( G) PI( G) holds. Tabl 4. Exampls for th formulas i Tabls ad 3. a Polyomial Idx 4 3 CJ S(x) = 0x x x x x 3 + 1x x 9 + 4x 0 + 0x 9 PI v (x)= 88x 64 SZ v (x)=0x x x x x 104 ( x) =4x 5 +4x 6 +4x 7 +x CJ S(x) = 4x x x 6 + 4x x x x x x x x 38 +8x 4 + 4x 11 PI v (x)= 140x 100 SZv(x)=4x x x x x x x 500 ( x) =4x 6 +4x 7 +4x 8 +4x 9 +x CJ S(x)=30x x x x x x x 9 PI v (x)= 13x 96 SZ v (x)=30x x x W(x)=6x x x ( x) =6x 5 +6x 6 +6x 7 +3x CJ S(x)=36x + 4x x + 54x x x x x x 11 PI v (x)= 10x 150 CJ S (1)= 563 PI v ' (1) = 563 SZ v '(1)=7590 CI=7176 CJ S'(1)= PI v '(1) = SZv'(1)= CI= CJ S'(1)=167 PI v '(1)=167 SZ v '(1)=084 W'(1)=3304 CI= 1657 CJ S (1)= PI v ' (1) = 31500

17 -585- SZ v (x)= 36x x x x x 565 W(x)=6x x x x x 565 ( x) =6x 6 +6x 7 +6x 8 +6x 9 +3x CJ S(x)=40x + 48x + 56x x x x x 9 PI v (x) = 176x 18 SZ v (x)=40x x x x 4096 W(x)=8x x x x 4096 ( x) = 8x 5 +8x 6 +8x 7 +4x CJ S(x)=48x x x + 7x x + 7x x x x 11 PI v (x) = 80x 00 SZ v (x)=48x x x x x W(x)= 8x x 44 +8x x x ( x) = 8x 6 +8x 7 +8x 8 +8x 9 +4x 10 SZ v '(1)= W'(1)= CI= 440 CJ S'(1)= 58 PI v '(1) =58 SZ v '(1)=45315 W'(1)=6731 CI= 9840 CJ S'(1)= PI v ' (1)= SZ v '(1)= W'(1)=05168 CI= I graphs which ar ot partial cubs, li th cos C(4,), ) o ca us a procdur basd o * which is th trasitiv closur of Wilr s rlatio. 60,61 Numrical calculatio wr do by our origial softwar programs TOPOCLUJ, 3 Omga coutr 6 ad Nao Studio. 63 Th us of th hri discussd dscriptors i corrlatig of various physicochmical or biological proprtis with th molcular structur hav b xtsivly prov, thus w oly ivit th radr to cosult som moographs i th fild. 54,64-67 Coclusios Th most usd topological idics: Wir idx W(G), Szgd idx SZ(G), Cluj idics CJ(G) ad th mor rctly dfid Cluj-Ilmau CI(G), wr drivd hr by dg cuttig procdurs i som bipartit graphs ad/or partial cubs. Th aalytical formulas abld us to fid a clar rlatdss amog ths topological dscriptors. Numrical xampls wr giv. Acowldgmts: Th fiacial support of th Romaia Grat CNCSIS PN-II IDEI 506/007, is acowldgd.

18 -586- REFERENCES 1. H. Wir, Structural dtrmiatio of paraffi boilig poits, J. Am. Chm. Soc. 69 (1947) I. Gutma, A formula for th Wir umbr of trs ad its xtsio to graphs cotaiig cycls, Graph Thory Nots Nw Yor 7 (1994) M. Radi, X. Guo, T. Oxly, H. Krishapriya, Wir matrix: sourc of ovl graph ivariats, J. Chm. If. Comput. Sci. 33 (1993) M. Radi, X. Guo, T. Oxly, H. Krishapriya, L. Naylor, Wir matrix ivariats, J. Chm. If. Comput. Sci. 34 (1994) M. V. Diuda, Cluj matrix ivariats, J. Chm. If. Comput. Sci. 37 (1997) M. V. Diuda, Cluj matrix CJ u : sourc of various graph dscriptors. MATCH Commu. Math. Comput. Chm. 35 (1997) M. V. Diuda, B. Parv, I. Gutma, Dtour Cluj matrix ad drivd ivariats, J. Chm. If. Comput. Sci. 37 (1997) I. Gutma, M. V. Diuda, Dfiig Cluj matrics ad Cluj matrix ivariats, J. Srb. Chm. Soc. 63 (1998) M. V. Diuda, G. Katoa, I. Luovits, N. Triajsti, Dtour ad Cluj-dtour idics, Croat. Chm. Acta 71 (1998) R. A. Hor, C. R. Johso, Matrix Aalysis, Cambridg Uiv. Prss, Cambridg, M. V. Diuda, Cluj polyomials, J. Math. Chm. 45 (009) M. V. Diuda, A. E. Vizitiu, D. Jaži, Cluj ad rlatd polyomials applid i corrlatig studis, J. Chm. If. Modl. 47 (007) P. E. Joh, A. E. Vizitiu, S. Cighr, M. V. Diuda, CI idx i tubular aostructurs, MATCH Commu. Math. Comput. Chm. 57 (007) P. E. Joh, P. V. Khadiar, J. Sigh, A mthod of computig th PI idx of bzoid hydrocarbos usig orthogoal cuts, J. Math. Chm. 4 (007) F. Harary, Graph Thory, Addiso Wsly, Radig, M. V. Diuda, S. Cighr, P. E. Joh, Omga ad rlatd coutig polyomials, MATCH Commu. Math. Comput. Chm. 60 (008)

19 M. V. Diuda, S. Klavžar, Omga polyomial rvisitd, Carpath. J. Math. (009) i prss. 18. D. Ž. Djoovi, Distac prsrvig subgraphs of hyprcubs, J. Combi. Thory Sr. B 14 (1973) P. M. Wilr, Isomtric mbddig i products of complt graphs, Discr. Appl. Math. 8 (1984) S. Klavžar, Som commts o co graphs ad CI idx, MATCH Commu. Math. Comput. Chm. 59 (008) M. V. Diuda, A. Ili, M. Ghorbai, A. R. Ashrafi, Cluj ad PIv polyomials, Croat. Chm. Acta (009) i prss.. M. V. Diuda, N. Dorosti, A. Iramash, Cluj CJ polyomial ad idics i a ddritic molcular graph, Carpath. J. Math. (009) i prss. 3. O. Ursu, M. V. Diuda, TOPOCLUJ softwar program, Babs-Bolyai Uivrsity, Cluj, 005; Availabl, o li at 4. I. Gutma, S. Klavžar, A algorithm for th calculatio of th Szgd idx of bzoid hydrocarbos, J. Chm. If. Comput. Sci. 35 (1995) S. Klavžar, A brid s y viw of th cut mthod ad a survy of its applicatios i chmical graph thory, MATCH Commu. Math. Comput. Chm. 60 (008) M. V. Diuda, Coutig polyomials i partial cubs, i: I. Gutma, B. Furtula (Eds.), Novl Molcular Structur Dscriptors Thory ad Applicatios I, Uiv. Kragujvac, Kragujvac, 010, pp A. E. Vizitiu, M. V. Diuda, Cluj polyomial dscriptio of TiO aostructurs, Studia Uiv. Babs-Bolyai 54 (009) P. V. Khadiar, O a ovl structural dscriptor PI, Nat. Acad. Sci. Ltt. 3 (000) M. H. Khalifh, H. Yousfi Azari, A. R. Ashrafi, Vrtx ad dg PI idics of Cartsia product graphs, Discr. Appl. Math. 156 (008) M. H. Khalifh, H. Yousfi Azari, A. R. Ashrafi, A matrix mthod for computig Szgd ad vrtx PI idics of joi ad compositio of graphs, Li. Algbra Appl. 49 (008) A. R. Ashrafi, M. Ghorbai, M. Jalali, Th vrtx PI ad Szgd idics of a ifiit family of fullrs, J. Thor. Comput. Chm. 7 (008) 1 31.

20 T. Masour, M. Schor, Th vrtx PI idx ad Szgd idx of bridg graphs, Discr. Appl. Math. 157 (009) A. Ili, O th xtrmal graphs with rspct to th vrtx PI idx, Appl. Math. Ltt. (009) submittd. 34. M. V. Diuda, Valcis of proprty, Croat. Chm. Acta 7 (1999) M. V. Diuda, I. Gutma, L. Jätschi, Molcular Topology, Nova, Nw Yor, H. Hosoya, O som coutig polyomials i chmistry, Discr. Appl. Math. 19 (1988) E. V. Kostatiova, M. V. Diuda, Th Wir polyomial drivativs ad othr topological idics i chmical rsarch, Croat. Chm. Acta 73 (000) I. Gutma, S. Klavžar, M. Ptovš, P. Žigrt, O Hosoya polyomials of bzoid graphs, MATCH Commu. Math. Chm. 43 (001) M. V. Diuda, Hosoya polyomial i tori, MATCH Commu. Math. Comput. Chm. 45 (00) M. Stfu, M. V. Diuda, Distac coutig i tubs ad tori: Wir idx ad Hosoya polyomial, i: M. V. Diuda (Ed.), Naostructurs, Novl Architctur, Nova, Nw Yor, 005, pp D. J. Kli, I. Luovits, I. Gutma, O th dfiitio of th hypr Wir idx for cycl cotaiig structurs, J. Chm. If. Comput. Sci. 35 (1995) M. V. Diuda, O. Ursu, Layr matrics ad distac proprty dscriptors, Idia J. Chm. 4A (003) M. V. Diuda, Omga polyomial, Carpath. J. Math. (006) A. R. Ashrafi, M. Jalali, M. Ghorbai, M. V. Diuda, Computig PI ad omga polyomials of a ifiit family of fullrs, MATCH Commu. Math. Comput. Chm. 60 (008) M. V. Diuda, A. Ili, Not o omga polyomial, Carpath. J. Math. 5 (009) A. E. Vizitiu, M. V. Diuda, Omga ad thta polyomials i coical aostructurs, MATCH Commu. Math. Comput. Chm. 60 (008) M. V. Diuda, Omga polyomial i twistd/chiral polyhx tori, J. Math. Chm. 45 (009)

21 M. V. Diuda, A. E. Vizitiu, F. Gholamizhad, A. R. Ashrafi, Omga polyomial i twistd (4,4) tori, MATCH Commu. Math. Comput. Chm. 60 (008) M. V. Diuda, Omga polyomial i twistd ((4,8)3)R tori, MATCH Commu. Math. Comput. Chm. 60 (008) M. V. Diuda, S. Cighr, A. E. Vizitiu, O. Ursu, P. E. Joh, Omga polyomial i tubular aostructurs, Croat. Chm. Acta 79 (006) A. E. Vizitiu, S. Cighr, M. V. Diuda, M. S. Florscu, Omga polyomial i ((4,8)3) tubular aostructurs, MATCH Commu. Math. Comput. Chm. 57 (007) M. V. Diuda, S. Cighr, A. E. Vizitiu, M. S. Florscu, P. E. Joh, Omga polyomial ad its us i aostructurs dscriptio, J. Math. Chm. 45 (009) A. R. Ashrafi, B. Maoochhria, H. Yousfi Azari, O th PI polyomial of a graph, Util. Math. 71 (006) M. V. Diuda, M. S. Florscu, P. V. Khadiar, Molcular Topology ad Its Applicatios, EFICON, Bucharst, A. Krisha, E. Dujardi, M. M. J. Tracy, J. Hugdahl, S. Lyum, T. W. Ebbs, Graphitic cos ad th uclatio of curvd carbo surfacs, Natur 388 (1997) T. W. Ebbs, Cos ad tubs: gomtry i th chmistry of carbo, Acc. Chm. Rs. 31 (1998) A. E. Vizitiu, M. V. Diuda, Cotori of high gra, Studia Uiv. Babs- Bolyai 51 (006) A. E. Vizitiu, M. V. Diuda, Omga ad thta polyomials i coical aostructurs, MATCH Commu. Math. Comput. Chm. 60 (008) M. A. Alipour, A. R. Ashrafi, A umrical mthod for computig th Wir idx of o hptagoal carbo aoco, J. Comput. Thort. Naosci. 6 (009) S. Klavžar, O th caoical mtric rprstatio, avrag distac, ad partial Hammig graphs, Eur. J. Combi. 7 (006) A. Ili, M. V. Diuda, F. Gholami Nzhaad, A. R. Ashrafi, Topological idics i aocos, i: I. Gutma, B. Furtula (Eds.), Novl Molcular Structur

22 -590- Dscriptors Thory ad Applicatios I, Uiv. Kragujvac, Kragujvac, 010, pp S. Cighr, M. V. Diuda, Omga Polyomial Coutr, Babs Bolyai Uiv., C. L. Nagy, M. V. Diuda, Nao-Studio softwar, Babs-Bolyai Uiv., M. V. Diuda (Ed.), QSPR/QSAR Studis by Molcular Dscriptors, Nova, Nw Yor, A. T. Balaba (Ed.), From Chmical Topology to Thr Dimsioal Gomtry, Plum Prss, Nw Yor, M. A. Johso, G. M. Maggiora (Eds.), Cocpts ad Applicatio of Molcular Similarity, Wily, Nw Yor, M. V. Diuda, I. Gutma, Wir typ topological idics, Croat. Chm. Acta 71 (1998) 1 51.

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

On the Reformulated Zagreb Indices of Certain Nanostructures

On the Reformulated Zagreb Indices of Certain Nanostructures lobal Joural o Pur ad Applid Mathmatics. ISSN 097-768 Volum, Numbr 07, pp. 87-87 Rsarch Idia Publicatios http://www.ripublicatio.com O th Rormulatd Zagrb Idics o Crtai Naostructurs Krthi. Mirajar ad Priyaa

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Omega polynomial in twisted (4,4) tori

Omega polynomial in twisted (4,4) tori MATCH Commuicatios i Mathematical ad i Computer Chemistry MATCH Commu. Math. Comput. Chem. 60 (2008) 945-953 ISSN 0340-6253 Omega polyomial i twisted (4,4) tori M. V. Diudea, a* A. E. Vizitiu, a F. Gholamiezhad

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

PI Polynomial of V-Phenylenic Nanotubes and Nanotori

PI Polynomial of V-Phenylenic Nanotubes and Nanotori It J Mol Sci 008, 9, 9-34 Full Research Paper Iteratioal Joural of Molecular Scieces ISSN 4-0067 008 by MDPI http://wwwmdpiorg/ijms PI Polyomial of V-Pheyleic Naotubes ad Naotori Vahid Alamia, Amir Bahrami,*

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)!

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)! MATH 681 Nots Combiatorics ad Graph Thory I 1 Catala umbrs Prviously, w usd gratig fuctios to discovr th closd form C = ( 1/ +1) ( 4). This will actually tur out to b marvlously simplifiabl: ( ) 1/ C =

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation Papr 17, CCG Aual Rport 11, 29 ( 29) Compariso of Simpl Idicator rigig, DMPE, Full MV Approach for Catgorical Radom Variabl Simulatio Yupg Li ad Clayto V. Dutsch Ifrc of coditioal probabilitis at usampld

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

What are those βs anyway? Understanding Design Matrix & Odds ratios

What are those βs anyway? Understanding Design Matrix & Odds ratios Ral paramtr stimat WILD 750 - Wildlif Population Analysis of 6 What ar thos βs anyway? Undrsting Dsign Matrix & Odds ratios Rfrncs Hosmr D.W.. Lmshow. 000. Applid logistic rgrssion. John Wily & ons Inc.

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

4.2 Design of Sections for Flexure

4.2 Design of Sections for Flexure 4. Dsign of Sctions for Flxur This sction covrs th following topics Prliminary Dsign Final Dsign for Typ 1 Mmbrs Spcial Cas Calculation of Momnt Dmand For simply supportd prstrssd bams, th maximum momnt

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information