Balancing Redox Equations in Acidic Solutions. 6 2Cr H 2 O. 6 2Cr 3+ Example 1: Balance the following equation for the reaction of Cr 2 O 7

Size: px
Start display at page:

Download "Balancing Redox Equations in Acidic Solutions. 6 2Cr H 2 O. 6 2Cr 3+ Example 1: Balance the following equation for the reaction of Cr 2 O 7"

Transcription

1 Balancing Redox Equations in Acidic Solutions Example 1: Balance the following equation for the reaction of Cr 2 O 7 2 with Fe 2+ in an acidic solution. Cr 2 O Fe 2+ 6 Cr 3+ + Fe 3+ Step 1: Divide into halfreactions 2 Cr 2 O 6 7 Cr3+ Fe 2+ 6 Fe 3+ Step 2: Balance atoms other than H & O Cr 2 O Cr 3+ Fe 2+ 6 Fe 3+ Step 3: Balance oxygen atoms by adding H 2 O to the side that needs O. 2 Cr 2 O 7 6 2Cr 3+ Fe 2+ 6 Fe H 2 O Step 4: Balance hydrogen by adding by adding H + to the side that needs H 14H Cr 2 O 7 6 2Cr 3+ Fe 2+ 6 Fe H 2 O Step 5: Balance the charge by adding electrons 14H Cr 2 O 7 6 2Cr H 2 O = +12 = Add 6 e to the left to make both sides equal. 2. Remember electrons are negative therefore add 6 6e + 14H + + Cr 2 O Cr H 2 O (Fe 2+ 6 Fe e) x 6 Step 6: Make electrons gained equal to the electrons lost and then add the two halfreactions. 6e + 14H + + Cr 2 O Cr H 2 O 6Fe 2+ à 6Fe e electrons cancel! 6Fe 2+ (aq) + 14H + 2 (aq) + Cr 2 O 7 (aq) 6 6Fe 3+ (aq)+ 2Cr 3+ (aq) + 7H 2 O (l)

2 Example 2: Balance the following equation in acidic solution. (aq) + H 2 C 2 O 4 (aq) à Mn 2+ (aq) + CO 2 (g) 1. Divide into halfreactions 2. Balance 6 Mn 2+ H 2 C 2 O 4 6 2CO 2 ( 6 Mn 2+ H 2 C 2 O 4 6 2CO 2 3. Balance Oxygen 6 Mn H 2 O H 2 C 2 O 4 6 2CO 2 (already balanced) 4. Balance hydrogen by adding by adding H + to the side that needs H 8H + + MnO4 (aq) 6 Mn 2+ (aq) + 4H 2 O (+8) (1) From +7 to +2 = 5 electrons gained H 2 C 2 O 4 6 2CO 2 + 2H From 0 to +2 = electrons lost 5. a& 6. Balance the charge by adding electrons and make electrons gained equal to the electrons lost and then add the two halfreactions. (5 e + 8H + + MnO4 (aq) 6 Mn 2+ (aq) + 4H 2 O ) x 2 (H 2 C 2 O 4 (aq) 6 2CO 2 (g) + 2H + (aq) + 2e ) x e + 16H + (aq) + 2MnO4 (aq) 6 2Mn 2+ (aq) + 8H 2 O 5H 2 C 2 O CO H e Overall : 6H + (aq) + 2MnO4 (aq) + 5H 2 C 2 O 4 (aq) 6 2Mn 2+ (aq) + 10CO 2(g) + 8H 2 O (l)

3 Example 3: Balance the following equation in acidic solution + H 2 SO 3 6 SO Mn 2+ 6 Mn 2+ H 2 SO 3 6 SO Mn H 2 O H 2 SO 3 + H 2 O 6 SO 4 2 8H Mn H 2 O H 2 SO 3 + H 2 O 6 SO H + 8H Mn H 2 O So we need to add 5 e! H 2 SO 3 + H 2 O 6 SO H = 2+ So we need to add 2 e! (5 e + 8H Mn H 2 O) x 2 (H 2 SO 3 + H 2 O 6 SO H + + 2e) x 5 10e + 16H Mn (3)H 2 O 5H 2 SO 3 + 5H 2 O 6 5SO (4)H e Overall: 5H 2 SO 3 (aq) + 2 (aq) 6 2Mn 2+ (aq) + 5SO 4 2 (aq) + 3H 2 O (l) + 4H + (aq)

4 Example 4: Balance the following equation in acidic solution Zn (s) + NO 3 (aq) à Zn 2+ (aq)+ NO(g) Zn 6 Zn 2+ NO 3 6 NO Zn 6 Zn 2+ nothing to balance NO 3 6 NO + 2H 2 O Zn (s) 6 Zn 2+ (aq) nothing to balance 4H + + NO 3 6 NO + 2H 2 O Zn (s) 6 Zn 2+ +2e 4H + + NO 3 6 NO + 2H 2 O = e + 4H + + NO 3 6 NO + 2H 2 O (Zn (s) à Zn 2+ (aq) +2e) x 3 (3e + 4H + + NO 3 6 NO + 2H 2 O) x 2 3Zn 6 3Zn e 6e + 8H + + 2NO 3 6 2NO + 4H 2 O Overall: 3Zn (s) + 8H + (aq) + 2NO 3 (aq) 6 3Zn 2+ (aq) + 2NO (g) + 4H 2 O (l)

5 Balancing Redox Equations in Basic Solutions The easiest way to balance these equations is to pretend the solution is acidic and add 3 more steps Example 1: Balance the following equation SO 3 2 (aq) + (aq) 6 SO 3 4 (aq) + MnO 2 (aq) (SO SO H + + 2e ) x 3 (3 e + 4H MnO 2 + 2H 2 O) x 2 3H 2 O + 3SO SO H + + 6e 6e (2)H + 6 2MnO 2 + 4(1)H 2 O 2 Overall (in acid): 3SO 3 (aq) + 2H + 2 (aq) + 2 (aq) 6 3SO 4 (aq) + MnO 2 (aq) + H 2 O (l) Step 7: Add the same # of OH as there are H+ to both sides of the equation 2 OH + 3SO H SO MnO 2 + H 2 O + 2 OH Step 8: Combine OH and H + to form H 2 O 2H 2 O + 3SO SO MnO 2 + H 2 O + 2 OH Step 9: Cancel any H 2 O that you can H 2 O + 3SO SO MnO OH Example 2: Balance the following redox equations in basic solution ClO (aq) + CrO 2 (aq) 6 Cl (aq) + CrO 4 2 (aq) (2e + 2H + + ClO 6 Cl + H 2 O) x 3 (2H 2 O + CrO 2 6 CrO H + + 3e) x 2 6e + 6H + + 3ClO 6 3Cl + 3H 2 O 2CrO (1)H 2 O 6 2CrO 4 + 8(2)H + + 6e Overall: (in acid) 2CrO 2 (aq) + 3ClO (aq) + H 2 O (l) 6 3Cl 2 (aq) + 2CrO 4 (aq) + 2H + (aq)

6 Step 7: Add the same # of OH as there are H+ to both sides of the equation 2 OH + 2CrO 2 + 3ClO + H 2 O 6 3Cl + 2CrO H OH Step 8: Combine OH and H + to form H 2 O 2 OH + 2CrO 2 + 3ClO + H 2 O 6 3Cl + 2CrO H 2 O Step 9: Cancel any H 2 O that you can 2 OH (aq) + 2CrO 2 (aq) + 3ClO (aq) 6 3Cl (aq) + 2CrO 4 2 (aq) + H 2 O(l) Example 3: Balance the following redox equation in basic solution Bi(OH) 3 (s) + SnO 2 2 (aq) 6 Bi (s) + SnO 3 2(aq) (3e + 3H + + Bi(OH) 3 6 Bi + 3H 2 O) x 2 (H 2 O + SnO SnO H + + 2e ) x 3 6e + 6H + + 2Bi(OH) 3 6 2Bi + 6H 2 O 3H 2 O + 3SnO SnO H + + 6e Overall 2Bi(OH) 3 (s) + 3SnO 2 2 (aq) 6 2Bi (s) + 3SnO 3 2(aq) + H 2 O (l) Example 4: Since there is no H + in the equation it is already balanced for a basic solution. Balance the following equation in basic solution MnO 2 (aq) + ClO 3 (aq) 6 (aq) + Cl (aq) (2H 2 O + MnO H + + 3e) x 2 6e + 6H + + ClO 3 6 Cl + 3H 2 O 2MnO 2 + 4H 2 O H + + 6e 6e + 6H + + ClO 3 6 Cl + 3H 2 O Overall: (in acid) 2MnO 2 (aq) + ClO 3 (aq) + H 2 O (l) 6 2 (aq) + Cl (aq) + 2H + (aq) Step 7: Add the same # of OH as there are H+ to both sides of the equation 2OH (aq) + 2MnO 2 (aq) + ClO 3 (aq) + H 2 O (l) 6 2 (aq) + Cl (aq) + 2H + (aq) + 2OH (aq)

7 Step 8: Combine OH and H + to form H 2 O 2OH (aq) + 2MnO 2 (aq) + ClO 3 (aq) + H 2 O (l) 6 2 (aq) + Cl (aq) + 2H 2 O (l) Step 9: Cancel any H 2 O that you can 2OH (aq) + 2MnO 2 (aq) + ClO 3 (aq) 6 2 (aq) + Cl (aq) + H 2 O (l)

8 Chemistry 3202 Balancing Equations in Acidic or Basic Solutions 1. Balance the following reactions in acid solution. a. BrO 3 (aq) + SO 2 (g) 6 SO 4 2(aq) + Br 2 (l) b. Cr 2 O 7 2(aq) + S (s) 6 SO 2 (g) + Cr 2 O 3 (s) c. I (s) + NO 3 (aq) 6 IO 3 (aq) + NO (g) d. C 3 H 7 OH (aq) + Cr 2 O 7 2 (aq) 6C 2 H 5 COOH (aq) + Cr 3+ (aq) e. H 2 C 2 O 4 (aq) + (aq) 6 Mn 2+ (aq) + CO 2 (g) f. Fe 2+ (aq0 + Cr 2 O 7 2(aq) 6 Fe 3+ (aq) +Cr 3+ (aq) g. (aq) + SCN (aq) 6 Mn 2+ (aq) + SO 4 2(aq) + CO 2 (g) + N 2 (g) 2. Balance the following reactions in basic solution. a. Ni (s) + NO 3 (aq) 6 NH 4 +(aq) + Ni 2+ (aq) b. Cr 2 O 7 2 (aq) + AsO 2 (aq) 6 Cr 3+ (aq) + AsO 4 3(aq) c. ClO 3 (aq) + C 2 H 4 O (aq) 6 CO 2 (g) + Cl (aq) d. P 4 (s) + IO 3 (aq) 6 H 2 PO 4 2(aq) + I (aq) e. CrO 4 2 (aq) + Sn 2+ (aq) 6 Sn 4+ (aq) + CrO 2 (aq) f. C 3 H 8 O 3 (aq) + (aq) 6 CO 3 2 (aq) + 2(aq) g. Cr(OH) 6 3 (aq) + BrO (aq) 6 CrO 4 2(aq) + Br (aq) 3. Page : # s (new) 4. Page 496: # 7 (old)

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number Redox Reactions key terms: oxidizing agent reducing agent oxidation number Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign oxidation numbers. Electrochemistry

More information

(aq) 5VO2 + (aq) + Mn 2+ (aq) + 10H + + 4H 2 O. (aq) 5VO2 + (aq) + Mn 2+ (aq) + 2H + (aq) basic solution. MnO2 + 2H 2 O) 3H 2 O + I IO 3

(aq) 5VO2 + (aq) + Mn 2+ (aq) + 10H + + 4H 2 O. (aq) 5VO2 + (aq) + Mn 2+ (aq) + 2H + (aq) basic solution. MnO2 + 2H 2 O) 3H 2 O + I IO 3 Chem 1515 Section 2 Problem Set #15 Spring 1998 Name ALL work must be shown to receive full credit. Due Due in lecture at 1:30 p.m. Friday, May 1st. PS15.1. Balance the following oxidation-reduction reactions

More information

Activity Balancing Oxidation-Reduction Reactions

Activity Balancing Oxidation-Reduction Reactions Activity 201 3 Balancing Oxidation-Reduction Reactions Directions: This GLA worksheet goes over the half-reaction method of balancing oxidation-reduction (redox) reactions. Part A introduces the oxidation

More information

Balancing Redox Reactions

Balancing Redox Reactions Balancing Redox Reactions 1. What is a redox reaction? a. Redox is an abbreviation to say reduction/oxidation is taking place during a chemical reaction. In the old days oxidation was when an element combined

More information

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas.

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. Oxidation Numbers #00 Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

More information

Redox Worksheet 1: Numbers & Balancing Reactions

Redox Worksheet 1: Numbers & Balancing Reactions Name: Date: Per: Redox Worksheet 1: Numbers & Balancing Reactions Assigning Oxidation Number rules: Elements and Compounds have an oxidation number/total of 0 Group I and II In addition to the elemental

More information

Worksheet 25 - Oxidation/Reduction Reactions

Worksheet 25 - Oxidation/Reduction Reactions Worksheet 25 Oxidation/Reduction Reactions Oxidation number rules: Elements have an oxidation number of 0 Group I and II In addition to the elemental oxidation state of 0, Group I has an oxidation state

More information

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic)

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic) Step by Step: Oxidation Numbers and Balancing Redox reactions. Ex. 1) MnO 4-1 + H 2 SO 3 Mn 2+ + HSO 4-1 (acidic) Rules for Oxidation Numbers (for individual atoms): 1) Any free element (without a charge)

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

Reduction: 2 H + (aq) + 2 e H2(g)

Reduction: 2 H + (aq) + 2 e H2(g) Balancing Redox Reactions Homework Answers page 617 # 1-3, 5, 7-9 Mrs. Giovannone 1. (a) Solution: Step 1: Write the unbalanced equation for the reaction. Mg(s) + HCl(aq) H2(g) + MgCl2(aq) Step 2: Write

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

http://redoxanswers.weebly.com REDOX LESSON LEARNING GOALS http://redoxanswers.weebly.com Lesson 1: Introduction to Redox Relate to examples of oxidation-reduction reactions in the real-world. Understand

More information

Information Required for Memorization

Information Required for Memorization Information Required for Memorization Your students are required to memorize the following information for Chem 10. This information must not be supplied on Cheat Sheets for your Semester Exams or Final

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

5 Oxidation and reduction: redox (Topic 3)

5 Oxidation and reduction: redox (Topic 3) Page 91 Questions 1 a) Cr 2+ to Cr 3+ is oxidation because the Cr 2+ ion loses an electron to become a Cr 3+ ion. b) HI to I 2 is oxidation. The I ion in HI loses an electron to become an I atom, which

More information

Acidic Solution. Example #1: ClO3 + SO2 ---> SO4 2 + Cl. Solution: 1) Split into unbalanced half-reactions: ClO3 ---> Cl SO2 ---> SO4 2

Acidic Solution. Example #1: ClO3 + SO2 ---> SO4 2 + Cl. Solution: 1) Split into unbalanced half-reactions: ClO3 ---> Cl SO2 ---> SO4 2 Balance the following REDOX reactions in an acidic solution: 1. ClO3 + SO2 ---> SO4 2 + Cl 2. H2S + NO3 ---> S8 + NO 3. MnO4 + H2S ---> Mn 2+ + S8 4. Cu + SO4 2 ---> Cu 2+ + SO2 5. MnO4 + CH3OH ---> HCOOH

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Oxidation refers to any process in which the oxidation number of an atom becomes more positive

Oxidation refers to any process in which the oxidation number of an atom becomes more positive Lecture Notes 3 rd Series: Electrochemistry Oxidation number or states When atoms gain or lose electrons they are said to change their oxidation number or oxidation state. If an element has gained electrons

More information

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework Name Period Date Ch. 19: OxidationReduction Reactions Homework Answer each of the following questions in as much detail as you can. Be sure to show all your work for any calculations and follow all rules

More information

A voltaic cell using the following reaction is in operation: 2 Ag + (lm) + Cd(s) 2 Ag(s) + Cd 2+ (l M)

A voltaic cell using the following reaction is in operation: 2 Ag + (lm) + Cd(s) 2 Ag(s) + Cd 2+ (l M) 0. Cu (s) + 2Ag + Cu 2+ + 2Ag (s) If the equilibrium constant for the reaction above is 3.7x10 15, which of the following correctly describes the standard voltage, E o and the standard free energy change,

More information

3. The initial rate of a reaction A + B C was measured for several different starting concentrations of A and B, and the results are as follows:

3. The initial rate of a reaction A + B C was measured for several different starting concentrations of A and B, and the results are as follows: Kinetic Chemistry 1. a) How is the rate at which ozone disappears related to the rate at which oxygen appears in the reaction 2 O 3 (g) 3 O 2 (g)? b) If the rate at which O 2 appears, Δ[O 2 ]/Δt, is 6.0

More information

5.4 Balancing half-reactions 8 HSO 3 S 2 O H + + 2HSO H 2 O. + MnO 4 - Mn 2+ + Answer: 4H + on the left will cancel these 4H +

5.4 Balancing half-reactions 8 HSO 3 S 2 O H + + 2HSO H 2 O. + MnO 4 - Mn 2+ + Answer: 4H + on the left will cancel these 4H + Notes on Unit 5 OxidationReduction 5.4 Balancing halfreactions Some halfreactions are on the table, but not all. You may be asked to answer these Acid Soln. E.g.) S 2 O 8 2 HSO 3 (acid soln.) (1) Balance

More information

AP Chemistry: Electrochemistry Multiple Choice Answers

AP Chemistry: Electrochemistry Multiple Choice Answers AP Chemistry: Electrochemistry Multiple Choice Answers 14. Questions 14-17 The spontaneous reaction that occurs when the cell in the picture operates is as follows: 2Ag + + Cd (s) à 2 Ag (s) + Cd 2+ (A)

More information

AQA A2 CHEMISTRY TOPIC 5.3 REDOX EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 5.3 REDOX EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 5.3 REDOX EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS 1. (a) Define the term oxidising agent in terms of electrons.... 2. Use the data in the table below, where appropriate,

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Chemistry Grade:12 CHAPTER 19 REVIEW Oxidation-Reduction Reactions SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. All the following equations involve redox reactions except

More information

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons 1 of 13 interesting links: Battery Chemistry Tutorial at http://www.powerstream.com/batteryfaq.html Duracell Procell: Battery Chemistry at http://www.duracell.com/procell/chemistries /default.asp I. Oxidation

More information

Unit 5 Part 2: Redox Reactions and Electrochemistry

Unit 5 Part 2: Redox Reactions and Electrochemistry Unit 5 Part 2: Redox Reactions and Electrochemistry Oxidation Numbers Oxidizing and Reducing Agents Balancing Redox Reactions Acidic solutions Basic solutions Galvanic Cells Nernst Equation This reaction

More information

Rules for Assigning Oxidation Numbers. 1. The oxidation number of an element in any elementary substance is zero.

Rules for Assigning Oxidation Numbers. 1. The oxidation number of an element in any elementary substance is zero. Rules for Assigning Oxidation Numbers 1. The oxidation number of an element in any elementary substance is zero. For example, the oxidation number of chlorine in Cl 2, phosphorus in P 4, and sulfur in

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 15 Redox Reactions Module 16 Half-Reaction Balancing Module 15 Redox Reactions... 380 Lesson 15A: Oxidation Numbers... 380 Lesson 15B: Balancing Charge... 385 Lesson 15C:

More information

Oxidation State Short Cuts

Oxidation State Short Cuts Oxidation State Short Cuts The oxidation state of an atom in its elemental state is zero The sum of atomic oxidation states = total charge on an ion or molecule The oxidation state of F is always -1 (except

More information

CHM 4 Optional worksheet: Ion names/formulas

CHM 4 Optional worksheet: Ion names/formulas The goal of this optional worksheet is to help you recognize patterns that will help you memorize the ion names and symbols on our Important elements/ions to know for CHM 4, 1A, and 1B handout. It will

More information

Homework #3 Chapter 11 Electrochemistry

Homework #3 Chapter 11 Electrochemistry Homework #3 Chapter 11 Electrochemistry Chapter 4 83. a) Oxidation ½ Reaction Fe + HCl HFeCl 4 Fe + 4HCl HFeCl 4 Fe + 4HCl HFeCl 4 + 3H + Fe + 4HCl HFeCl 4 + 3H + + 3e Reduction ½ Reaction H 2 2H + H 2

More information

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1 Redox Reactions Sections 4.9, 18.2 RW Session ID = MSTCHEM1 Oxidation Reduction Reactions Redox Reactions Electrons are transferred from one reactant to another Oxidation loss of electrons Reduction gain

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

Half Cell / redox potentials. Context. Task. Evaluation

Half Cell / redox potentials. Context. Task. Evaluation Half Cell / redox potentials Context Students often struggle when asked to apply redox potentials and to combine reduction half equations correctly. This activity aims to involve all the individuals in

More information

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Name Period CRHS Academic Chemistry UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Electrochemistry Crash Course

Electrochemistry Crash Course Electrochemistry Crash Course Electrochemistry is essentially the study of reactions involving the transfer of electrons from one element to another or the study of systems that allow for the flow of voltage

More information

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Lesson Topics Covered Homework Questions and Assignments 1 Introduction to Electrochemistry definitions 1. Read pages 462 467 2. On page

More information

Chapter 19: Electrochemistry I. Chem 102 Dr. Eloranta

Chapter 19: Electrochemistry I. Chem 102 Dr. Eloranta Chapter 19: Electrochemistry I Chem 102 Dr. Eloranta 2 Electrochemistry The study of the relationships between electrical processes and chemical processes Batteries, electroplating, fuel cells, hydrogen

More information

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion. #19 Notes Unit 3: Reactions in Solutions Ch. Reactions in Solutions I. Solvation -the act of dissolving (solute (salt) dissolves in the solvent (water)) Hydration: dissolving in water, the universal solvent.

More information

REVIEW QUESTIONS Chapter 19

REVIEW QUESTIONS Chapter 19 Chemistry 10 ANSWER KEY REVIEW QUESTIONS Chapter 19 1. For each of the following unbalanced equations, (i) write the half-reactions for oxidation and reduction, and (ii) balance the overall equation in

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 4 Section 9 & 10 Oxidation Reduction Reactions Reactions in which one or more electrons are transferred. That means elements change their charge from reactants to

More information

Chapter 12 Redox reactions and Electrochemistry

Chapter 12 Redox reactions and Electrochemistry Chapter 12 Redox reactions and Electrochemistry 11 Balancing Redox Equations 12 Electrochemical Cells 13 Stoichiometry in Electrochemical Cells 14 (Skip) Metals and Metallurgy 15 (Skip) Electrometallurgy

More information

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A? CHEM161 014-N-1 November 014 In the electrolytic production of Al, what mass of Al can be deposited in.00 hours by a current of 1.8 A? What products would you expect at the anode and the cathode on electrolysis

More information

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred.

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred. Electrochemistry Remember from CHM151 A redox reaction in one in which electrons are transferred Reduction Oxidation For example: L E O ose lectrons xidation G E R ain lectrons eduction We can determine

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Reactions involve the transfer of electrons between reactants When a substance loses electrons, it undergoes oxidation: Ca(s)

More information

Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where

Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where electrons are transferred to convert the chemical energy into

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Chapter 4 Reactions in Aqueous Solutions Some typical kinds of chemical reactions: 1. Precipitation reactions: the formation of a salt of lower solubility causes the precipitation to occur. precipr 2.

More information

Problem Solving. Redox Equations

Problem Solving. Redox Equations Skills Worksheet Problem Solving Redox Equations The feature that distinguishes redox reactions from other types of reactions is that elements change oxidation state by gaining or losing electrons. Compare

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM Chemical Reactions Chapter 4 Notes Oct 21 8:44 AM Oct 22 10:14 AM 1 There are several things to keep in mind writing reactions and predicting products: 1. States of matter of elements/compounds 2. Diatomics

More information

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions Ch. 20 Oxidation-Reduction Reactions AKA Redox Reactions 20.1 THE MEANING OF OXIDATION AND REDUCTION Early Chemistry Oxidation: a substance gains oxygen Reduction: a substance loses oxygen Nothing can

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

Chemistry 30: Reduction-Oxidation Reactions. Single replacement Formation Decomposition Combustion. Double replacement

Chemistry 30: Reduction-Oxidation Reactions. Single replacement Formation Decomposition Combustion. Double replacement Chemistry 30: Reduction-Oxidation Reactions BIG IDEA: Reduction-oxidation (redox) reactions occur by the transfer of one or more electrons from one atom to another. By assigning oxidation numbers, we can

More information

Week 9 Solubility & Redox

Week 9 Solubility & Redox Week 9 Solubility & Redox Q UEST IO N 1 2 The solubility of Ag 2CO 3 is 3.5 10 g/l at 25 C. What is the value of Ks p at this temperature? 12 A. 2.2 10 8 B. 3.4 10 12 C. 8.2 10 4 D. 1.7 10 E. 4.3 10 Q

More information

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals. Chapter 17 Oxidation-Reduction Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) copper wire colorless solution silver crystals pale blue solution Introduction to General, Organic, and Biochemistry 10e John

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

Announcements. Comprehensive Final Exam: March 24 7:30AM - 9:30 C114 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70, 72,73,82,85,87

Announcements. Comprehensive Final Exam: March 24 7:30AM - 9:30 C114 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70, 72,73,82,85,87 Announcements Exam 3 March 17 Comprehensive Final Exam: March 24 7:30AM - 9:30 C114 Problems Chapter 21: 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70, 72,73,82,85,87 Up to but not including

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Oxidation and Reduction by Christopher Hamaker 1 Oxidation Reduction Reactions Oxidation reduction reactions are

More information

October 19, 1999 Page 1. Chapter 4 Practice Worksheet Dr. Palmer Graves, Instructor MULTIPLE CHOICE

October 19, 1999 Page 1. Chapter 4 Practice Worksheet Dr. Palmer Graves, Instructor MULTIPLE CHOICE October 19, 1999 Page 1 MULTIPLE CHOICE Section 4.1 Some Ways that Chemical Reactions Occur 1. The reaction of HNO (aq) + KOH(aq) KNO (aq) + H O(l) is best classified as a(n) a) acid-base neutralization

More information

Section Electrochemistry represents the interconversion of chemical energy and electrical energy.

Section Electrochemistry represents the interconversion of chemical energy and electrical energy. Chapter 21 Electrochemistry Section 21.1. Electrochemistry represents the interconversion of chemical energy and electrical energy. Electrochemistry involves redox (reduction-oxidation) reactions because

More information

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS RULES FOR ASSIGNING OXIDATION NUMBERS: 1. The oxidation number of any free element (including diatomic elements) is always 0. 2. The sum of the oxidation

More information

Unit 8: Redox and Electrochemistry

Unit 8: Redox and Electrochemistry May 20, 2014 Unit 8: Redox and Electrochemistry http://www.firefly.org/firefly-pictures.html Oxidation Number numbers assigned to atoms that allow us to keep track of electrons. Rule #1: Oxidation number

More information

CHEMISTRY 15 EXAM III-Version A (White)

CHEMISTRY 15 EXAM III-Version A (White) CHEMISTRY 15 EXAM IIIVersion A (White) Dr. M. RichardsBabb June 18, 2001 An optical scoring machine will grade this examination. The machine is not programmed to accept the correct one of two sensed answers

More information

Inorganic Chemistry Nomenclature A. Anions

Inorganic Chemistry Nomenclature A. Anions Writing Net Ionic Equations and Determination of Spectator Ions Predicting Products and Balancing Total Equation: 1. Given reactants, swap appropriate ions to form product compounds 2. Determine phase

More information

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility

Ionic Compound Solubility. Ionic Compound Solubility. Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Ionic Compound Solubility. Ionic Compound Solubility Nitrates (NO 3 - ) Chlorates (ClO 3 - ) Perchlorates (ClO 4 - ) Acetates (C 2 H 3 O 2 - ) Alkali Metal Compounds (Li +,Na +,K +,Rb +,Cs + ) Ammonium Compounds (NH 4 + ) Chlorides (Cl - ) Bromides (Br -

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Chapter 12 Redox reactions and Electrochemistry

Chapter 12 Redox reactions and Electrochemistry Chapter 12 Redox reactions and Electrochemistry 11 Balancing Redox Equations 12 Electrochemical Cells 13 Stoichiometry in Electrochemical Cells 14 Metals and Metallurgy 15 Electrometallurgy Note: See course

More information

Week 9 Solubility & Intro electrochem

Week 9 Solubility & Intro electrochem Week 9 Solubility & Intro electrochem Q UEST IO N 1 2 The solubility of Ag 2CO 3 is 3.5 10 g/l at 25 C. What is the value of Ks p at this temperature? 12 A. 2.2 10 8 B. 3.4 10 12 C. 8.2 10 4 D. 1.7 10

More information

7-OXIDATION, REDUCTION, RED-OX REACTIONS, TYPES

7-OXIDATION, REDUCTION, RED-OX REACTIONS, TYPES 7-OXIDATION, REDUCTION, RED-OX REACTIONS, TYPES 1) In the reaction CuO + NH Cu + N + HO, the oxidation number of N changes from 1) to 0 ) 0 to + ) to + 4) to 0 ) In the reaction MnO 4 MnO, the number of

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

10.3. The Half-Reaction Method for Balancing Equations. 482 MHR Unit 5 Electrochemistry

10.3. The Half-Reaction Method for Balancing Equations. 482 MHR Unit 5 Electrochemistry 10.3 Section Preview/ Specific Expectations In this section, you will investigate oxidationreduction reactions by reacting metals with acids and by combusting hydrocarbons write balanced equations for

More information

How many carbon atoms are in 1 mol of sucrose (C 12 H 22 O 11 )? A) 7.23 x B) 6.02 x C) 5.02 x D) 12 E) 342

How many carbon atoms are in 1 mol of sucrose (C 12 H 22 O 11 )? A) 7.23 x B) 6.02 x C) 5.02 x D) 12 E) 342 Question 1 How many carbon atoms are in 1 mol of sucrose (C 12 H 22 O 11 )? A) 7.23 x 10 24 B) 6.02 x 10 23 C) 5.02 x 10 22 D) 12 E) 342 3-1 Question 2 Calculate the mass % of hydrogen in ammonium bicarbonate.

More information

2. a) CaI 2 b) OF 2 c) C 6H 12O 6 d) Rb 2O e) S 2O. Chapter 7

2. a) CaI 2 b) OF 2 c) C 6H 12O 6 d) Rb 2O e) S 2O. Chapter 7 Chapter 7 Page 433, Practice Problems 7.1.1 1. H = +1 O = 2 2. Cs = +1 O = 1 3. C = +4 O = 2 4. Na = +1 Cr = +6 O = 2 5. Ba = +2 H = 1 6. N = 3 H = +1 7. S = 0 8. Al = +3 S = +6 O = 2 Page 434, Quick Check

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions What is an Oxidation-Reduction, or Redox, reaction? Oxidation-reduction reactions, or redox reactions, are technically defined as any chemical reaction in which the oxidation

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

Sample Exercise 20.2 Practice Exercise 1 with feedback

Sample Exercise 20.2 Practice Exercise 1 with feedback Homework Chapter 20 Due: 11:59pm on Wednesday, November 16, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Sample Exercise 20.2 Practice Exercise 1 with

More information

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH Today: Redox Reactions Oxidations Reductions Oxidation Numbers Half Reactions Balancing in Acidic Solution Balancing in Basic Solution QUIZ 3 & EXAM 3 moved up by one day: Quiz 3 Wednesday/Thursday next

More information

Redox Reactions, Chemical Cells and Electrolysis

Redox Reactions, Chemical Cells and Electrolysis Topic 5 Redox Reactions, Chemical Cells and Electrolysis Part A Unit-based exercise Unit 19 Chemical cells in daily life Fill in the blanks 1 chemical; electrical 2 electrolyte 3 voltmeter; multimeter

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

Practice Final CH142, Spring 2012

Practice Final CH142, Spring 2012 Practice Final CH142, Spring 2012 First here are a group of practice problems on Latimer Diagrams: 1. The Latimer diagram for nitrogen oxides in given below. Is NO stable with respect to disproportionation

More information

Q.1 What is the oxidation state of the elements in?

Q.1 What is the oxidation state of the elements in? Oxidation and Reduction 1 OXIDATION NUMBERS Used to tell if oxidation or reduction has taken place work out what has been oxidised and/or reduced construct half equations and balance redox equations Atoms

More information

4. What is the law of constant composition (also known as the law of definite proportion)?

4. What is the law of constant composition (also known as the law of definite proportion)? Name: Exercises #1: 1. What is the law of conservation of mass? 2. Show that the results of the following experiments illustrate the law of conservation of mass. Experiment #1: a 5.00-g sample of pure

More information

Acids and Bases. Properties of Acids. Properties of Bases

Acids and Bases. Properties of Acids. Properties of Bases Chemistry 2A/2B Term 3 Notes B 1 Coghlan Chemistry 2A/2B Term 3 Notes B Properties of Acids Acids and Bases 1. Neutralise. 2. Turns litmus red. 3. Conducts when in with water form an (acids ). 4. React

More information

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions Slide 1 / 144 Electrochemistry Electrochemistry Slide 2 / 144 Electrochemistry deals with relationships between reactions and electricity In electrochemical reactions, electrons are transferred from one

More information

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: Water as a solvent Strong and Weak Electrolytes Solution Concentrations How to Make up a solution Types of Reactions Introduction

More information

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred:

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred: 1.7 REDOX Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Our understanding of oxidation and reduction was limited

More information

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed.

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed. Ch. 5 Oxidation-Reduction Reactions Brady & Senese, 5 th Ed. 1 Index 5.1. Oxidation-reduction reactions involve electron transfer 5.2. The ion-electron method creates balanced net ionic equations for redox

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

Electrochemical Reactions

Electrochemical Reactions 1 of 20 4/11/2016 1:00 PM Electrochemical Reactions Electrochemical Reactions Electrical Work From Spontaneous Oxidation- Reduction Reactions Predicting Spontaneous Redox Reactions from the Sign of E Line

More information

Chapter 4: 11, 15, 18, 20, 22, 24, 30, 33, 36, 40, 42, 43, 46, 48, 50, 56, 60, 62, 64, 75, 82, 94 + C 2 H 3 O 2

Chapter 4: 11, 15, 18, 20, 22, 24, 30, 33, 36, 40, 42, 43, 46, 48, 50, 56, 60, 62, 64, 75, 82, 94 + C 2 H 3 O 2 Chapter : 11, 15, 18, 0,,, 0,, 6, 0,,, 6, 8, 50, 56, 60, 6, 6, 5, 8, 9 11. a. NaBr Na Br b. MgCl Mg Cl c. Al(NO ) Al NO d. (NH ) SO NH SO e. NaOH Na OH f. FeSO Fe SO g. KMnO K MnO h. HClO H ClO i. NH C

More information

CHEMISTRY. Chapter 6 Oxidation Reduction Reactions. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 6 Oxidation Reduction Reactions. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 6 Oxidation Reduction Reactions Copyright 2012 by John Wiley & Sons, Inc. Hierarchy of Rules for Assigning Oxidation

More information