Acidic Solution. Example #1: ClO3 + SO2 ---> SO4 2 + Cl. Solution: 1) Split into unbalanced half-reactions: ClO3 ---> Cl SO2 ---> SO4 2

Size: px
Start display at page:

Download "Acidic Solution. Example #1: ClO3 + SO2 ---> SO4 2 + Cl. Solution: 1) Split into unbalanced half-reactions: ClO3 ---> Cl SO2 ---> SO4 2"

Transcription

1 Balance the following REDOX reactions in an acidic solution: 1. ClO3 + SO2 ---> SO4 2 + Cl 2. H2S + NO3 ---> S8 + NO 3. MnO4 + H2S ---> Mn 2+ + S8 4. Cu + SO > Cu 2+ + SO2 5. MnO4 + CH3OH ---> HCOOH + Mn 2+ Balance the following REDOX reactions in a basic solution: 1. NH3 + ClO ---> N2H4 + Cl 2. Au + O2 + CN ---> Au(CN)2 + H2O2 3. Br + MnO4 ---> MnO2 + BrO3 4. AlH4 + H2CO ---> Al 3+ + CH3OH 5. Se + Cr(OH)3 ---> Cr + SeO3 2 Acidic Solution Example #1: ClO3 + SO2 ---> SO4 2 + Cl 1) Split into unbalanced half-reactions: ClO3 ---> Cl SO2 ---> SO4 2 2) Balance the half-reactions: 6e + 6H + + ClO3 ---> Cl + 3H2O 2H2O + SO2 ---> SO H + + 2e 3) Make the number of electrons equal: 6e + 6H + + ClO3 ---> Cl + 3H2O 6H2O + 3SO2 ---> 3SO H + + 6e <--- multiplied through by a factor of 3 4) Add the two half-reactions for the final answer: ClO3 + 3H2O + 3SO2 ---> 3SO4 2 + Cl + 6H +

2 Note that items duplicated on each side were cancelled out. The duplicates are 6e, 3H2O, and 6H + Example #2: H2S + NO3 ---> S8 + NO 1) The unbalanced half-reactions: H2S ---> S8 NO3 ---> NO 2) balance each half-reaction: 8H2S ---> S8 + 16H e 3e + 4H + + NO3 ---> NO + 2H2O 3) Make the number of electrons equal: 24H2S ---> 3S8 + 48H e <--- multiplied by a factor of 3 48e + 64H NO3 ---> 16NO + 32H2O <--- multiplied by a factor of 16 Note that 16 and 3 have no common factors except 1, so both 16 and 3 had to be used to obtain the lowest common multiple of 48 for the number of electrons. 4) Add: 24H2S + 16H NO3 ---> 3S8 + 16NO + 32H2O Comment: removing a factor of 8 does look tempting, doesn't it? However, the three in front of the S8 (or the five in the next example) makes it impossible. Also, note that duplicates of 48 electrons and 48 hydrogen ions were removed. Example #3: MnO4 + H2S ---> Mn 2+ + S8 1) Half-reactions:

3 H2S ---> S8 MnO4 ---> Mn 2+ 2) Balance: 8H2S ---> S8 + 16H e 5e + 8H + + MnO4 ---> Mn H2O 3) Make the number of electrons equal (note that there are no common factors between 5 and 16 except 1): 40H2S ---> 5S8 + 80H e <--- factor of 5 80e + 128H MnO4 ---> 16Mn H2O <--- factor of 16 4) The final answer: 40H2S + 48H MnO4 ---> 5S8 + 16Mn H2O Another possibility of removing a factor of 8 destroyed by an odd number, in this case, the 5 in front of the S8. Curses, foiled again! Example #4: Cu + SO > Cu 2+ + SO2 1) The unbalanced half-reactions: Cu ---> Cu 2+ SO > SO2 2) The balanced half-reactions: Cu ---> Cu e 2e + 4H + + SO > SO2 + 2H2O Cu + 4H + + SO > Cu 2+ + SO2 + 2H2O No need to equalize electrons since it turns out that, in the course of balancing the half-reactions, the electrons are equal in amount. Note how easy it was to balance the copper half-reaction. All you needed were the two electrons.

4 Example #5: MnO4 + CH3OH ---> HCOOH + Mn 2+ 1) The balanced half-reactions: 5e + 8H + + MnO4 ---> Mn H2O H2O + CH3OH ---> HCOOH + 4H + + 4e 2) Equalize electrons: 20e + 32H + + 4MnO4 ---> 4Mn H2O <--- factor of 4 5H2O + 5CH3OH ---> 5HCOOH + 20H e <--- factor of 5 12H + + 5CH3OH + 4MnO4 ---> 5HCOOH + 4Mn H2O Basic Solution Example #1: NH3 + ClO ---> N2H4 + Cl 1) The two half-reactions, balanced as if in acidic solution: 2NH3 ---> N2H4 + 2H + + 2e 2e + 2H + + ClO ---> Cl + H2O 2) Electrons already equal, convert to basic solution: 2OH + 2NH3 ---> N2H4 + 2H2O + 2e 2e + 2H2O + ClO ---> Cl + H2O + 2OH Comment: that's 2 OH, not 20 H. Misreading the O in OH as a zero is a common mistake. 2HN3 + ClO ---> N2H4 + Cl + H2O

5 Notice that no hydroxide appears in the final answer. That means this is a basecatalyzed reaction. For the reaction to occur, the solution must be basic and hydroxide IS consumed. It is just regenerated in the exact same amount, so it cancels out in the final answer. Example #2: Au + O2 + CN ---> Au(CN)2 + H2O2 1) the two half-reactions, balanced as if in acidic solution: 2CN + Au ---> Au(CN)2 + e 2e + 2H + + O2 ---> H2O2 2) Make electrons equal, convert to basic solution: 4CN + 2Au ---> 2Au(CN)2 + 2e <--- multiplied by a factor of 2 2e + 2H2O + O2 ---> H2O2 + 2OH 4CN + 2Au + 2H2O + O2 ---> 2Au(CN)2 + H2O2 + 2OH Comment: the CN is neither reduced nor oxidized, but it is necessary for the reaction. For example, you might see this way of writing the problem: Au + O2 ---> Au(CN)2 + H2O2 Notice that CN does not appear on the left side, but does so on the right. Since you MUST balance the equation, that means you are allowed to use CN in your balancing. An important point here is that you know the cyanide polyatomic ion has a negative one charge. Example #3: Br + MnO4 ---> MnO2 + BrO3 1) The two half-reactions, balanced as if in acidic solution:

6 3H2O + Br ---> BrO3 + 6H + + 6e 3e + 4H + + MnO4 ---> MnO2 + 2H2O 2) Make the number of electrons equal: 3H2O + Br ---> BrO3 + 6H + + 6e 6e + 8H + + 2MnO4 ---> 2MnO2 + 4H2O <--- multiplied by a factor of 2 3) Convert to basic solution, by adding 6OH to the first half-reaction and 8OH to the second: 6OH + Br ---> BrO3 + 3H2O + 6e 6e + 4H2O + 2MnO4 ---> 2MnO2 + 8OH 4) The final answer: H2O + 2MnO4 + Br ---> 2MnO2 + BrO3 + 2OH 5) What happens if you add the two half-reactions without converting them to basic? You get this: 2H + + 2MnO4 + Br ---> 2MnO2 + BrO3 + H2O Then, add 2OH to each side: 2H2O + 2MnO4 + Br ---> 2MnO2 + BrO3 + H2O + 2OH Eliminate one water for the final answer: H2O + 2MnO4 + Br ---> 2MnO2 + BrO3 + 2OH The answer to the question? Nothing happens. You get the right answer if convert before adding the half-reactions or after. There will even be cases where balancing one half-reaction using hydroxide can easily be done while the other half-reaction gets balanced in acidic solution before converting. You can add the two half-reactions while one is basic and one is acidic, then convert after the adding (see below for an example of this). Example #4: AlH4 + H2CO ---> Al 3+ + CH3OH

7 1) The two half-reactions, balanced as if in acidic solution: AlH4 ---> Al H + + 8e 2e + 2H + + H2CO ---> CH3OH 2) Converted to basic by addition of hydroxide, second half-reaction multiplied by 4 (note that the hydrogen is oxidized from -1 to +1): 4OH + AlH4 ---> Al H2O + 8e 8e + 8H2O + 4H2CO ---> 4CH3OH + 8OH AlH4 + 4H2O + 4H2CO ---> Al CH3OH + 4OH Example #5: Se + Cr(OH)3 ---> Cr + SeO3 2 1) The unbalanced half-reactions: Se ---> SeO3 2 Cr(OH)3 ---> Cr 2) Note that only the first half-reaction is balanced using the balance-first-in-acid technique, the second is balanced using hydroxide: Se + 3H2O ---> SeO H + + 4e 3e + Cr(OH)3 ---> Cr + 3OH 3) Convert the first half-reaction by adding 6 hydroxide to each side, eliminate duplicate waters, then make the electrons equal (factor of 3 for the first half-reaction and a factor of 4 for the second). The final answer: 6OH + 3Se + 4Cr(OH)3 ---> 4Cr + 3SeO H2O 4) What would happen if we didn't make the first half-reaction basic and just added them? first, make the electrons equal: 3Se + 9H2O ---> 3SeO H e 12e + 4Cr(OH)3 ---> 4Cr + 12OH

8 then, add: 3Se + 4Cr(OH)3 + 9H2O ---> 4Cr + 3SeO H OH combine hydrogen ion and hydroxide ion on the right-hand side: 3Se + 4Cr(OH)3 + 9H2O ---> 4Cr + 3SeO H H2O eliminate water: 3Se + 4Cr(OH)3 ---> 4Cr + 3SeO H + + 3H2O add six hydroxides: 6OH + 3Se + 4Cr(OH)3 ---> 4Cr + 3SeO H2O Note that I combined the H + and the OH to make six waters and then added it to the three waters that were already there.

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas.

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. Oxidation Numbers #00 Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

More information

Balancing Redox Equations in Acidic Solutions. 6 2Cr H 2 O. 6 2Cr 3+ Example 1: Balance the following equation for the reaction of Cr 2 O 7

Balancing Redox Equations in Acidic Solutions. 6 2Cr H 2 O. 6 2Cr 3+ Example 1: Balance the following equation for the reaction of Cr 2 O 7 Balancing Redox Equations in Acidic Solutions Example 1: Balance the following equation for the reaction of Cr 2 O 7 2 with Fe 2+ in an acidic solution. Cr 2 O 7 2 + Fe 2+ 6 Cr 3+ + Fe 3+ Step 1: Divide

More information

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number Redox Reactions key terms: oxidizing agent reducing agent oxidation number Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign oxidation numbers. Electrochemistry

More information

Balancing Redox Reactions

Balancing Redox Reactions Balancing Redox Reactions 1. What is a redox reaction? a. Redox is an abbreviation to say reduction/oxidation is taking place during a chemical reaction. In the old days oxidation was when an element combined

More information

Activity Balancing Oxidation-Reduction Reactions

Activity Balancing Oxidation-Reduction Reactions Activity 201 3 Balancing Oxidation-Reduction Reactions Directions: This GLA worksheet goes over the half-reaction method of balancing oxidation-reduction (redox) reactions. Part A introduces the oxidation

More information

Rules for Assigning Oxidation Numbers. 1. The oxidation number of an element in any elementary substance is zero.

Rules for Assigning Oxidation Numbers. 1. The oxidation number of an element in any elementary substance is zero. Rules for Assigning Oxidation Numbers 1. The oxidation number of an element in any elementary substance is zero. For example, the oxidation number of chlorine in Cl 2, phosphorus in P 4, and sulfur in

More information

UNIT 7 CHEMICAL FORMULAS WRITING FORMULAS NOTES. EXAMPLES: 1. carbon tetrachloride 2. calcium oxide. 3. iron (III) bromide 4.

UNIT 7 CHEMICAL FORMULAS WRITING FORMULAS NOTES. EXAMPLES: 1. carbon tetrachloride 2. calcium oxide. 3. iron (III) bromide 4. WRITING FORMULAS NOTES EXAMPLES: 1. carbon tetrachloride 2. calcium oxide 3. iron (III) bromide 4. lead (II) nitrate 5. aluminum hydroxide 6. ammonium chromate Notes- HONORS 1 NAMING COMPOUNDS NOTES EXAMPLES:

More information

Worksheet 25 - Oxidation/Reduction Reactions

Worksheet 25 - Oxidation/Reduction Reactions Worksheet 25 Oxidation/Reduction Reactions Oxidation number rules: Elements have an oxidation number of 0 Group I and II In addition to the elemental oxidation state of 0, Group I has an oxidation state

More information

Oxidation-Reduction (Redox) Reactions (4.4) 2) The ox. state of an element in a simple ion is the charge of the ion. Ex:

Oxidation-Reduction (Redox) Reactions (4.4) 2) The ox. state of an element in a simple ion is the charge of the ion. Ex: Redox reactions: Oxidation-Reduction (Redox) Reactions (4.4) Oxidation & reduction always occur simultaneously We use OXIDATION NUMBERS to keep track of electron transfers Rules for Assigning Oxidation

More information

http://redoxanswers.weebly.com REDOX LESSON LEARNING GOALS http://redoxanswers.weebly.com Lesson 1: Introduction to Redox Relate to examples of oxidation-reduction reactions in the real-world. Understand

More information

Redox Worksheet 1: Numbers & Balancing Reactions

Redox Worksheet 1: Numbers & Balancing Reactions Name: Date: Per: Redox Worksheet 1: Numbers & Balancing Reactions Assigning Oxidation Number rules: Elements and Compounds have an oxidation number/total of 0 Group I and II In addition to the elemental

More information

Chapter 12 Redox reactions and Electrochemistry

Chapter 12 Redox reactions and Electrochemistry Chapter 12 Redox reactions and Electrochemistry 11 Balancing Redox Equations 12 Electrochemical Cells 13 Stoichiometry in Electrochemical Cells 14 (Skip) Metals and Metallurgy 15 (Skip) Electrometallurgy

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

Chapter 12 Redox reactions and Electrochemistry

Chapter 12 Redox reactions and Electrochemistry Chapter 12 Redox reactions and Electrochemistry 11 Balancing Redox Equations 12 Electrochemical Cells 13 Stoichiometry in Electrochemical Cells 14 Metals and Metallurgy 15 Electrometallurgy Note: See course

More information

AP Chapter 4: Reactions in Aqueous Solution Name

AP Chapter 4: Reactions in Aqueous Solution Name AP Chapter 4: Reactions in Aqueous Solution Name WarmUps (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 4: Reactions in Aqueous Solution 2 WarmUps

More information

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS RULES FOR ASSIGNING OXIDATION NUMBERS: 1. The oxidation number of any free element (including diatomic elements) is always 0. 2. The sum of the oxidation

More information

Information Required for Memorization

Information Required for Memorization Information Required for Memorization Your students are required to memorize the following information for Chem 10. This information must not be supplied on Cheat Sheets for your Semester Exams or Final

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 15 Redox Reactions Module 16 Half-Reaction Balancing Module 15 Redox Reactions... 380 Lesson 15A: Oxidation Numbers... 380 Lesson 15B: Balancing Charge... 385 Lesson 15C:

More information

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH Today: Redox Reactions Oxidations Reductions Oxidation Numbers Half Reactions Balancing in Acidic Solution Balancing in Basic Solution QUIZ 3 & EXAM 3 moved up by one day: Quiz 3 Wednesday/Thursday next

More information

Q.1 What is the oxidation state of the elements in?

Q.1 What is the oxidation state of the elements in? Oxidation and Reduction 1 OXIDATION NUMBERS Used to tell if oxidation or reduction has taken place work out what has been oxidised and/or reduced construct half equations and balance redox equations Atoms

More information

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Key Questions 1. Does the entropy of the system increase or decrease for the following changes?

More information

Another substance, called a reducing agent, causes or promotes the reduction of a metal compound to an elemental compound.

Another substance, called a reducing agent, causes or promotes the reduction of a metal compound to an elemental compound. Electrochemistry Oxidation and Reducation The technology of metalurrgy has allowed humanity to progress from the Stone Age, through the Bronze Age and the Iron Age to modern times. Very few metals exist

More information

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Name Period CRHS Academic Chemistry UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry

More information

CHM 4 Optional worksheet: Ion names/formulas

CHM 4 Optional worksheet: Ion names/formulas The goal of this optional worksheet is to help you recognize patterns that will help you memorize the ion names and symbols on our Important elements/ions to know for CHM 4, 1A, and 1B handout. It will

More information

REVIEW QUESTIONS Chapter 19

REVIEW QUESTIONS Chapter 19 Chemistry 10 ANSWER KEY REVIEW QUESTIONS Chapter 19 1. For each of the following unbalanced equations, (i) write the half-reactions for oxidation and reduction, and (ii) balance the overall equation in

More information

UNIT IV PPT #3 Ka and Kb KEY.notebook. November 23, WHAT IS Ka? UNIT IV. CALCULATIONS USING Ka. WHAT IS Ka? Nov 10 9:42 PM.

UNIT IV PPT #3 Ka and Kb KEY.notebook. November 23, WHAT IS Ka? UNIT IV. CALCULATIONS USING Ka. WHAT IS Ka? Nov 10 9:42 PM. WHAT IS Ka? Recall: Find ph of 0.100 M HCl. But What is ph of 0.10 M HF? UNIT IV Ka and Kb CALCULATIONS USING Ka I. [H 3O + ] (or ph) from Ka Ex. Find the [H 3O + ] in 0.10 M HF. WHAT IS Ka? Look at equilibrium

More information

REVIEW QUESTIONS Chapter The alcohol in gasohol burns according to the equation shown below:

REVIEW QUESTIONS Chapter The alcohol in gasohol burns according to the equation shown below: Chemistry 101 REVIEW QUESTIONS Chapter 4 1. The alcohol in gasohol burns according to the equation shown below: C2H5OH (l) + 3 O2 (g) 2 CO2 (g) + 3 H2O l) How many grams of CO2 are produced when 3.00 g

More information

10.3. The Half-Reaction Method for Balancing Equations. 482 MHR Unit 5 Electrochemistry

10.3. The Half-Reaction Method for Balancing Equations. 482 MHR Unit 5 Electrochemistry 10.3 Section Preview/ Specific Expectations In this section, you will investigate oxidationreduction reactions by reacting metals with acids and by combusting hydrocarbons write balanced equations for

More information

Activities Activity 1: Balancing equations Activity 2: Writing the formulae of ionic compounds Activity 3: Research the structure of the atom

Activities Activity 1: Balancing equations Activity 2: Writing the formulae of ionic compounds Activity 3: Research the structure of the atom Science Department Activities Activity 1: Balancing equations Activity 2: Writing the formulae of ionic compounds Activity 3: Research the structure of the atom Activity 1: Balancing equations Chemical

More information

7-OXIDATION, REDUCTION, RED-OX REACTIONS, TYPES

7-OXIDATION, REDUCTION, RED-OX REACTIONS, TYPES 7-OXIDATION, REDUCTION, RED-OX REACTIONS, TYPES 1) In the reaction CuO + NH Cu + N + HO, the oxidation number of N changes from 1) to 0 ) 0 to + ) to + 4) to 0 ) In the reaction MnO 4 MnO, the number of

More information

(note: each ½ reaction has balanced the number of atoms and the charge.)

(note: each ½ reaction has balanced the number of atoms and the charge.) Oxidation- Reduction Reactions in Aqueous Solutions Introduction: When a piece of copper wire is immersed in a clear, colorless solution of silver nitrate, silver whiskers grow on the surface of the wire

More information

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic)

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic) Step by Step: Oxidation Numbers and Balancing Redox reactions. Ex. 1) MnO 4-1 + H 2 SO 3 Mn 2+ + HSO 4-1 (acidic) Rules for Oxidation Numbers (for individual atoms): 1) Any free element (without a charge)

More information

Inorganic Chemistry Nomenclature A. Anions

Inorganic Chemistry Nomenclature A. Anions Writing Net Ionic Equations and Determination of Spectator Ions Predicting Products and Balancing Total Equation: 1. Given reactants, swap appropriate ions to form product compounds 2. Determine phase

More information

Chapter 19: Electrochemistry I. Chem 102 Dr. Eloranta

Chapter 19: Electrochemistry I. Chem 102 Dr. Eloranta Chapter 19: Electrochemistry I Chem 102 Dr. Eloranta 2 Electrochemistry The study of the relationships between electrical processes and chemical processes Batteries, electroplating, fuel cells, hydrogen

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1 Redox Reactions Sections 4.9, 18.2 RW Session ID = MSTCHEM1 Oxidation Reduction Reactions Redox Reactions Electrons are transferred from one reactant to another Oxidation loss of electrons Reduction gain

More information

Week 9 Solubility & Redox

Week 9 Solubility & Redox Week 9 Solubility & Redox Q UEST IO N 1 2 The solubility of Ag 2CO 3 is 3.5 10 g/l at 25 C. What is the value of Ks p at this temperature? 12 A. 2.2 10 8 B. 3.4 10 12 C. 8.2 10 4 D. 1.7 10 E. 4.3 10 Q

More information

Reduction: 2 H + (aq) + 2 e H2(g)

Reduction: 2 H + (aq) + 2 e H2(g) Balancing Redox Reactions Homework Answers page 617 # 1-3, 5, 7-9 Mrs. Giovannone 1. (a) Solution: Step 1: Write the unbalanced equation for the reaction. Mg(s) + HCl(aq) H2(g) + MgCl2(aq) Step 2: Write

More information

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Reactions involve the transfer of electrons between reactants When a substance loses electrons, it undergoes oxidation: Ca(s)

More information

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM Chemical Reactions Chapter 4 Notes Oct 21 8:44 AM Oct 22 10:14 AM 1 There are several things to keep in mind writing reactions and predicting products: 1. States of matter of elements/compounds 2. Diatomics

More information

POGIL EXERCISE 13 All about Oxidation States, Oxidation and Reduction

POGIL EXERCISE 13 All about Oxidation States, Oxidation and Reduction +5 MIN RUN TIME: 85 MIN POGIL 13: Page 1 of 7 POGIL EXERCISE 13 All about Oxidation States, Oxidation and Reduction Each member should locate his/her role in Table 1 and assume his or her role at this

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 4 Section 9 & 10 Oxidation Reduction Reactions Reactions in which one or more electrons are transferred. That means elements change their charge from reactants to

More information

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework Name Period Date Ch. 19: OxidationReduction Reactions Homework Answer each of the following questions in as much detail as you can. Be sure to show all your work for any calculations and follow all rules

More information

Q.1 What is the oxidation state of the elements in?

Q.1 What is the oxidation state of the elements in? xidation and Reduction 1 XDATN STATES Used to tell if oxidation or reduction has taken place work out what has been oxidised and/or reduced construct half equations and balance redox equations Atoms /

More information

Solubility Equilibria

Solubility Equilibria Solubility Equilibria Heretofore, we have investigated gas pressure, solution, acidbase equilibriums. Another important equilibrium that is used in the chemistry lab is that of solubility equilibrium.

More information

Chapter 7 & 8 Nomenclature Notes/Study Guide. Properties of ionic bonds & compounds. Section 7-2

Chapter 7 & 8 Nomenclature Notes/Study Guide. Properties of ionic bonds & compounds. Section 7-2 Objectives Properties of ionic bonds & compounds Section 72 Define chemical bond. Describe formation of ionic bonds structure of ionic compounds. Generalize of ionic bonds based on Main Idea of ionic compounds

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions What is an Oxidation-Reduction, or Redox, reaction? Oxidation-reduction reactions, or redox reactions, are technically defined as any chemical reaction in which the oxidation

More information

Redox reactions. You can remember this by using OiLRiG: Oxidation is Loss Reduction is Gain. Definition 1: Oxidation

Redox reactions. You can remember this by using OiLRiG: Oxidation is Loss Reduction is Gain. Definition 1: Oxidation Redox reactions If you have seen a piece of rusty metal then you have seen the end result of a redox reaction (iron and oxygen forming iron oxide). Redox reactions are also used in electrochemistry and

More information

Week 9 Solubility & Intro electrochem

Week 9 Solubility & Intro electrochem Week 9 Solubility & Intro electrochem Q UEST IO N 1 2 The solubility of Ag 2CO 3 is 3.5 10 g/l at 25 C. What is the value of Ks p at this temperature? 12 A. 2.2 10 8 B. 3.4 10 12 C. 8.2 10 4 D. 1.7 10

More information

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Lesson Topics Covered Homework Questions and Assignments 1 Introduction to Electrochemistry definitions 1. Read pages 462 467 2. On page

More information

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph.

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph. Acid-Base Character of Salt Solutions The ph of a salt solution will depend on the acidbase nature of both the cation and anion. Cations Cations are potentially acidic, but some have no effect on ph. M(H

More information

Chapter 16 Redox Reactions

Chapter 16 Redox Reactions Chapter 16 Redox Reactions p.1/7 16.1 Defining Oxidation and Reduction In terms of addition/removal of oxygen Consider the following reaction 1. Mg changed to MgO because Mg is oxidized by CuO. 2. CuO

More information

Revision of Important Concepts. 1. Types of Bonding

Revision of Important Concepts. 1. Types of Bonding Revision of Important Concepts 1. Types of Bonding Electronegativity (EN) often molecular often ionic compounds Bonding in chemical substances Bond energy: Is the energy that is released when a bond is

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

Balance the following equation: Fe + O 2 Fe 2 O 3. Please complete your warm-up on a scratch piece of paper and turn it into the basket.

Balance the following equation: Fe + O 2 Fe 2 O 3. Please complete your warm-up on a scratch piece of paper and turn it into the basket. Balance the following equation: Fe + O 2 Fe 2 O 3 Please complete your warm-up on a scratch piece of paper and turn it into the basket. 1 Balancing Equations Law of Conservation of Mass Law of Definite

More information

Naming Inorganic Compounds. common names systematic names

Naming Inorganic Compounds. common names systematic names Naming Inorganic Compounds common names systematic names Molecular Common Systematic Formula name name AgCl Lunar caustic Silver chloride H 2 SO 4 Oil of vitriol Sulfuric acid MgSO 4 Epsom salts Magnesium

More information

Chapter 4 Chemical Formulas, Reactions, Redox and Solutions

Chapter 4 Chemical Formulas, Reactions, Redox and Solutions Terms to Know: Solubility Solute Solvent Solution Chapter 4 the amount of substance that dissolves in a given volume of solvent at a given temperature. a substance dissolved in a liquid to form a solution

More information

CHEMISTRY II SUMMER ASSIGNMENT and First Day Test Material

CHEMISTRY II SUMMER ASSIGNMENT and First Day Test Material CHEMISTRY II SUMMER ASSIGNMENT and First Day Test Material CHEMISTRY II FIRST DAY TEST Chemistry II is a difficult course. It is not all about memorization; however, having these items memorized is essential

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Ternary Compounds. , to give the compound, NaNO 3, sodium nitrate.

Ternary Compounds. , to give the compound, NaNO 3, sodium nitrate. Ternary Compounds Ternary Compounds Ternary compounds are those containing three different elements. (NaNO 3, NH 4 Cl, etc.). The naming of ternary compounds involves the memorization of several positive

More information

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions Ch. 20 Oxidation-Reduction Reactions AKA Redox Reactions 20.1 THE MEANING OF OXIDATION AND REDUCTION Early Chemistry Oxidation: a substance gains oxygen Reduction: a substance loses oxygen Nothing can

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion. #19 Notes Unit 3: Reactions in Solutions Ch. Reactions in Solutions I. Solvation -the act of dissolving (solute (salt) dissolves in the solvent (water)) Hydration: dissolving in water, the universal solvent.

More information

» Composed of more than one type of atom chemically bonded.» A pure substance, meaning its properties are the same throughout the substance.

» Composed of more than one type of atom chemically bonded.» A pure substance, meaning its properties are the same throughout the substance. » Composed of more than one type of atom chemically bonded.» A pure substance, meaning its properties are the same throughout the substance.» Separated chemically not physically» No overall charge; they

More information

Introduction to Chemical Equations. Introduction to Chemical Equations. How do you write a skeleton equation?

Introduction to Chemical Equations. Introduction to Chemical Equations. How do you write a skeleton equation? Introduction to Chemical Equations Introduction to Chemical Equations How do you write a skeleton equation? Introduction to Chemical Equations All chemical reactions involve changing substances. In a chemical

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Oxidation refers to any process in which the oxidation number of an atom becomes more positive

Oxidation refers to any process in which the oxidation number of an atom becomes more positive Lecture Notes 3 rd Series: Electrochemistry Oxidation number or states When atoms gain or lose electrons they are said to change their oxidation number or oxidation state. If an element has gained electrons

More information

Ch 11 Practice Problems

Ch 11 Practice Problems Ch 11 Practice Problems 1. How many electrons are transferred in the following reaction? 2Cr 2O 7 2- + 14H + + 6Cl 2Cr 3+ + 3Cl 2 + 7H 2O A) 2 B) 4 C) 6 D) 8 2. Which metal, Al or Ni, could reduce Zn 2+

More information

5.4 Balancing half-reactions 8 HSO 3 S 2 O H + + 2HSO H 2 O. + MnO 4 - Mn 2+ + Answer: 4H + on the left will cancel these 4H +

5.4 Balancing half-reactions 8 HSO 3 S 2 O H + + 2HSO H 2 O. + MnO 4 - Mn 2+ + Answer: 4H + on the left will cancel these 4H + Notes on Unit 5 OxidationReduction 5.4 Balancing halfreactions Some halfreactions are on the table, but not all. You may be asked to answer these Acid Soln. E.g.) S 2 O 8 2 HSO 3 (acid soln.) (1) Balance

More information

ALE 23. Balancing Redox Reactions. How does one balance a reaction for both matter and charge?

ALE 23. Balancing Redox Reactions. How does one balance a reaction for both matter and charge? Name Chem 163 Section: Team Number: ALE 23. Balancing Redox Reactions (Reference: Section 4.5 (pp. 158 166) and 21.1 Silberberg 5 th edition) How does one balance a reaction for both matter and charge?

More information

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed.

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed. Ch. 5 Oxidation-Reduction Reactions Brady & Senese, 5 th Ed. 1 Index 5.1. Oxidation-reduction reactions involve electron transfer 5.2. The ion-electron method creates balanced net ionic equations for redox

More information

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Perchlorates (ClO 4 - ) Acetates (C 2 H 3 O 2 - ) Alkali Metal Compounds (Li +,Na +,K +,Rb +,Cs + ) Ammonium Compounds (NH 4 + ) Chlorides (Cl - ) Bromides (Br -

More information

REVIEW QUESTIONS Chapter The alcohol in gasohol burns according to the equation shown below: 1 mol

REVIEW QUESTIONS Chapter The alcohol in gasohol burns according to the equation shown below: 1 mol Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 4 1. The alcohol in gasohol burns according to the equation shown below: CH5OH (l) + O (g) CO (g) + HO l) How many grams of CO are produced when.00 g of

More information

Oxidation State Short Cuts

Oxidation State Short Cuts Oxidation State Short Cuts The oxidation state of an atom in its elemental state is zero The sum of atomic oxidation states = total charge on an ion or molecule The oxidation state of F is always -1 (except

More information

3. The initial rate of a reaction A + B C was measured for several different starting concentrations of A and B, and the results are as follows:

3. The initial rate of a reaction A + B C was measured for several different starting concentrations of A and B, and the results are as follows: Kinetic Chemistry 1. a) How is the rate at which ozone disappears related to the rate at which oxygen appears in the reaction 2 O 3 (g) 3 O 2 (g)? b) If the rate at which O 2 appears, Δ[O 2 ]/Δt, is 6.0

More information

reason, the NaOH coefficient cannot be 1. reason, the NaOH coefficient cannot be 3. reason, the NaOH coefficient cannot be 4.

reason, the NaOH coefficient cannot be 1. reason, the NaOH coefficient cannot be 3. reason, the NaOH coefficient cannot be 4. College Chemistry Problem Drill 11: Balancing Equations No. 1 of 10 1. Inspection method of balancing equation is the basic approach used mostly for simple reactions. It all starts out by picking the first

More information

Reactions in aqueous solutions Redox reactions

Reactions in aqueous solutions Redox reactions Reactions in aqueous solutions Redox reactions Redox reactions In precipitation reactions, cations and anions come together to form an insoluble ionic compound. In neutralization reactions, H + ions and

More information

Atoms and Bonding. Chapter 18 Physical Science

Atoms and Bonding. Chapter 18 Physical Science Atoms and Bonding Chapter 18 Physical Science 2017-2018 Atoms and Bonding: Chemical Bonding The combining of atoms of elements to form new substances. Bonding of atoms determine a compound s properties.

More information

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions Dr. Sapna Gupta Types of Reactions Two classifications: one how atoms are rearrangement and the other is chemical

More information

POGIL: Oxidation and Reduction

POGIL: Oxidation and Reduction NAME: DATE: AP Chemistry POGIL: Oxidation and Reduction Why? Many of the items you use on a daily basis rely on batteries for power. Most batteries supply electricity through oxidation-reduction reactions

More information

Chemistry 12 JANUARY Course Code = CH. Student Instructions

Chemistry 12 JANUARY Course Code = CH. Student Instructions MINISTRY USE ONLY MINISTRY USE ONLY Place Personal Education Number (PEN) here. Place Personal Education Number (PEN) here. MINISTRY USE ONLY Chemistry 12 2002 Ministry of Education JANUARY 2002 Course

More information

Science 1206 Ch. 3 - Chemical names, formulas and equations

Science 1206 Ch. 3 - Chemical names, formulas and equations Science 1206 Ch. 3 - Chemical names, formulas and equations 3.1 - Ionic and molecular compounds (pp. 98-107) Compounds A compound is a pure substance made of a combination of elements. The elements are

More information

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178 Leaders: Deborah Course: CHEM 178 EXAM 2 PRACTICE KEY Instructor: Bonaccorsi/Vela Date: 3/6/18 Make sure you (also) know: Acid-base definitions Arrhenius Bronsted-Lowry Lewis Autoionization process of

More information

AP Chemistry: Electrochemistry Multiple Choice Answers

AP Chemistry: Electrochemistry Multiple Choice Answers AP Chemistry: Electrochemistry Multiple Choice Answers 14. Questions 14-17 The spontaneous reaction that occurs when the cell in the picture operates is as follows: 2Ag + + Cd (s) à 2 Ag (s) + Cd 2+ (A)

More information

CH Practice Exam #2

CH Practice Exam #2 CH1810 - Practice Exam #2 Part I - Multiple Choice - Choose the best answer and place the letter corresponding to the answer in the space provided. 1. Consider the following reaction and its equilibrium

More information

Half Cell / redox potentials. Context. Task. Evaluation

Half Cell / redox potentials. Context. Task. Evaluation Half Cell / redox potentials Context Students often struggle when asked to apply redox potentials and to combine reduction half equations correctly. This activity aims to involve all the individuals in

More information

Unit 8: Redox and Electrochemistry

Unit 8: Redox and Electrochemistry May 20, 2014 Unit 8: Redox and Electrochemistry http://www.firefly.org/firefly-pictures.html Oxidation Number numbers assigned to atoms that allow us to keep track of electrons. Rule #1: Oxidation number

More information

Chem II. Zn(s) + CuSO4(aq)

Chem II. Zn(s) + CuSO4(aq) Redox Review Chem II 1. What is the sum of the oxidation numbers of the atoms in the compound CO2? A) 0 B) 2 C) 4 D) +4 2. In which substance does phosphorus have a +3 oxidation state? A) P4O10 B) PCl5

More information

Stoichiometry Practice Problems

Stoichiometry Practice Problems Name Period CRHS Academic Chemistry Stoichiometry Practice Problems Due Date Assignment On-Time (100) Late (70) 9.1 9.2 9.3 9.4 9.5 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located on CRHS

More information

Mock Exam Which elements have a single s electron in their outermost shell? a. Na, Al, Ar b. Cl, I, Br c. Cl, O, N d.

Mock Exam Which elements have a single s electron in their outermost shell? a. Na, Al, Ar b. Cl, I, Br c. Cl, O, N d. Mock Exam 2 1. What is Aufbau s principle? a. Electrons have a negative one charge b. Electrons have opposite spins c. Electrons fill the lowest-energy atomic orbitals of a ground-state first d. The radius

More information

Week 5: Chemical Bonding. Part 1: The Octet Rule Part 2: Ionic Bonding

Week 5: Chemical Bonding. Part 1: The Octet Rule Part 2: Ionic Bonding Week 5: Chemical Bonding Part 1: The Octet Rule Part 2: Ionic Bonding Part 1: The Octet Rule Part 1: The Octet Rule / Objectives After this lesson I can determine the number of valence electrons elements

More information

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008 CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008 Section 2 Lecture Notes 10/29/2008 (last revised: 10/29/08, 2:00 PM) 4.9 Oxidation Reduction Reactions Introduction: Your text uses the reaction between solid

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Oxidation Numbers, ox #

Oxidation Numbers, ox # Oxidation Numbers, ox # are or numbers assigned to each or assuming that the are transferred from the electronegative element to the electronegative element. now mimic systems. ox # are written followed

More information

October 19, 1999 Page 1. Chapter 4 Practice Worksheet Dr. Palmer Graves, Instructor MULTIPLE CHOICE

October 19, 1999 Page 1. Chapter 4 Practice Worksheet Dr. Palmer Graves, Instructor MULTIPLE CHOICE October 19, 1999 Page 1 MULTIPLE CHOICE Section 4.1 Some Ways that Chemical Reactions Occur 1. The reaction of HNO (aq) + KOH(aq) KNO (aq) + H O(l) is best classified as a(n) a) acid-base neutralization

More information

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: Water as a solvent Strong and Weak Electrolytes Solution Concentrations How to Make up a solution Types of Reactions Introduction

More information

Atomic Theory and Donding

Atomic Theory and Donding Surrounding Name Date Atomic Theory and Donding Textbook pages 1 68-183 Summary Before You Read What do you already know about Bohr diagrams? Record your answer in the lines below. What are atoms? An atom

More information